THE STRONG UNICITY CONSTANT FOR PROJECTIONS

by Agnieszka Lipieta

Abstract

Let $Y \subset l_{\infty}^{n}$ be a linear subspace and let $\mathcal{P}\left(l_{\infty}^{n}, Y\right)$ denote the set of linear projections. An estimation and calculation (in some particular cases) of the strong unicity constant for a minimal or cominimal projection $P_{o} \in \mathcal{P}\left(l_{\infty}^{n}, Y\right)$ will be presented.

1. Introduction. Let X be a normed space and let $Y \subset X$ be a linear subspace of X. The symbol $\mathcal{L}(X, Y)$ means the set of all linear continuous mappings from X to Y. A bounded linear operator P is called a projection if $P y=y$ for any $y \in Y$. Denote by $\mathcal{P}(X, Y)$ the set of all projections from X onto Y.

Definition 1.1. If $\mathcal{P}(X, Y) \neq \emptyset$ then a projection $P_{o} \in \mathcal{P}(X, Y)$ is called minimal iff

$$
\begin{equation*}
\left\|P_{o}\right\|=\lambda(Y, X)=\inf \{\|P\|: P \in \mathcal{P}(X, Y)\} \tag{1.1}
\end{equation*}
$$

Let $I d$ be an identity on X.
Definition 1.2. If $\mathcal{P}(X, Y) \neq \emptyset$ then a projection $P_{o} \in \mathcal{P}(X, Y)$ is called cominimal iff

$$
\begin{equation*}
\left\|I d-P_{o}\right\|=\lambda_{I}(Y, X)=\inf \{\|I d-P\|: P \in \mathcal{P}(X, Y)\} \tag{1.2}
\end{equation*}
$$

The significance of this notion can be illustrated by the following well known inequality:

$$
(1+\|P\|) \operatorname{dist}(x, Y) \geq\|I d-P\| \operatorname{dist}(x, Y) \geq\|(I d-P)(x)\| \geq \operatorname{dist}(x, Y)
$$

for every $x \in X \backslash Y$ and $P \in \mathcal{P}(X, Y)$.
1991 Mathematics Subject Classification. 47A58, 41A35, 41A65.
Key words and phrases. Strongly unique best approximation, projections, regular I-sets, extreme points.

This means that if $\|P\|$ or $\|I d-P\|$ is small then $P x$ is a "good" linear replacement of any $x \in X$ in Y. It is easily seen that

$$
\|I d-P\| \geq 1 \text { for every } P \in \mathcal{P}(X, Y)
$$

It is also clear that if P_{o} is a cominimal projection then

$$
\left\|I d-P_{o}\right\|=\operatorname{dist}(I d, \mathcal{P}(X, Y)) .
$$

For more information concerning minimal and cominimal projections the reader
 A more exhaustive list of references can be found in $\mathbf{2 0}$.

Lemma 1.3. (see, e.g., (5). Assume that X is a normed space and let $Y \subset X$ be a subspace of codimension $k, Y=\bigcap_{i=1}^{k}$ kerg i, where $g^{i} \in X^{*}$ are linearly independent. Let $P \in \mathcal{P}(X, Y)$. Then there exist $y^{1}, \ldots, y^{k} \in X$ satisfying

$$
\begin{equation*}
g^{i}\left(y^{j}\right)=\delta_{i, j}, \quad i, j=1, \ldots, k \tag{1.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
P x=x-\sum_{i=1}^{k} g^{i}(x) y^{i} \quad \text { for } \quad x \in X . \tag{1.4}
\end{equation*}
$$

On the other hand, if $y^{1}, \ldots, y^{k} \in X$ satisfy (1.3) then operator

$$
P=I d-\sum_{i=1}^{k} g^{i}(\cdot) y^{i}
$$

belongs to $\mathcal{P}(X, Y)$.
Definition 1.4. It is said that a projection $P \in \mathcal{P}(X, Y)$ is determined by $y^{1}, \ldots, y^{k} \in X$ iff $y^{1}, \ldots, y^{k} \in X$ satisfy (1.3) and (1.4.

Definition 1.5. Let Y_{1}, Y_{2} be two linear subspaces of X. It is said that Y_{1} is equivalent up to isometry to Y_{2} iff there is a linear, surjective isometry T of X into itself such that $T\left(Y_{1}\right)=Y_{2}$.

Lemma 1.6. (see, e.g., $[\mathbf{2 0}]$). Let Y_{1}, Y_{2} be two linear subspaces of X such that Y_{1} is equivalent up to isometry to Y_{2}. Then $\lambda\left(Y_{1}, X\right)=\lambda\left(Y_{2}, X\right)$ and $\lambda_{I}\left(Y_{1}, X\right)=\lambda_{I}\left(Y_{2}, X\right)$.

Now we recall some information about the strongly unique best approximation (theory of strong unicity has its origin in (19).

Definition 1.7. It is said that $v_{o} \in V$ is a strongly unique best approximation (SUBA) for x in V iff there exists a constant $r>0$ such that for every $v \in V$

$$
\begin{equation*}
\|x-v\| \geq\left\|x-v_{o}\right\|+r\left\|v-v_{o}\right\| . \tag{1.5}
\end{equation*}
$$

The largest constant $r>0$ satisfying (1.5) is called the strong unicity constant.
The notion of strong unicity leads to a simple proof of the Freud Theorem about the Lipschitz continuity of the best approximation mapping (see [8], p. 82).

Another application of the strong unicity is the estimate of the error of the algorithm for seeking for best approximation (see, e.g., [8], p. 98).

The aim of this paper is to estimate or calculate the strong unicity constant for minimal and cominimal projections in l_{∞}^{n}.
We now present some definitions and results which will be of use later.
Let $P \in \mathcal{P}(X, Y)$ and

$$
\mathcal{L}_{Y}(X, Y)=\left\{L \in \mathcal{L}(X, Y):\left.L\right|_{Y}=0\right\} .
$$

Then $\mathcal{P}(X, Y)=P+\mathcal{L}_{Y}(X, Y)$ and

$$
\lambda(Y, X)=\operatorname{dist}\left(P, \mathcal{L}_{Y}(X, Y)\right)
$$

Additionaly, $P_{o} \in \mathcal{P}(X, Y)$ is a minimal projection iff the operator 0 is an element of best approximation for P_{o} in $\mathcal{L}_{Y}(X, Y)$.
Analogously,

$$
\begin{equation*}
\lambda_{I}(Y, X)=\operatorname{dist}\left(I d-P, \mathcal{L}_{Y}(X, Y)\right) \tag{1.6}
\end{equation*}
$$

$P_{o} \in \mathcal{P}(X, Y)$ is a cominimal projection iff the operator 0 is is an element of best approximation for $I d-P_{o}$ in $\mathcal{L}_{Y}(X, Y)$.

Definition 1.8. It is said that a minimal (cominimal) projection $P_{o} \in$ $\mathcal{P}(X, Y)$ is an element of best approximation iff the operator 0 is a strongly unique best approximation for $P_{o}\left(I d-P_{o}\right)$ in $\mathcal{L}_{Y}(X, Y)$.

Notice that
REMARK 1.9. If a minimal projection $P_{o} \in \mathcal{P}(X, Y)$ is the strongly unique best approximation then there exists $r>0$ such that for every projection $P \in \mathcal{P}(X, Y)$

$$
\begin{equation*}
\|P\| \geq\left\|P-P_{o}\right\|+r\left\|P-P_{o}\right\| \tag{1.7}
\end{equation*}
$$

If a cominimal projection $P_{o} \in \mathcal{P}(X, Y)$ is the strongly unique best approximation then there exists $r>0$ such that for every projection $P \in \mathcal{P}(X, Y)$

$$
\begin{equation*}
\|I d-P\| \geq\left\|I d-P_{o}\right\|+r\left\|P-P_{o}\right\| \tag{1.8}
\end{equation*}
$$

The largest constant $r>0$ satisfying (1.7) or 1.8 is called the strong unicity constant for projections.

Let X be a normed space and let $V \subset X$ be a nonempty set. By $\operatorname{ext}(V)$ we denote the set of its extreme points. For any $x \in X$

$$
\begin{equation*}
E(x)=\left\{f \in X^{*}:\|f\|=1, f(x)=\|x\|\right\} \tag{1.9}
\end{equation*}
$$

and if $S(X)$ denotes the unit sphere in X,

$$
\begin{equation*}
E x t(x)=\left\{f \in \operatorname{ext}\left(S\left(X^{*}\right)\right): f(x)=\|x\|\right\} \tag{1.10}
\end{equation*}
$$

Definition 1.10. ($(\mathbf{2 2} \|)$. Let X be a normed space and let $V \subset X$ be a n-dimensional linear subspace. A set $I=\left\{\phi^{1}, \ldots, \phi^{k}\right\} \in \operatorname{ext}\left(S\left(X^{*}\right)\right)$ is called I-set iff there exist positive numbers $\lambda^{1}, \ldots, \lambda^{k}$ such that

$$
\begin{equation*}
\left.\sum_{i=1}^{k} \lambda^{i} \phi^{i}\right|_{V}=0 \tag{1.11}
\end{equation*}
$$

If $I \subset E(x)$, then I is called an I-set with respect to x. An I-set I is said to be minimal if there is no proper subset of I which forms an I-set. A minimal I-set is called regular iff $k=n+1$ (by the Carathéodory theorem, $n+1$ is the largest possible number).
The importance of regular I-sets is illustrated by
Theorem 1.11. ($(\mathbf{2 2} \mid)$. Let X be a real normed space and let V be an n-dimensional linear subspace. Let $x \in X \backslash V, v_{o} \in V$. If there exists a regular I-set for $x-v_{o}$, then v_{o} is the strongly unique best approximation for x in V.

Theorem 1.12. $(\boxed{\mathbf{2 1}})$. Let X be a finite dimensional normed space. Then

$$
\operatorname{ext}\left(S\left((\mathcal{L}(X, X))^{*}\right)\right)=\operatorname{ext}\left(S\left(X^{*}\right)\right) \otimes \operatorname{ext}(S(X))
$$

where $\left(x^{*} \otimes x\right)(L)=x^{*}(L x)$ for $x \in X, x^{*} \in X^{*}$ and $L \in \mathcal{L}(X, X)$.
Let $n, k \in \mathbb{N}, n \geq 3$ and $n \geq k$. Let $X=l_{\infty}^{n}, Y=\bigcap_{i=1}^{k}$ ker g^{i}, where $g^{i} \in S\left(l_{1}^{(n)}\right)$ are linearly independent. Let $P \in \mathcal{P}(X, Y)$. By Lemma 1.3, there exist $y^{i} \in X, i \in\{1, \ldots, k\}$ such that $P=I d-\sum_{i=1}^{k} g^{i}(\cdot) y^{i}$. Then

Lemma 1.13. ($\mathbf{1 6} \mathbf{)}$).

$$
\begin{equation*}
\|I d-P\|=\max _{j \in\{1, \ldots, n\}}\left(\sum_{s=1}^{n}\left|\sum_{i=1}^{k} g_{s}^{i} y_{j}^{i}\right|\right) \tag{1.12}
\end{equation*}
$$

ThEOREM 1.14. ($\mathbf{1 6}$). Let $g^{1}, g^{2}, \ldots, g^{k} \in S\left(X^{*}\right) k \geq n$ be linearly independent functionals such that $g_{j}^{i} \geq 0$ for every $i \in\{1,2, \ldots, k\}, j \in\{1,2, \ldots, n\}$, $g_{i}^{i}>0, g_{j}^{i}=0$ for every $i, j \in\{1,2, \ldots, k\}, i \neq j$. Let $P_{o} \in \mathcal{P}(X, Y)$ and $y^{i} \in X(i \in\{1,2, \ldots, k\})$ determine P_{o} (see Def. 1.4). Then $\left\|I d-P_{o}\right\|=1$ iff $\operatorname{supp}\left(g^{i}\right) \cap \operatorname{supp}\left(g^{j}\right)=\emptyset$ for every $i \neq j$, where

$$
\operatorname{supp}\left(g^{i}\right)=\left\{k: g_{k}^{i} \neq 0\right\}
$$

Moreover, if $g_{j}^{i} \neq 0$, then for every $t \in\{1,2, \ldots, k\}$

$$
y_{j}^{t}=\left\{\begin{array}{lll}
0 & \text { for } & i \neq t \tag{1.13}\\
1 & \text { for } & i=t
\end{array}\right.
$$

2. The strong unicity constant. Let X be a real normed space and let $V \subset X$ be a N-dimensional linear subspace. Suppose that $x \in X, v_{o} \in V$. Let

$$
\begin{equation*}
I=\left\{\phi^{1}, \ldots, \phi^{N+1}\right\} \in \operatorname{ext}\left(S\left(X^{*}\right)\right) \tag{2.1}
\end{equation*}
$$

with positive constants $\lambda^{1}, \ldots, \lambda^{N+1}$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{N+1} \lambda^{j}=1 \tag{2.2}
\end{equation*}
$$

be a regular I-set with respect to $x-v_{o}$ (see Def. 1.10).
Lemma 2.1. Let $v \in V$. If for every $i \in\{1, \ldots, N+1\}$

$$
\begin{equation*}
\phi^{i}(v)=0 \tag{2.3}
\end{equation*}
$$

then $v=0$.
Proof. By the regularity of I-sets, every N elements of the I-set I are linearly independent in restriction to V. This proves the Lemma.

Lemma 2.2. Let $\sigma \in P_{N+1}$ be a permutation of the set $\{1, \ldots, N+1\}$. For every subset of an I-set I of the form $\phi^{\sigma(1)}, \ldots, \phi^{\sigma(N)}$ there exists a basis v^{1}, \ldots, v^{N} of the subspace V such that

$$
\begin{equation*}
\phi^{\sigma(i)}\left(v^{j}\right)=\delta_{i, j}, \quad i, j=1, \ldots, N \tag{2.4}
\end{equation*}
$$

and $\left\|v^{i}\right\| \geq 1$ for every $i \in\{1, \ldots, N\}$.
Proof. Without loss of generality we assume that $\sigma(i)=i$ for every $i \in$ $\{1, \ldots, N\}$.
By the regularity of the I-set I, the functionals $\left.\phi^{1}\right|_{V}, \ldots,\left.\phi^{N}\right|_{V}$ are linearly independent and form the basis of the subspace V^{*}. By the regularity of the I-set I, this implies the existence of vectors v^{1}, \ldots, v^{N} satisfying 2.4. Now
we show that for every $i \in\{1, \ldots, N\},\left\|v^{i}\right\| \geq 1$. Suppose that there exists a vector $v^{i} \in V$ satisfying (2.4) and $\left\|v^{i}\right\|<1$.
Then $v^{i} \neq 0$ and $\phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right)=\frac{1}{\left\|v^{2}\right\|}>1$, which contradicts assumption 2.1.
Now we calculate the strong unicity constant r (see Def. 1.7) using functionals ϕ^{i} by 2.1. Since $\phi^{i}\left(x-v_{o}\right)=\left\|x-v_{o}\right\|$ for every $v \in V, v \neq v_{o}$ we get

$$
\begin{gathered}
\phi^{i}\left(\frac{v_{o}-v}{\left\|v_{o}-v\right\|}\right)=\phi^{i}\left(\frac{v_{o}-x+x-v}{\left\|v-v_{o}\right\|}\right) \\
\quad=\frac{\phi^{i}\left(v_{o}-x\right)}{\left\|v-v_{o}\right\|}+\frac{\phi^{i}(x-v)}{\left\|v-v_{o}\right\|} \\
\leq \frac{-\left\|x-v_{o}\right\|+\|x-v\|}{\left\|v-v_{o}\right\|} .
\end{gathered}
$$

So for every $i \in\{1, \ldots, N+1\}$

$$
\phi^{i}\left(\frac{v_{o}-v}{\left\|v-v_{o}\right\|}\right)\left\|v-v_{o}\right\|+\left\|x-v_{o}\right\| \leq\|x-v\| .
$$

Put

$$
\begin{equation*}
r=\min \left\{\max \left\{\phi^{i}\left(\frac{v_{o}-v}{\left\|v_{o}-v\right\|}\right): i \in\{1, \ldots, n+1\}\right\}: v \in V\right\} . \tag{2.5}
\end{equation*}
$$

Notice that for every $v \in V$

$$
\begin{equation*}
\|x-v\| \geq\left\|x-v_{o}\right\|+r\left\|v-v_{o}\right\| . \tag{2.6}
\end{equation*}
$$

By the regularity of I-set (2.1) and Lemma 2.1, $r>0$. It is easy to see that the constant r given by (2.5) is the strong unicity constant for $x-v_{o}$ (see Def. 1.7).

For $\lambda^{1}, \ldots, \lambda^{n+1}$ satisfying 2.2), let

$$
\begin{equation*}
\lambda_{\text {min }}:=\min \left\{\lambda^{j}: j \in\{1, \ldots, N+1\}\right\} . \tag{2.7}
\end{equation*}
$$

Let $k \in\{1, \ldots, N+1\}$. Now for functionals $\phi^{i}(i \in\{1, \ldots, k-1, k+1, \ldots, N+$ $1\}$) we find vectors $v^{i}(k)$ by Lemma 2.2. Let

$$
\begin{gather*}
l(k)=\min \left\{\phi^{i}\left(\frac{v^{i}(k)}{\left\|v^{i}(k)\right\|}\right): i \in\{1, \ldots, k-1, k+1, \ldots, N+1\}\right\}, \tag{2.8}\\
l:=\max \{l(k): k \in\{1, \ldots, N+1\}\} . \tag{2.9}
\end{gather*}
$$

Now we may state
Theorem 2.3.

$$
r \geq l \cdot \frac{\lambda_{\min }}{2-\lambda_{\min }}
$$

Proof. Fix $v \in S_{V}$. Without loss of generality we assume that $l=l(N+1)$. First assume that

$$
\begin{equation*}
\phi^{N+1}(v)=\max _{i \in\{1, \ldots, N+1\}}\left\{\phi^{i}(v)\right\} . \tag{2.10}
\end{equation*}
$$

By Lemma 2.2, we find vectors $v^{i} \in V$ satisfying (2.4) for functionals $\phi^{1}, \ldots, \phi^{N}$. Notice that $\frac{v^{i}}{\left\|v^{i}\right\|}$ form a basis of the subspace V. So there exist numbers $a_{i}(v) \in R$ such that

$$
\begin{equation*}
v=\sum_{i=1}^{N} a_{i}(v) \frac{v^{i}}{\left\|v^{i}\right\|} \tag{2.11}
\end{equation*}
$$

Moreover, for every $i \in\{1, \ldots, N\}, \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right)>0$. Notice that

$$
\begin{equation*}
1=\|v\| \leq \sum_{i=1}^{N}\left|a_{i}(v)\right| \tag{2.12}
\end{equation*}
$$

Since $\phi^{i}\left(v^{j}\right)=\delta_{i, j}$, then for $i \in\{1, \ldots, N\}$

$$
\begin{equation*}
\phi^{N+1}(v) \geq \phi_{i}(v)=a_{i}(v) \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right) \tag{2.13}
\end{equation*}
$$

By (1.11,

$$
\begin{gathered}
\lambda^{N+1} \phi^{N+1}(v)=\sum_{i=1}^{N} \lambda^{i}\left(-\phi^{i}(v)\right) \\
=\sum_{i=1}^{N} \lambda^{i}\left(-a_{i}(v)\right) \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right)
\end{gathered}
$$

By (2.2),

$$
\phi^{N+1}(v)=\sum_{i=1}^{N} \lambda^{i}\left(\phi^{N+1}(v)-a_{i}(v) \phi^{i} \frac{v^{i}}{\left\|v^{i}\right\|}\right)
$$

The coordinates $a_{i}(v)$ may be positive, negative or equal to 0 , but by 2.13, the number $\left(\phi^{N+1}(v)-a_{i}(v) \phi^{i} \frac{v^{i}}{\left\|v^{i}\right\|}\right)$ is not negative for every $i \in\{1, \ldots, N\}$. Taking everything into consideration, we get

$$
\begin{gathered}
\sum_{i=1}^{N}\left(\lambda^{i}\left|a_{i}(v)\right| \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right)\right) \leq \sum_{i=1}^{N} \lambda^{i}\left(\left|a_{i}(v)\right| \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right)-\phi^{N+1}(v)\right)+\sum_{i=1}^{N} \lambda_{i} \phi^{N+1}(v) \\
\leq \sum_{i=1}^{N} \lambda^{i}\left|a_{i}(v) \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right)-\phi^{N+1}(v)\right|+\left(1-\lambda^{N+1}\right) \phi^{N+1}(v)
\end{gathered}
$$

$$
\begin{gathered}
=\sum_{i=1}^{N} \lambda^{i}\left(\phi^{N+1}(v)-a_{i}(v) \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right)\right)+\left(1-\lambda^{N+1}\right) \phi^{N+1}(v) \\
=\left(2-\lambda^{N+1}\right) \phi^{N+1}(v) \leq\left(2-\lambda_{\min }\right) \phi^{N+1}(v)
\end{gathered}
$$

By (2.8),

$$
\phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right) \geq l(N+1)=l
$$

for $i \in\{1, \ldots, n\}$. By 2.12

$$
\begin{equation*}
\phi^{N+1}(v) \geq \frac{\lambda_{\min }}{2-\lambda_{\min }} \cdot l(N+1) \tag{2.14}
\end{equation*}
$$

Taking the infimum on the left side in (2.14), by (2.9), we get the result.
Now suppose that

$$
\phi^{N+1}(v)<\max _{i \in\{1, \ldots, N+1\}}\left\{\phi^{i}(v)\right\} .
$$

Without loss of generality we may assume that

$$
\begin{aligned}
& \phi^{1}(v)=\max _{i \in\{1, \ldots, N+1\}}\left\{\phi^{i}(v)\right\} . \\
& \lambda^{1} \phi^{1}(v)=\sum_{i=2}^{N+1} \lambda^{i}\left(-\phi^{i}(v)\right) .
\end{aligned}
$$

Analogously, by (1.11) and (2.2),

$$
\phi^{1}(v)=\sum_{i=2}^{N+1} \lambda^{i}\left(\phi^{1}(v)-\phi^{i}(v)\right)
$$

$\phi^{1}(v) \geq \phi^{i}(v)$ so

$$
\begin{equation*}
\phi^{1}(v) \geq \sum_{i=2}^{N} \lambda^{i}\left(\phi^{1}(v)-\phi^{i}(v)\right) \tag{2.15}
\end{equation*}
$$

By Lemma 2.2, we take the same vectors $v^{i} \in V$ as above for functionals $\phi^{1}, \ldots, \phi^{N}$, so (2.11) is satisfied. Analogously the numbers

$$
\begin{equation*}
\left(\phi^{1}(v)-a_{i}(v) \phi^{i} \frac{v^{i}}{\left\|v^{i}\right\|}\right), \quad\left(\phi^{1}(v)-\phi^{N+1}(v)\right) \tag{2.16}
\end{equation*}
$$

are not negative for every $i \in\{2, \ldots, N\}$.
By (2.15), (2.2), (2.16), reasoning in the same way as in the previous situation, we get

$$
\left(2-2 \lambda_{\min }\right) \phi^{1}(v) \geq \sum_{i=2}^{N} \lambda^{i}\left|a_{i}(v)\right| \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right) .
$$

Hence

$$
\left(2-\lambda_{\min }\right) \phi^{1}(v) \geq \sum_{i=2}^{N} \lambda^{i}\left|a_{i}(v)\right| \phi^{i}\left(\frac{v^{i}}{\left\|v^{i}\right\|}\right)+\lambda_{\min } \phi^{1}(v)
$$

where

$$
\phi^{1}(v)=a_{1}(v) \phi^{1}\left(\frac{v^{1}}{\left\|v^{1}\right\|}\right) \geq\left|a_{1}(v)\right| l(N+1)
$$

Hence by (2.12, 2.9)

$$
\left(2-\lambda_{\min }\right) \phi^{1}(v) \geq \lambda_{\min } \cdot l
$$

Taking the infimum and applying (2.9), we get the result.
3. The strong unicity constant for minimal and cominimal projections.

Definition 3.1. Let X be a normed space, $Y \subset X$ a linear subspace and $P_{o} \in \mathcal{P}(X, Y)$ a cominimal projection. It is said that P_{o} is determined by I-set iff there exists a regular I-set with respect to $I d-P_{o}$ (see Def. 1.10 and Theorem 1.11.

Let $n, k \in \mathbb{N}, n \geq 3, n \geq k$.
Let $X=l_{\infty}^{n}$ and $Y=\bigcap_{i=1}^{k} \operatorname{ker} g^{i}$, where $g^{i} \in S\left(X^{*}\right)$ are linearly independent. Let $P_{o}, P \in \mathcal{P}(X, Y), P=I d-\sum_{i=1}^{k} g^{i}(\cdot) y^{i}, P=I d-\sum_{i=1}^{k} g^{i}(\cdot) \widetilde{y}^{i}$, where \widetilde{y}^{i}, $y^{i} \in X, i \in\{1, \ldots, k\}$.
Then
Lemma 3.2.

$$
\begin{equation*}
\left\|P_{o}-P\right\|=\max _{i \in\{1, \ldots, n\}}\left\{\sum_{s=1}^{n}\left|\sum_{j=1}^{k} g_{s}^{j}\left(y_{i}^{j}-\widetilde{y}_{i}^{j}\right)\right|\right\} . \tag{3.1}
\end{equation*}
$$

Proof. Put $x \in S_{X}$. Then
$\left\|\left(P_{o}\right)(x)\right\|=\max _{i \in\{1, \ldots, n\}}\left\{\left|\sum_{j=1}^{k} g^{j}(x)\left(y_{i}^{j}-\widetilde{y}_{i}^{j}\right)\right|\right\} \leq \max _{i \in\{1, \ldots, n\}}\left\{\sum_{s=1}^{n}\left|\sum_{j=1}^{k} g_{s}^{j}\left(y_{i}^{j}-\widetilde{y}_{i}^{j}\right)\right|\right\}$.
Setting $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that

$$
x_{s}= \begin{cases}\operatorname{sgn} \sum_{j=1}^{k} g_{s}^{j}\left(y_{i}^{j}-\widetilde{y}_{i}^{j}\right) & \text { if } \quad \sum_{j=1}^{k} g_{s}^{j}\left(y_{i}^{j}-\widetilde{y}_{i}^{j}\right) \neq 0 \\ 0 & \text { if } \sum_{j=1}^{k} g_{s}^{j}\left(y_{i}^{j}-\widetilde{y}_{i}^{j}\right)=0\end{cases}
$$

for $s=\{1,2, \ldots, n\}$, we get (3.1).

Now, unless stated otherwise, we assume that $k=2$. Let $g^{1}, g^{2} \in S\left(X^{*}\right)$ be linearly independent functionals such that

$$
\begin{align*}
g^{1} & =\left(g_{1}^{1}, 0, g_{3}^{1}, \ldots, g_{n}^{1}\right) \tag{3.2}\\
g^{2} & =\left(0, g_{2}^{2}, g_{3}^{2}, \ldots, g_{n}^{2}\right) \tag{3.3}\\
g_{1}^{1}, g_{2}^{2}>0, g_{j}^{1}, g_{j}^{2} \geq 0 & \text { and } g_{j}^{1}+g_{j}^{2}>0 \quad \text { for } \quad j \in\{1, \ldots, n\} . \tag{3.4}
\end{align*}
$$

Suppose that

$$
\operatorname{det}\left[\begin{array}{cc}
g_{i}^{1} & g_{j}^{1} \tag{3.5}\\
g_{i}^{2} & g_{j}^{2}
\end{array}\right] \neq 0
$$

for every $i, j \in\{1,2, \ldots, n\}, i \neq j$. Moreover, we assume that

$$
\begin{equation*}
\frac{g_{3}^{1}}{g_{3}^{2}}<\frac{g_{4}^{1}}{g_{4}^{2}}<\ldots<\frac{g_{n}^{1}}{g_{n}^{2}} \tag{3.6}
\end{equation*}
$$

Hence $Y=\operatorname{ker} g^{1} \cap \operatorname{ker} g^{2}$ is a subspace of codimension 2 in R^{n}.
Let $y^{1}, y^{2} \in R^{n}$ satisfy (1.3), $P_{o} \in \mathcal{P}(X, Y)$ be projection determined by y^{1}, y^{2} (see Def. 1.4), which means that

$$
\left(I d-P_{o}\right)(x)=g^{1}(x) y^{1}+g^{2}(x) y^{2}
$$

First assume that $n=3$.
Lemma 3.3. Let $P \in \mathcal{P}(X, Y)$ and let $P_{o} \in \mathcal{P}(X, Y)$ be a cominimal projection determined by an I-set

$$
\begin{equation*}
\phi^{1}=e_{1} \otimes(1,-1,1), \quad \phi^{2}=e_{2} \otimes(-1,1,1), \quad \phi^{3}=e_{3} \otimes(1,1,1) \tag{3.7}
\end{equation*}
$$

Then
$\left\|P_{o}-P\right\| \leq \max \left\{\left|\phi^{1}\left(P_{o}-P\right)\right|,\left|\phi^{2}\left(P_{o}-P\right)\right|,\left|\phi^{3}\left(P_{o}-P\right)\right|\right\} \cdot \max \left\{\frac{g_{1}^{1}}{g_{3}^{1}}, \frac{g_{2}^{2}}{g_{3}^{2}}, 1\right\} \cdot\left\|w^{3}\right\|$.
Proof. Notice that by Theorem 2.5 in $\mathbf{1 6}$, if g^{1}, g^{2} satisfy (3.2)-(3.4), then the functionals $\phi^{1}, \phi^{2}, \phi^{3}$ by 3.7 form a regular I-set. By Theorem 3.2 and Theorem 3.9 in $\mathbf{1 6}, P_{o}$ determined by I-set (3.7) is cominimal.
For every projection $P \in \mathcal{P}(X, Y), P_{o}-P \in \mathcal{L}_{Y}(X, Y)$ and $\operatorname{dim} \mathcal{L}_{Y}(X, Y)$ $=2(3-2)=2$.
Moreover, the operators $\left\{g^{1}(\cdot) w^{3}, g^{2}(\cdot) w^{3}\right\}$, where $w^{3}=\left(\frac{-g_{3}^{1}}{g_{1}^{1}}, \frac{-g_{3}^{2}}{g_{2}^{2}}, 1\right) \in X$, form a basis of the space $\mathcal{L}_{Y}(X, Y)$. Hence

$$
\left(P_{o}-P\right)(x)=\alpha g^{1}(x)+\beta g^{2}(x)
$$

for some $\alpha, \beta \in R$. By Lemma 3.2,

$$
\left\|P_{o}-P\right\|=\left|g^{1}(x) \alpha+g^{2}(x) \beta\right|\left\|w^{3}\right\|
$$

where $x= \pm(1,-1,1)$ or $x= \pm(-1,1,1)$ or $x= \pm(1,1,1)$. Hence

$$
\left.\left.\left\|P_{o}-P\right\|=\max \left\{\frac{g_{1}^{1}}{g_{3}^{1}}\left|\phi^{1}\left(P_{o}-P\right)\right|, \frac{g_{2}^{2}}{g_{3}^{2}}\left|\phi^{2}\left(P_{o}-P\right)\right|, \mid \phi^{3}\left(P_{o}-P\right)\right) \right\rvert\,\left\|w^{3}\right\|\right\}
$$

Finally
$\left\|P_{o}-P\right\| \leq \max \left\{\left|\phi^{1}\left(P_{o}-P\right)\right|,\left|\phi^{2}\left(P_{o}-P\right)\right|,\left|\phi^{3}\left(P_{o}-P\right)\right|\right\} \max \left\{\frac{g_{1}^{1}}{g_{3}^{1}}, \frac{g_{2}^{2}}{g_{3}^{2}}, 1\right\}\left\|w^{3}\right\|$.

Keeping the assumption of Lemma 3.3 we get
Theorem 3.4. Let $\lambda^{1}, \lambda^{2}, \lambda^{3}>0$ be the constants (see Def. 1.10) for I-set (3.7). Put

$$
\begin{aligned}
\lambda_{\min } & =\min \left\{\lambda^{i}: i=1,2,3\right\}, \\
\lambda_{\max } & =\max \left\{\lambda^{i}: i=1,2,3\right\}, \\
w^{3} & =\left(\frac{-g_{3}^{1}}{g_{1}^{1}}, \frac{-g_{3}^{2}}{g_{2}^{2}}, 1\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
r \geq \frac{\lambda_{\min }}{\lambda_{\max }} \cdot \frac{\min \left\{\frac{g_{3}^{1}}{g_{1}^{1}}, \frac{g_{3}^{2}}{g_{2}^{2}}, 1\right\}}{\left\|w^{3}\right\|} \tag{3.9}
\end{equation*}
$$

Proof. By (2.5), it immediately follows that for every $v \in S\left(\mathcal{L}_{Y}(X, Y)\right)$ it is sufficient to estimate from the number

$$
\max \left\{\phi^{i}(v): i \in\{1,2,3\}\right\}
$$

from below. Since $v=P-P_{o}$ for some $P \in \mathcal{P}(X, Y),\left(P \neq P_{o}\right)$ by Lemma 3.3, we get

$$
\begin{equation*}
\max \left\{\left|\phi^{1}(v)\right|,\left|\phi^{2}(v)\right|,\left|\phi^{3}(v)\right|\right\} \geq \frac{\min \left\{\frac{g_{3}^{1}}{g_{1}^{1}}, \frac{g_{3}^{2}}{g_{2}^{2}}, 1\right\}}{\left\|w^{3}\right\|} \tag{3.10}
\end{equation*}
$$

Without loss of generality we may assume that

$$
\phi^{1}(v)=\max \left\{\phi^{1}(v), \phi^{2}(v), \phi^{3}(v)\right\}
$$

Since $\phi^{1}, \phi^{2}, \phi^{3}$ form a regular I-set, there is $\phi^{1}(v)>0$.
If $\phi^{1}(v)<\max \left\{\left|\phi^{1}(v)\right|,\left|\phi^{2}(v)\right|,\left|\phi^{3}(v)\right|\right\}$, then by 1.11

$$
\lambda^{1} \phi^{1}(v)=-\lambda^{2} \phi^{2}(v)-\lambda^{3} \phi^{3}(v)
$$

Hence

$$
\phi^{1}(v)=\frac{\lambda^{2}}{\lambda^{1}}\left(-\phi^{2}(v)\right)+\frac{\lambda^{3}}{\lambda^{1}}\left(-\phi^{3}(v)\right)
$$

It is easily seen that for $i=2$ or $i=3$

$$
-\phi^{i}(v)=\max \left\{\left|\phi^{1}(v)\right|,\left|\phi^{2}(v)\right|,\left|\phi^{3}(v)\right|\right\}>0
$$

Hence

$$
\begin{aligned}
& \phi^{1}(v) \geq-\frac{\lambda_{\min }}{\lambda_{\max }} \phi^{i}(v) \\
\geq & \frac{\lambda_{\min }}{\lambda_{\max }} \frac{\min \left\{\frac{g_{3}^{1}}{g_{1}^{1}}, \frac{g_{3}^{2}}{g_{2}^{2}}, 1\right\}}{\left\|w^{3}\right\|}
\end{aligned}
$$

and by 2.5 , we get the result.
If $\phi^{1}(v)=\max \left\{\left|\phi^{1}(v)\right|,\left|\phi^{2}(v)\right|,\left|\phi^{3}(v)\right|\right\}$, then the theorem immediately follows from Lemma 3.3.

REmark 3.5. The previous estimate is satisfied for $n=3$ only because of the form of vectors x building functionals $\phi^{1}, \phi^{2}, \phi^{3}$.

Now estimate a strong unicity constant for projections (see Remark 1.9) in the case of $n \geq 3$.

Let $s \in\{3, \ldots, n\}, p \in\{1,2, s\}$ and $k \in\{3, \ldots, n\}, k \neq s$. Let

$$
\begin{equation*}
\phi^{p}=e_{p} \otimes x^{p}, \quad \phi_{1}^{k}=e_{k} \otimes x^{k}, \quad \phi_{2}^{k}=e_{k} \otimes z^{k} \tag{3.11}
\end{equation*}
$$

$e_{t}(x)=x_{t}$ for $x \in R^{n}$ and $t \in\{1, \ldots, n\}$.

Remark 3.6. Let I be I-set of form (3.11). Suppose that this I-set determines $I d-P_{o}$ (see Def. 1.10 with $\lambda^{1}, \lambda^{2}, \lambda^{s}, \lambda_{1}^{k}, \lambda_{2}^{k},(k \in\{3, \ldots, n\}, k \neq s)$ such that

$$
\begin{equation*}
\lambda^{1}+\lambda^{2}+\lambda^{s}+\sum_{k=3, k \neq s}^{n}\left(\lambda_{1}^{k}+\lambda_{2}^{k}\right)=1 \tag{3.12}
\end{equation*}
$$

Recall that the functional $0 \in V=\mathcal{L}_{Y}(X, Y)$ is the strongly unique best approximation for $I d-P_{o}, \operatorname{dim} \mathcal{L}_{Y}(X, Y)=2(n-2)$ and a basis of $\mathcal{L}_{Y}(X, Y)$ is the set $\left\{g^{1}(\cdot) w^{k}, g^{2}(\cdot) w^{k}\right\}, k \in\{3, \ldots, n\}\left(w^{k}=\left(\frac{-g_{k}^{1}}{g_{1}^{1}}, \frac{-g_{k}^{2}}{g_{2}^{2}}, 0, \ldots, 0,1,0, \ldots, 0\right) \in\right.$ $R^{n}, 1$ is equal to k-th coordinate).
To estimate a strong unicity constant, we calculate or estimate from above the norm of v by Lemma 2.2 .
Any operator $v \in \mathcal{L}_{Y}(X, Y)$ is of the form

$$
\begin{equation*}
v(\cdot)=\sum_{k=3}^{n} \alpha^{k} g^{1}(\cdot) w^{k}+\beta^{k} g^{2}(\cdot) w^{k} . \tag{3.13}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\|v\| \leq \sum_{k=3}^{n}\left(\left|\alpha^{k}\right|+\left|\beta^{k}\right|\right)\left\|w^{k}\right\| . \tag{3.14}
\end{equation*}
$$

If v satisfies (2.4), then from (3.13) we calculate the numbers $\left\{\alpha^{k}, \beta^{k}\right\}$.
Remark 3.7. Notice that for I-set (3.11)

$$
\begin{aligned}
& \phi^{1}(v)=\sum_{k=3}^{n}\left(-\frac{g_{k}^{1}}{g_{1}^{1}}\right)\left(\alpha^{k} g^{1}\left(x^{1}\right)+\beta^{k} g^{2}\left(x^{1}\right)\right), \\
& \phi^{2}(v)= \sum_{k=3}^{n}\left(-\frac{g_{k}^{2}}{g_{2}^{2}}\right)\left(\alpha^{k} g^{1}\left(x^{2}\right)+\beta^{k} g^{2}\left(x^{2}\right)\right), \\
& \phi^{s}(v)=\alpha^{s} g^{1}\left(x^{s}\right)+\beta^{s} g^{2}\left(x^{s}\right), \\
& \phi_{1}^{k}(v)=\alpha^{k} g^{1}\left(x^{k}\right)+\beta^{k} g^{2}\left(x^{k}\right), \\
& \phi_{2}^{k}(v)=\alpha^{k} g^{1}\left(z^{k}\right)+\beta^{k} g^{2}\left(z^{k}\right) .
\end{aligned}
$$

By (2.4, (3.15) is a Cramer system of equations.
Now we will show how to estimate the strong unicity constant r satisfying (1.8) in case of a cominimal projection determined by I-set. The main technical problem is in calculating or estimating the number $l(k)$ (see (2.8)) for some k or, which gives better accuracy, the number l (see 2.9).

Theorem 3.8. Let $n=4$ and $Y=\operatorname{ker} g^{1} \cap \operatorname{ker} g^{2} \subset X$, where $g^{1}, g^{2} \in$ $S\left(X^{*}\right)$ are linearly independent fuctionals satisfying (3.2)-(3.4) and (3.6). Let $P_{o} \in \mathcal{P}(X, Y)$ be a cominimal projection determined by an I-set (see Theorem 2.5 and Theorem 3.2 in (16):

$$
\phi^{1}=e_{1} \otimes(1,-1,1,1), \quad \phi^{2}=e_{2} \otimes(-1,1,1,1),
$$

$$
\begin{equation*}
\phi^{3}=e_{3} \otimes(1,1,1,1), \tag{3.16}
\end{equation*}
$$

$$
\phi_{1}^{4}=e_{4} \otimes(1,1,1,1), \quad \phi_{2}^{4}=e_{4} \otimes(1,-1,1,1) .
$$

Then

$$
\begin{equation*}
r \geq \frac{\lambda_{\min }}{2-\lambda_{\min }} \frac{\min _{l=1,2}\left\{g_{l}^{l}\right\} \min \left\{1, \frac{g_{k}^{l}}{g_{l}^{l}}: l=1,2, k=3,4\right\}}{\max _{k=3,4}\left\{\left\|w^{k}\right\|\right\}} \tag{3.17}
\end{equation*}
$$

Proof. Using the form of the I-set determining the cominimal projection P_{o} we will estimate the number $l(2)$ (see (2.8)).
First we will calculate vectors $v \in \mathcal{L}_{Y}(X, Y)$ using Lemma 2.2 .
Recall that if $v \in \mathcal{L}_{Y}(X, Y)$ then v satisfies (3.13). Then

$$
\left\{\begin{array}{l}
\phi^{1}(v)=\sum_{k=3}^{4}\left(-\frac{g_{k}^{1}}{g_{1}^{1}}\right)\left(\alpha^{k} g^{1}\left(x^{1}\right)+\beta^{k} g^{2}\left(x^{1}\right)\right) \tag{3.18}\\
\phi^{3}(v)=\alpha^{3} g^{1}\left(x^{3}\right)+\beta^{3} g^{2}\left(x^{3}\right) \\
\phi_{1}^{4}(v)=\alpha^{4} g^{1}\left(x^{4}\right)+\beta^{4} g^{2}\left(x^{4}\right) \\
\phi_{2}^{4}(v)=\alpha^{4} g^{1}\left(z^{4}\right)+\beta^{4} g^{2}\left(z^{4}\right)
\end{array}\right.
$$

where $x^{1}=z^{4}=(1,-1,1,1), x^{2}=(-1,1,1,1), x^{3}=x^{4}=(1,1,1,1)$.
By the fact that (3.16) forms an I-set (see Theorem 2.5 in $\mathbf{1 6}$), 3.18) is a Cramer system of equations.
Let $v^{2}=v^{2}(2) \in \mathcal{L}_{Y}(X, Y)$ satisfy (see Lemat 2.2):

$$
\left\{\begin{array}{l}
\phi^{1}(v)=0 \tag{3.19}\\
\phi^{3}(v)=1 \\
\phi_{1}^{4}(v)=0 \\
\phi_{2}^{4}(v)=0 .
\end{array}\right.
$$

Then

$$
\begin{gathered}
\alpha^{3}=1-\frac{1}{2 g_{2}^{2}}, \quad \beta^{3}=\frac{1}{2 g_{2}^{2}} \\
\alpha^{4}=0, \quad \beta^{4}=0
\end{gathered}
$$

and

$$
\begin{equation*}
\left\|v^{2}\right\| \leq\left(\left|\alpha^{3}\right|+\left|\beta^{3}\right|\right)\left\|w_{3}\right\|=\max \left\{\frac{1}{g_{2}^{2}}-1,1\right\}\left\|w_{3}\right\| \tag{3.20}
\end{equation*}
$$

Analogously, for $v^{1}=v^{1}(2) \in \mathcal{L}_{Y}(X, Y)$ satisfying

$$
\begin{gather*}
\left\{\begin{array}{l}
\phi^{1}(v)=1 \\
\phi^{3}(v)=0 \\
\phi_{1}^{4}(v)=0 \\
\phi_{2}^{4}(v)=0
\end{array}\right. \tag{3.21}\\
\alpha^{3}=-\frac{g_{1}^{1}}{2 g_{3}^{1} g_{2}^{2}}, \quad \beta^{3}=\frac{g_{1}^{1}}{2 g_{3}^{1} g_{2}^{2}}, \\
\alpha^{4}=0, \quad \beta^{4}=0 \\
\left\|v^{1}\right\| \leq \frac{g_{1}^{1}}{g_{3}^{1} g_{2}^{2}}\left\|w_{3}\right\| . \tag{3.22}
\end{gather*}
$$

For $v^{3}=v^{3}(2) \in \mathcal{L}_{Y}(X, Y)$, which is given by

$$
\left\{\begin{array}{l}
\phi^{1}(v)=0 \tag{3.23}\\
\phi^{3}(v)=0 \\
\phi_{1}^{4}(v)=1 \\
\phi_{2}^{4}(v)=0,
\end{array}\right.
$$

there is

$$
\begin{equation*}
\left\|v^{3}\right\| \leq \max \left\{\frac{1}{g_{2}^{2}}-1,1\right\}\left\|w_{4}\right\|, \tag{3.24}
\end{equation*}
$$

and for $v^{4}=v^{4}(2) \in \mathcal{L}_{Y}(X, Y)$ being the solution of

$$
\left\{\begin{array}{l}
\phi^{1}(v)=0 \tag{3.25}\\
\phi^{3}(v)=0 \\
\phi_{1}^{4}(v)=0 \\
\phi_{2}^{4}(v)=1,
\end{array}\right.
$$

we get

$$
\begin{equation*}
\left\|v^{4}\right\| \leq \frac{g_{1}^{1}}{g_{4}^{1} g_{2}^{2}}\left\|w_{3}\right\| . \tag{3.26}
\end{equation*}
$$

Hence if $v \in \mathcal{L}_{Y}(X, Y)$ is given by Lemma 2.2, then v meets to one of the equalities: (3.19), (3.21), (3.23) or (3.25). Hence

$$
\begin{equation*}
\|v\| \leq \frac{\max _{k=3,4}\left\{\left\|w^{k}\right\|\right\}}{g_{2}^{2} \min \left\{1, \frac{g_{k}^{l}}{g_{l}^{l}}: l=1,2, k=3,4\right\}} \tag{3.27}
\end{equation*}
$$

and consequently (see (2.8))

$$
\begin{align*}
l(2) & \geq \frac{g_{2}^{2} \min \left\{1, \frac{g_{k}^{l}}{g_{l}}: l=1,2, k=3,4\right\}}{\max _{k=3,4}\left\{\left\|w^{k}\right\|\right\}} \tag{3.28}\\
& \geq \frac{\min _{l=1,2}\left\{g_{l}^{l}\right\} \min \left\{1, \frac{g_{k}^{l}}{g_{l}}: l=1,2, k=3,4\right\}}{\max _{k=3,4}\left\{\left\|w^{k}\right\|\right\}} .
\end{align*}
$$

The result easily follows from Theorem 2.3 .
Now the estimate of the strong unicity constant r satisfying (1.7) for minimal projections will be presented. It concerns a minimal projection determined by the I-set from $\mathbf{1 4}$.

Theorem 3.9. Let $n=4$ and $Y=\operatorname{ker} g^{1} \cap \operatorname{ker} g^{2} \subset X$, where $g^{1}, g^{2} \in$ $S\left(X^{*}\right)$ are linearly independent functionals satisfying (3.2)-(3.4).
Let $P_{o} \in \mathcal{P}(X, Y)$ be a minimal projection determined by the I-set (see [14)

$$
\begin{gathered}
\phi^{1}=e_{2} \otimes(1,1,-1,-1), \\
\phi_{1}^{3}=e_{3} \otimes(-1,-1,1,-1), \\
\phi_{2}^{3}=e_{3} \otimes(-1,1,1,-1), \\
\phi_{1}^{4}=e_{4} \otimes(-1,-1,-1,1) \quad \phi_{2}^{4}=e_{4} \otimes(-1,1,-1,1) .
\end{gathered}
$$

Then

$$
\begin{equation*}
r \geq \frac{\lambda_{\min }}{2-\lambda_{\min }} \frac{1}{\Theta}, \tag{3.29}
\end{equation*}
$$

where

$$
\Theta=\max \left\{\frac{1}{2 g_{i}^{i}}\left(1+\left|\frac{1-2 g_{k}^{i}}{1-2 g_{l}^{j}}\right|\right): \quad i, j=1,2, k, l=3,4\right\} \max \left\{\left\|w_{3}\right\|,\left\|w_{4}\right\|\right\} .
$$

Proof. Notice that in [14 one can find the proof of the fact that the above I-set determines a minimal projection. Hence, by Theorem 3.8, it is sufficient to calculate or estimate the number Θ. For convience, the constant $l(1)$ (see (2.8)) will be estimated. The idea of the proof is the same as in Theorem 3.8. Let $v^{1}=v^{1}(1) \in \mathcal{L}_{Y}(X, Y)$ satisfy the system of equations (see Lemma 2.2)

$$
\left\{\begin{array}{l}
\phi_{1}^{3}(v)=1 \tag{3.30}\\
\phi_{2}^{3}(v)=0 \\
\phi_{1}^{4}(v)=0 \\
\phi_{2}^{4}(v)=0 .
\end{array}\right.
$$

Hence

$$
\begin{gathered}
\alpha^{3}=\frac{2 g_{4}^{2}-1}{2 g_{2}^{2}\left(1-2 g_{3}^{1}\right)}, \quad \beta^{3}=\frac{-1}{2 g_{2}^{2}}, \\
\alpha^{4}=0, \quad \beta^{4}=0 .
\end{gathered}
$$

Thus

$$
\begin{equation*}
\left\|v^{1}\right\| \leq\left(\left|\alpha^{3}\right|+\left|\beta^{3}\right|\right)\left\|w_{3}\right\| \leq \Theta \tag{3.31}
\end{equation*}
$$

For $v^{2}=v^{2}(1) \in \mathcal{L}_{Y}(X, Y)$, which is the solution of

$$
\left\{\begin{array}{l}
\phi_{1}^{3}(v)=0 \tag{3.3.3}\\
\phi_{2}^{3}(v)=1 \\
\phi_{1}^{4}(v)=0 \\
\phi_{2}^{4}(v)=0,
\end{array}\right.
$$

we get

$$
\alpha^{3}=\frac{-\left(1-2 g_{3}^{2}\right)}{2 g_{2}^{2}\left(1-2 g_{3}^{1}\right)}, \quad \beta^{3}=\frac{1}{2 g_{2}^{2}},
$$

$$
\alpha^{4}=0, \quad \beta^{4}=0 .
$$

For $v^{3}=v^{3}(1)$ and $v^{4}=v^{4}(1)$, we proceed in the same way.
Remark 3.10. Notice that all the above estimates of the strong unicity constant r satisfying (1.7) or (1.8) depend on the number $\lambda_{\text {min }}$. By assumption (2.2),

$$
\lambda_{\min }<\frac{1}{N+1},
$$

where N is the dimension of the space $V=\mathcal{L}_{Y}(X, Y)$, so $N=2 n-4$.

Let $n \in \mathbb{N}, n \geq 3$ and $X=l_{\infty}^{n}$. Let $g^{1}, g^{2} \in S\left(X^{*}\right)$ be linearly independent functionals satifying (3.2)-(3.4), (3.6); put $Y=\operatorname{ker} g^{1} \cap \operatorname{ker} g^{2}$.

Example 3.11. 1. Fix $n=3, g^{1}=\left(\frac{1}{3}, 0, \frac{2}{3}\right), g^{2}=\left(0, \frac{3}{4}, \frac{1}{4}\right)$. A cominimal projection P_{o} is determined by I-set (3.7), (see Theorem 2.5 and Theorem 3.9 in (16). By Theorem 3.4 $r \geq 0,012346$, where $\lambda_{\text {min }}=\lambda^{1} \approx 0,05556$, $\lambda_{\text {max }}=\lambda^{2}=\frac{3}{4}$.
2. Put $n=4, g^{1}=\left(\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right), g^{2}=\left(0, \frac{5}{12}, \frac{4}{12}, \frac{3}{12}\right)$. By Theorem 2.5 and Theorem 3.2 in $\mathbf{1 6}$, a cominimal projection is determined by I-set from the thesis of Theorem 3.8. Using the estimate from Theorem 3.8, we get $r \geq$ 0, 004839 .
3. Let $n=5, g^{1}=\left(\frac{11}{51}, 0, \frac{1}{51}, \frac{24}{51}, \frac{15}{51}\right), g^{2}=\left(0, \frac{11}{81}, \frac{10}{81}, \frac{42}{81}, \frac{18}{81}\right)$. Analogously as in Theorem 2.5 in $\mathbf{1 6}$, one can check that the system

$$
\begin{gathered}
\phi^{1}=e_{1} \otimes(1,-1,-1,1,1), \quad \phi^{2}=e_{2} \otimes(-1,1,1,1,-1), \\
\phi_{1}^{3}=e_{3} \otimes(-1,1,1,1,1), \quad \phi_{2}^{3}=e_{3} \otimes(-1,1,1,1,-1), \\
\phi^{4}=e_{4} \otimes(1,1,1,1,1), \\
\phi_{1}^{5}=e_{5} \otimes(1,1,1,1,1), \quad \phi_{2}^{5}=e_{5} \otimes(1,-1,1,1,1)
\end{gathered}
$$

form a regular I-set (Def. 1.10), which determines a cominimal projection (see Def. 3.1 and Theorem 1.11). By Theorem 2.3 and by the simple calculation, we get $l \geq l(1) \approx 0,024897$ (see 2.8), (2.9) and $r \geq 0,00045$.
4. Let $n=7, g^{1}=\left(\frac{1}{2}, 0, \frac{1}{10}, \frac{9}{200}, \frac{1}{200}, \frac{1}{4}, \frac{1}{10}\right), g^{2}=\left(0, \frac{23}{50}, \frac{1}{4}, \frac{1}{10}, \frac{1}{100}, \frac{43}{250}, \frac{2}{250}\right)$. Reasoning in the same way as in Theorem 2.5 in [16], we can check that

$$
\begin{gathered}
\phi^{1}=e_{1} \otimes(1,-1,1,1,1,1,1), \quad \phi^{2}=e_{2} \otimes(-1,1,1,1,1,1,-1), \\
\phi_{1}^{3}=e_{3} \otimes(1,1,1,1,1,1,1), \quad \phi_{2}^{3}=e_{3} \otimes(-1,1,1,1,1,1,1), \\
\phi_{1}^{4}=e_{4} \otimes x^{4}, \quad \phi_{2}^{4}=e_{4} \otimes z^{4}, \\
\phi_{1}^{5}=e_{5} \otimes x^{5}, \quad \phi_{2}^{5}=e_{5} \otimes z^{5}, \\
\phi^{6}=e_{6} \otimes(1,1,1,1,1,1,1), \\
\phi_{1}^{7}=e_{7} \otimes(1,1,1,1,1,1,1), \quad \phi_{2}^{7}=e_{7} \otimes(1,-1,1,1,1,1,1),
\end{gathered}
$$

where $x^{3}=x^{4}=x^{5}, z^{3}=z^{4}=z^{5}$ form a regular I-set which determines a cominimal projection. By Theorem 2.3 (by estimate of $l(1)$), we get $r \geq 0,00023$.

Example 3.12. Let $n=4, g^{1}=\left(\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right), g^{2}=\left(0, \frac{5}{12}, \frac{4}{12}, \frac{3}{12}\right)$. Functionals g^{1}, g^{2} satisfy the assumptions of Theorem 3.9, so there exists a minimal projection $P_{o} \in \mathcal{P}(X, Y)$, where $Y=\operatorname{ker} g^{1} \cap \operatorname{ker} g^{2} \subset X$. Additionaly one can check (see $[\mathbf{1 4}]$) that the I-set which determines the minimal projections P_{o} is of the form

$$
\begin{gathered}
\phi^{1}=e_{2} \otimes(1,1,-1,-1), \\
\phi_{1}^{3}=e_{3} \otimes(-1,-1,1,-1), \quad \phi_{2}^{3}=e_{3} \otimes(-1,1,1,-1), \\
\phi_{1}^{4}=e_{4} \otimes(-1,-1,-1,1), \quad \phi_{2}^{4}=e_{4} \otimes(-1,1,-1,1) .
\end{gathered}
$$

By Theorem 3.9, we get $r \geq \frac{5}{552}$, where $\Theta=\frac{18}{5}$, $\lambda_{\text {min }}=\frac{1}{15}$.
Let $n, k \in \mathbb{N}, n \geq 3, n \geq k$.
Let $X=l_{\infty}^{n}$ and $Y=\bigcap_{i=1}^{k} \operatorname{ker} g^{i}$, where $g^{i} \in S\left(X^{*}\right)$ satisfy the following conditions:
$g_{j}^{i} \geq 0$ for every $i \in\{1,2, \ldots, k\}, j \in\{1,2, \ldots, n\}, g_{i}^{i}>0, g_{j}^{i}=0$ for $i \in$ $\{1,2, \ldots, k\}, i \neq j \operatorname{supp}\left(g^{i}\right) \cap \operatorname{supp}\left(g^{j}\right)=\emptyset$, for every $i \neq j$, where

$$
\operatorname{supp}\left(g^{i}\right)=\left\{k: g_{k}^{i} \neq 0\right\} .
$$

Let $P_{o} \in \mathcal{P}(X, Y)$ be a cominimal projection. Then by Theorem 1.14, $\left\|I d-P_{o}\right\|=1$ and P_{o} is determined by $y^{j} \in X$ satisfying (1.3) such that if $g_{j}^{i} \neq 0$ then for every $t \in\{1, \ldots, k\}$, (see Lemma 1.3) the assumption 1.13) is satisfied. Then the following is true.

Theorem 3.13. If

$$
\begin{equation*}
\bigcup_{i=1}^{k} \operatorname{supp}\left(g^{i}\right)=\{1, \ldots, n\} \tag{3.33}
\end{equation*}
$$

then

$$
r=\min \left\{\frac{g_{j}^{i}}{1-g_{j}^{i}}: g_{j}^{i} \in(0,1), i \in\{1,2, \ldots, k\}, j \in\{1,2, \ldots, n\}\right\} .
$$

Proof. We will work with inequality (2.6). Let $P \in \mathcal{P}(X, Y)$ be a projection determined by vectors $\widetilde{y}^{1}, \widetilde{y}^{2} \in R^{n}$ (see Def. 1.4). By Lemma 1.13 and by the form of functionals g^{1}, g^{2}, we get

$$
\begin{equation*}
\|I d-P\|=\max _{j \in\{1, \ldots, n\}}\left\{\sum_{i=1}^{k}\left|\widetilde{y}_{j}^{i}\right|\right\} \tag{3.34}
\end{equation*}
$$

$$
\begin{equation*}
\left\|P-P_{o}\right\|=\max _{j \in\{1, \ldots, n\}}\left\{\sum_{i=1}^{k}\left|\widetilde{y}_{j}^{i}-y_{j}^{i}\right|\right\} . \tag{3.35}
\end{equation*}
$$

Without loss of generality (see Lemma 1.6), combining (1.13) and (3.33), we can assume that

$$
\begin{equation*}
\left\|P-P_{o}\right\|=\left\{\left|\widetilde{y}_{1}^{1}-1\right|+\sum_{i=2}^{k}\left|\widetilde{y}_{1}^{i}\right|\right\} . \tag{3.36}
\end{equation*}
$$

Suppose that $\widetilde{y}_{1}^{1}<1$.
By (1.3) and by the fact that for $i \in\{1, \ldots, n\}$

$$
\left\|g^{i}\right\|=\sum_{j=1}^{n} g_{j}^{i}=1,
$$

we get

$$
\widetilde{y}_{1}^{1}-1=\frac{1}{g_{1}^{1}} \sum_{j=k+1}^{n} g_{j}^{1}\left(1-\widetilde{y}_{j}^{1}\right) .
$$

Since $\widetilde{y}_{1}^{1}<1$,

$$
\left|1-\widetilde{y}_{1}^{1}\right|=\frac{1}{g_{1}^{1}} \sum_{j=k+1}^{n} g_{j}^{1}\left(\widetilde{y}_{j}^{1}-1\right) .
$$

For $i \in\{2, \ldots, n\}$,

$$
\widetilde{y}_{1}^{i}=-\frac{1}{g_{1}^{1}} \sum_{j=k+1}^{n} g_{j}^{1} \widetilde{y}_{j}^{i} .
$$

Hence

$$
\left|\widetilde{y}_{1}^{1}-1\right|+\sum_{i=2}^{k}\left|\widetilde{y}_{1}^{i}\right|=\frac{1}{g_{1}^{1}} \sum_{j=k+1}^{n} g_{j}^{1}\left(\left(\widetilde{y}_{j}^{1}-1\right)+\sum_{i=2}^{k}\left|\widetilde{y}_{j}^{i}\right|\right) \leq\left\|g^{i}\right\| \text {. }
$$

Moreover,

$$
\begin{gathered}
\frac{g_{1}^{1}}{1-g_{1}^{1}}\left\|P-P_{o}\right\|+1 \\
\leq \frac{1}{1-g_{1}^{1}} \sum_{j=k+1}^{n} g_{j}^{1}\left(\left(\widetilde{y}_{j}^{1}-1\right)+\sum_{i=2}^{k}\left|\widetilde{y}_{j}^{i}\right|+1-g_{1}^{1}\right) \\
=\frac{1}{1-g_{1}^{1}} \sum_{j=k+1}^{n} g_{j}^{1}\left(\widetilde{y}_{j}^{1}+\sum_{i=2}^{k}\left|\widetilde{y}_{j}^{i}\right|\right) \leq \ldots
\end{gathered}
$$

(Since $\left\|I d-P_{o}\right\|=1$ and $\left\|g^{i}\right\|=1$ for $i \in\{2, \ldots, n\}$ then $1-g_{1}^{1}=\sum_{j=k+1}^{n} g_{j}^{1}$.)

$$
\ldots \leq \frac{1}{1-g_{1}^{1}} \sum_{j=k+1}^{n} g_{j}^{1} \sum_{i=1}^{k}\left|\tilde{y}_{j}^{i}\right| \leq\|I d-P\| .
$$

Notice that if the coordinates \widetilde{y}_{j}^{i} are all positive or all negative for $i \in\{2, \ldots, k\}$, $j \in\{k+1, \ldots, n\}$ and $\frac{g_{1}^{1}}{1-g_{1}^{1}}=\min \left\{\frac{g_{j}^{i}}{1-g_{j}^{i}}: g_{j}^{i} \in(0,1), i \in\{1,2, \ldots, k\}, j \in\right.$ $\{1,2, \ldots, n\}\}$, then the above inequalities change into equalities which gives the results.

If $\widetilde{y}_{1}^{1} \geq 1$ we get that $\left\|P-P_{o}\right\|=1+\left\|I d-P_{o}\right\|$.
If (3.33) is not satisfied, then a cominimal projection P_{o} need not be strongly unique.

Example 3.14. Let $n, k \in \mathbb{N}, n \geq 1, k=1$ and $X=l_{\infty}^{n+1}$. Assume that $g \in S\left(X^{*}\right)$ is of the form

$$
g=\left(0, g_{2}, \ldots, g_{n+1}\right),
$$

where $g_{2}>0$. Let $Y=\operatorname{ker} g \subset X$ and $P_{o} \in \mathcal{P}(X, Y)$ be a cominimal projection. By Theorem 1.14, we get $\left\|I d-P_{o}\right\|=1$.
Let $P \in \mathcal{P}(X, Y)$ be a projection determined by a vector $y=\left(y_{1}, 1, \ldots, 1\right) \in$ R^{n+1}, where $y_{1}>1$ (see Def. 1.4). Notice that by Lemma 3.2, $\left\|P-P_{o}\right\|=1$. Hence the projection P_{o} is not strongly unique.

Remark 3.15. In the case of a subspace Y of $X=l_{\infty}^{n}$ for which $\left\|I d-P_{o}\right\|=$ 1, the constant r could be larger then in the case of a subspace for which $\left\|I d-P_{o}\right\|>1$, but r also depends on n. It follows from the equality

$$
r=\min \left\{\frac{g_{j}^{i}}{1-g_{j}^{i}}: g_{j}^{i} \in(0,1), i \in\{1,2, \ldots, k\}, j \in\{1,2, \ldots, n\}\right\}=\frac{g_{j}^{i}}{1-g_{j}^{i}},
$$

where

$$
g_{j}^{i}=\min \left\{g_{j}^{i} \in(0,1)\right\} \leq \frac{1}{n-1} .
$$

Hence

$$
r \leq \frac{1}{n-2}
$$

Example 3.16. 1. Let $n=3, g^{1}=\left(\frac{1}{3}, 0, \frac{2}{3}\right), g^{2}=(0,1,0)$. Then by Theorem 3.13, $r=\frac{1}{2}$.
2. Let $n=4, g^{1}=\left(\frac{1}{3}, 0, \frac{2}{3}, 0\right), g^{2}=\left(0, \frac{1}{2}, 0, \frac{1}{2}\right)$. Then $r=\frac{1}{2}$.
3. Let $n \geq 3$ and $g^{1}=\left(\frac{1}{n-1}, 0, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right), g^{2}=(0,1,0 \ldots, 0)$. Then $r=\frac{1}{n-2}$.

References

1. Ault D.A., Deutsch F.R., Morris P.D., Olsen J.E., Interpolating subspaces in approximation theory, J. Approx. Theory, 3 (1970), 164-182.
2. Baronti M., Lewicki G., Strongly unique minimal projections onto hyperlanes, J. Approx. Theory, 78, 1 (1994), 1-18.
3. Bartelt M.W., Henry M.S., Continuity of the strong unicity constant on $C(X)$ for changing X, J. Approx. Theory, 28 (1980), 85-97.
4. Bartelt M.W., McLaughlin H.W., Characterizations of strong unicity in approximation theory, J. Approx. Theory, 9 (1973), 255-266.
5. Blatter J., Cheney E.W., Minimal projections onto hyperplanes in sequence spaces, Ann. Mat. Pura Appl., 101 (1974), 215-227.
6. Chalmers B.L., Metcalf F.T., A characterization and equations for minimal projections and extensions, J. Operator Theory, 32 (1994), 31-46.
7. Chalmers B.L., Metcalf F.T., The determination of minimal projections and extensions in L_{1}, Trans. Amer. Math. Soc., 329 (1992), 289-305.
8. Cheney E.W., Introduction to Approximation Theory, Mc Grow Hill, New York, 1966.
9. Cheney E.W., Franchetti C., Minimal projections in L_{1} Spaces, Duke Math. J., 43, No. 3 (1976), 501-510, MR $54 \# 11044$.
10. Dunham C.B., A uniform constant of strong uniqueness on an interval, J. Approx. Theory, 28 (1980), 207-211.
11. Fisher S.D., Morris P.D., Wulbert D.E., Unique minimality of Fourier projections, Trans. Amer. Math. Soc., 265 (1981), 235-246.
12. Franchetti C., Projections onto hyperplanes in Banach spaces, J. Approx. Theory, 38 (1983), 319-333.
13. König H., Tomczak-Jaegermann N., Norms of minimal projections, J. Funct. Anal., 119 (1994), 253-280.
14. Lewicki G., Minimal projections onto two dimensional subspaces of l_{∞}^{4}, J. Approx. Theory, 88 (1997), 92-108.
15. Lewicki G., Strong unicity criterion in some space of operators, Comment. Math. Univ. Carolinae, 34 (1993), 81-87.
16. Lipieta A., Cominimal projections in l_{∞}^{n}, J. Approx. Theory, 96 (1999), 86-100.
17. Lokot' V.V., The constant of strongly unique minimal projections onto hyperplanes in l_{∞}^{n}, Math. Zamet., 72, 5 (2002), 723-728 (in Russian).
18. Martinov O., Constants of strong unicity of minimal projections onto two dimensional subspaces of l_{∞}^{4}, J. Approx. Theory, 118 (2002), 175-187.
19. Newman D.J., Shapiro H.S., Some theorems on Czebyszew approximation, Duke Math. J., 30 (1963), 673-681.
20. Odyniec W., Lewicki G., Minimal projections in Banach spaces, Lecture Notes in Math., Vol. 1449, Springer-Verlag, Berlin, Heidelberg, New York, 1990.
21. Ruess W.M., Stegall C., Extreme points in duals of operator spaces, Math. Ann., 261 (1982), 535-546.
22. Sudolski J., Wójcik A., Some remarks on strong uniqueness of best approximation, J. Approx. Theory and its Appl., 6, No. 2 (1990), 44-78.

Received January 16, 2006
University of Economics
Department of Mathematics
Rakowicka 27
31-510 Kraków
Poland.
e-mail: eylipiet@kinga.cyf-kr.edu.pl

