THE STRONG UNICITY CONSTANT FOR PROJECTIONS

by Agnieszka Lipieta

Abstract. Let $Y \subset l_{\infty}^n$ be a linear subspace and let $\mathcal{P}(l_{\infty}^n, Y)$ denote the set of linear projections. An estimation and calculation (in some particular cases) of the strong unicity constant for a minimal or cominimal projection $P_o \in \mathcal{P}(l_{\infty}^n, Y)$ will be presented.

1. Introduction. Let X be a normed space and let $Y \subset X$ be a linear subspace of X. The symbol $\mathcal{L}(X,Y)$ means the set of all linear continuous mappings from X to Y. A bounded linear operator P is called a *projection* if Py = y for any $y \in Y$. Denote by $\mathcal{P}(X,Y)$ the set of all projections from X onto Y.

DEFINITION 1.1. If $\mathcal{P}(X,Y) \neq \emptyset$ then a projection $P_o \in \mathcal{P}(X,Y)$ is called *minimal* iff

(1.1)
$$||P_o|| = \lambda(Y, X) = \inf\{||P|| : P \in \mathcal{P}(X, Y)\}.$$

Let Id be an identity on X.

DEFINITION 1.2. If $\mathcal{P}(X,Y) \neq \emptyset$ then a projection $P_o \in \mathcal{P}(X,Y)$ is called *cominimal* iff

(1.2)
$$||Id - P_o|| = \lambda_I(Y, X) = \inf\{||Id - P|| : P \in \mathcal{P}(X, Y)\}.$$

The significance of this notion can be illustrated by the following well known inequality:

 $(1 + ||P||)\operatorname{dist}(x, Y) \ge ||Id - P||\operatorname{dist}(x, Y) \ge ||(Id - P)(x)|| \ge \operatorname{dist}(x, Y)$ for every $x \in X \setminus Y$ and $P \in \mathcal{P}(X, Y)$.

¹⁹⁹¹ Mathematics Subject Classification. 47A58, 41A35, 41A65.

Key words and phrases. Strongly unique best approximation, projections, regular *I*-sets, extreme points.

This means that if ||P|| or ||Id - P|| is small then Px is a "good" linear replacement of any $x \in X$ in Y. It is easily seen that

 $||Id - P|| \ge 1$ for every $P \in \mathcal{P}(X, Y)$.

It is also clear that if P_o is a cominimal projection then

$$||Id - P_o|| = \operatorname{dist}(Id, \mathcal{P}(X, Y)).$$

LEMMA 1.3. (see, e.g., [5]). Assume that X is a normed space and let $Y \subset X$ be a subspace of codimension $k, Y = \bigcap_{i=1}^{k} kerg^{i}$, where $g^{i} \in X^{*}$ are linearly independent. Let $P \in \mathcal{P}(X, Y)$. Then there exist $y^{1}, \ldots, y^{k} \in X$ satisfying

(1.3) $g^{i}(y^{j}) = \delta_{i,j}, \quad i, j = 1, \dots, k$

such that

(1.4)
$$Px = x - \sum_{i=1}^{k} g^{i}(x)y^{i} \quad for \quad x \in X.$$

On the other hand, if $y^1, \ldots, y^k \in X$ satisfy (1.3) then operator

$$P = Id - \sum_{i=1}^{k} g^{i}(\cdot)y^{i}$$

belongs to $\mathcal{P}(X,Y)$.

DEFINITION 1.4. It is said that a projection $P \in \mathcal{P}(X, Y)$ is determined by $y^1, \ldots, y^k \in X$ iff $y^1, \ldots, y^k \in X$ satisfy (1.3) and (1.4).

DEFINITION 1.5. Let Y_1 , Y_2 be two linear subspaces of X. It is said that Y_1 is equivalent up to isometry to Y_2 iff there is a linear, surjective isometry T of X into itself such that $T(Y_1) = Y_2$.

LEMMA 1.6. (see, e.g., [20]). Let Y_1 , Y_2 be two linear subspaces of X such that Y_1 is equivalent up to isometry to Y_2 . Then $\lambda(Y_1, X) = \lambda(Y_2, X)$ and $\lambda_I(Y_1, X) = \lambda_I(Y_2, X)$.

Now we recall some information about the strongly unique best approximation (theory of strong unicity has its origin in [19]).

DEFINITION 1.7. It is said that $v_o \in V$ is a strongly unique best approximation (SUBA) for x in V iff there exists a constant r > 0 such that for every $v \in V$

(1.5)
$$||x - v|| \ge ||x - v_o|| + r||v - v_o||.$$

The largest constant r > 0 satisfying (1.5) is called the strong unicity constant.

The notion of strong unicity leads to a simple proof of the Freud Theorem about the Lipschitz continuity of the best approximation mapping (see [8], p. 82).

The aim of this paper is to estimate or calculate the strong unicity constant for minimal and cominimal projections in l_{∞}^{n} .

We now present some definitions and results which will be of use later.

Let $P \in \mathcal{P}(X, Y)$ and

$$\mathcal{L}_Y(X,Y) = \{ L \in \mathcal{L}(X,Y) : L|_Y = 0 \}$$

Then $\mathcal{P}(X,Y) = P + \mathcal{L}_Y(X,Y)$ and

$$\lambda(Y, X) = dist(P, \mathcal{L}_Y(X, Y)).$$

Additionaly, $P_o \in \mathcal{P}(X, Y)$ is a minimal projection iff the operator 0 is an element of best approximation for P_o in $\mathcal{L}_Y(X, Y)$.

Analogously,

(1.6)
$$\lambda_I(Y,X) = dist(Id - P, \mathcal{L}_Y(X,Y)).$$

 $P_o \in \mathcal{P}(X, Y)$ is a cominimal projection iff the operator 0 is is an element of best approximation for $Id - P_o$ in $\mathcal{L}_Y(X, Y)$.

DEFINITION 1.8. It is said that a minimal (cominimal) projection $P_o \in \mathcal{P}(X, Y)$ is an element of best approximation iff the operator 0 is a strongly unique best approximation for P_o $(Id - P_o)$ in $\mathcal{L}_Y(X, Y)$.

Notice that

REMARK 1.9. If a minimal projection $P_o \in \mathcal{P}(X, Y)$ is the strongly unique best approximation then there exists r > 0 such that for every projection $P \in \mathcal{P}(X, Y)$

(1.7)
$$||P|| \ge ||P - P_o|| + r||P - P_o||.$$

If a cominimal projection $P_o \in \mathcal{P}(X, Y)$ is the strongly unique best approximation then there exists r > 0 such that for every projection $P \in \mathcal{P}(X, Y)$

(1.8)
$$\|Id - P\| \ge \|Id - P_o\| + r\|P - P_o\|$$

The largest constant r > 0 satisfying (1.7) or (1.8) is called the strong unicity constant for projections.

Let X be a normed space and let $V \subset X$ be a nonempty set. By ext(V) we denote the set of its extreme points. For any $x \in X$

(1.9)
$$E(x) = \{ f \in X^* : ||f|| = 1, f(x) = ||x|| \}$$

and if S(X) denotes the unit sphere in X,

(1.10)
$$Ext(x) = \{ f \in ext(S(X^*)) : f(x) = ||x|| \}$$

DEFINITION 1.10. ([22]). Let X be a normed space and let $V \subset X$ be a *n*-dimensional linear subspace. A set $I = \{\phi^1, \ldots, \phi^k\} \in ext(S(X^*))$ is called *I-set* iff there exist positive numbers $\lambda^1, \ldots, \lambda^k$ such that

(1.11)
$$\sum_{i=1}^{k} \lambda^{i} \phi^{i}|_{V} = 0.$$

If $I \subset E(x)$, then I is called an *I*-set with respect to x. An *I*-set I is said to be minimal if there is no proper subset of I which forms an *I*-set. A minimal *I*-set is called regular iff k = n + 1 (by the Carathéodory theorem, n + 1 is the largest possible number).

The importance of regular I-sets is illustrated by

THEOREM 1.11. ([22]). Let X be a real normed space and let V be an n-dimensional linear subspace. Let $x \in X \setminus V$, $v_o \in V$. If there exists a regular I-set for $x - v_o$, then v_o is the strongly unique best approximation for x in V.

THEOREM 1.12. ([21]). Let X be a finite dimensional normed space. Then

$$ext(S((\mathcal{L}(X,X))^*)) = ext(S(X^*)) \otimes ext(S(X))$$

where $(x^* \otimes x)(L) = x^*(Lx)$ for $x \in X$, $x^* \in X^*$ and $L \in \mathcal{L}(X, X)$.

Let $n, k \in \mathbb{N}, n \geq 3$ and $n \geq k$. Let $X = l_{\infty}^{n}, Y = \bigcap_{i=1}^{k} \ker g^{i}$, where $g^{i} \in S(l_{1}^{(n)})$ are linearly independent. Let $P \in \mathcal{P}(X, Y)$. By Lemma 1.3, there exist $y^{i} \in X, i \in \{1, \ldots, k\}$ such that $P = Id - \sum_{i=1}^{k} g^{i}(\cdot)y^{i}$. Then

LEMMA 1.13. ([**16**]).

(1.12)
$$\|Id - P\| = \max_{j \in \{1, \dots, n\}} \left(\sum_{s=1}^{n} \left| \sum_{i=1}^{k} g_{s}^{i} y_{j}^{i} \right| \right).$$

THEOREM 1.14. ([16]). Let $g^1, g^2, \ldots, g^k \in S(X^*)$ $k \ge n$ be linearly independent functionals such that $g^i_j \ge 0$ for every $i \in \{1, 2, \ldots, k\}$, $j \in \{1, 2, \ldots, n\}$, $g^i_i > 0$, $g^i_j = 0$ for every $i, j \in \{1, 2, \ldots, k\}$, $i \ne j$. Let $P_o \in \mathcal{P}(X, Y)$ and $y^i \in X$ $(i \in \{1, 2, \ldots, k\})$ determine P_o (see Def. 1.4). Then $||Id - P_o|| = 1$ iff $\operatorname{supp}(g^i) \cap \operatorname{supp}(g^j) = \emptyset$ for every $i \ne j$, where

$$\operatorname{supp}(g^i) = \{k : g_k^i \neq 0\}$$

Moreover, if $g_i^i \neq 0$, then for every $t \in \{1, 2, \dots, k\}$

(1.13)
$$y_j^t = \begin{cases} 0 & \text{for } i \neq t \\ 1 & \text{for } i = t. \end{cases}$$

2. The strong unicity constant. Let X be a real normed space and let $V \subset X$ be a *N*-dimensional linear subspace. Suppose that $x \in X, v_o \in V$. Let

(2.1)
$$I = \{\phi^1, \dots, \phi^{N+1}\} \in ext(S(X^*)),$$

with positive constants $\lambda^1, \ldots, \lambda^{N+1}$ satisfying

(2.2)
$$\sum_{j=1}^{N+1} \lambda^j = 1,$$

be a regular *I-set with respect to* $x - v_o$ (see Def. 1.10).

LEMMA 2.1. Let
$$v \in V$$
. If for every $i \in \{1, ..., N+1\}$

$$(2.3) \qquad \qquad \phi^i(v) = 0$$

then v = 0.

PROOF. By the regularity of *I*-sets, every N elements of the *I*-set I are linearly independent in restriction to V. This proves the Lemma. \Box

LEMMA 2.2. Let $\sigma \in P_{N+1}$ be a permutation of the set $\{1, \ldots, N+1\}$. For every subset of an I-set I of the form $\phi^{\sigma(1)}, \ldots, \phi^{\sigma(N)}$ there exists a basis v^1, \ldots, v^N of the subspace V such that

(2.4)
$$\phi^{\sigma(i)}(v^j) = \delta_{i,j}, \quad i, j = 1, \dots, N,$$

and $||v^i|| \ge 1$ for every $i \in \{1, ..., N\}$.

PROOF. Without loss of generality we assume that $\sigma(i) = i$ for every $i \in \{1, \ldots, N\}$.

By the regularity of the *I*-set *I*, the functionals $\phi^1|_V, \ldots, \phi^N|_V$ are linearly independent and form the basis of the subspace V^* . By the regularity of the *I*-set *I*, this implies the existence of vectors v^1, \ldots, v^N satisfying (2.4). Now we show that for every $i \in \{1, \ldots, N\}$, $||v^i|| \ge 1$. Suppose that there exists a vector $v^i \in V$ satisfying (2.4) and $||v^i|| < 1$. Then $v^i \ne 0$ and $\phi^i(\frac{v^i}{||v^i||}) = \frac{1}{||v^i||} > 1$, which contradicts assumption (2.1). \Box

Now we calculate the strong unicity constant r (see Def. 1.7) using functionals ϕ^i by (2.1). Since $\phi^i(x - v_o) = ||x - v_o||$ for every $v \in V$, $v \neq v_o$ we get

$$\phi^{i}\left(\frac{v_{o}-v}{\|v_{o}-v\|}\right) = \phi^{i}\left(\frac{v_{o}-x+x-v}{\|v-v_{o}\|}\right)$$
$$= \frac{\phi^{i}(v_{o}-x)}{\|v-v_{o}\|} + \frac{\phi^{i}(x-v)}{\|v-v_{o}\|}$$
$$\leq \frac{-\|x-v_{o}\|+\|x-v\|}{\|v-v_{o}\|}.$$

So for every $i \in \{1, \ldots, N+1\}$

$$\phi^{i}\left(\frac{v_{o}-v}{\|v-v_{o}\|}\right)\|v-v_{o}\|+\|x-v_{o}\|\leq\|x-v\|.$$

Put

(2.5)
$$r = \min \left\{ \max \left\{ \phi^i \left(\frac{v_o - v}{\|v_o - v\|} \right) : i \in \{1, \dots, n+1\} \right\} : v \in V \right\}.$$

Notice that for every $v \in V$

(2.6)
$$||x - v|| \ge ||x - v_o|| + r||v - v_o||.$$

By the regularity of *I*-set (2.1) and Lemma 2.1, r > 0. It is easy to see that the constant r given by (2.5) is the strong unicity constant for $x - v_o$ (see Def. 1.7). For $\lambda^1, \ldots, \lambda^{n+1}$ satisfying (2.2), let

(2.7)
$$\lambda_{min} := \min\{\lambda^j : j \in \{1, \dots, N+1\}\}$$

Let $k \in \{1, \ldots, N+1\}$. Now for functionals ϕ^i $(i \in \{1, \ldots, k-1, k+1, \ldots, N+1\})$ we find vectors $v^i(k)$ by Lemma 2.2. Let

(2.8)
$$l(k) = \min \left\{ \phi^i \left(\frac{v^i(k)}{\|v^i(k)\|} \right) : i \in \{1, \dots, k-1, k+1, \dots, N+1\} \right\},$$

(2.9)
$$l := \max\{l(k) : k \in \{1, \dots, N+1\}\}$$

Now we may state

THEOREM 2.3.

$$r \ge l \cdot \frac{\lambda_{min}}{2 - \lambda_{min}}.$$

PROOF. Fix $v \! \in \! S_V.$ Without loss of generality we assume that $l \! = \! l(N+1).$ First assume that

(2.10)
$$\phi^{N+1}(v) = \max_{i \in \{1, \dots, N+1\}} \{\phi^i(v)\}.$$

By Lemma 2.2, we find vectors $v^i \in V$ satisfying (2.4) for functionals ϕ^1, \ldots, ϕ^N . Notice that $\frac{v^i}{\|v^i\|}$ form a basis of the subspace V. So there exist numbers $a_i(v) \in R$ such that

(2.11)
$$v = \sum_{i=1}^{N} a_i(v) \frac{v^i}{\|v^i\|}.$$

Moreover, for every $i \in \{1, ..., N\}$, $\phi^i(\frac{v^i}{\|v^i\|}) > 0$. Notice that

(2.12)
$$1 = ||v|| \le \sum_{i=1}^{N} |a_i(v)|.$$

Since $\phi^i(v^j) = \delta_{i,j}$, then for $i \in \{1, \dots, N\}$

(2.13)
$$\phi^{N+1}(v) \ge \phi_i(v) = a_i(v) \ \phi^i\left(\frac{v^i}{\|v^i\|}\right).$$

By (1.11),

$$\lambda^{N+1}\phi^{N+1}(v) = \sum_{i=1}^{N} \lambda^{i}(-\phi^{i}(v))$$
$$= \sum_{i=1}^{N} \lambda^{i}(-a_{i}(v))\phi^{i}\left(\frac{v^{i}}{\|v^{i}\|}\right).$$

By (2.2),

$$\phi^{N+1}(v) = \sum_{i=1}^{N} \lambda^{i} \left(\phi^{N+1}(v) - a_{i}(v)\phi^{i} \frac{v^{i}}{\|v^{i}\|} \right).$$

The coordinates $a_i(v)$ may be positive, negative or equal to 0, but by (2.13), the number $(\phi^{N+1}(v) - a_i(v)\phi^i \frac{v^i}{\|v^i\|})$ is not negative for every $i \in \{1, \ldots, N\}$. Taking everything into consideration, we get

$$\begin{split} \sum_{i=1}^{N} \left(\lambda^{i} |a_{i}(v)| \phi^{i} \left(\frac{v^{i}}{\|v^{i}\|} \right) \right) &\leq \sum_{i=1}^{N} \lambda^{i} \left(|a_{i}(v)| \phi^{i} \left(\frac{v^{i}}{\|v^{i}\|} \right) - \phi^{N+1}(v) \right) + \sum_{i=1}^{N} \lambda_{i} \phi^{N+1}(v) \\ &\leq \sum_{i=1}^{N} \lambda^{i} \left| a_{i}(v) \phi^{i} \left(\frac{v^{i}}{\|v^{i}\|} \right) - \phi^{N+1}(v) \right| + (1 - \lambda^{N+1}) \phi^{N+1}(v) \end{split}$$

54

$$= \sum_{i=1}^{N} \lambda^{i} \left(\phi^{N+1}(v) - a_{i}(v) \phi^{i} \left(\frac{v^{i}}{\|v^{i}\|} \right) \right) + (1 - \lambda^{N+1}) \phi^{N+1}(v)$$
$$= (2 - \lambda^{N+1}) \phi^{N+1}(v) \le (2 - \lambda_{min}) \phi^{N+1}(v).$$

By (2.8),

$$\phi^i\left(\frac{v^i}{\|v^i\|}\right) \ge l(N+1) = l$$

for $i \in \{1, ..., n\}$. By (2.12)

(2.14)
$$\phi^{N+1}(v) \ge \frac{\lambda_{min}}{2 - \lambda_{min}} \cdot l(N+1).$$

Taking the infimum on the left side in (2.14), by (2.9), we get the result. Now suppose that

$$\phi^{N+1}(v) < \max_{i \in \{1, \dots, N+1\}} \{\phi^i(v)\}.$$

Without loss of generality we may assume that

$$\phi^{1}(v) = \max_{i \in \{1, \dots, N+1\}} \{\phi^{i}(v)\}.$$
$$\lambda^{1}\phi^{1}(v) = \sum_{i=2}^{N+1} \lambda^{i}(-\phi^{i}(v)).$$

Analogously, by (1.11) and (2.2),

$$\phi^{1}(v) = \sum_{i=2}^{N+1} \lambda^{i} (\phi^{1}(v) - \phi^{i}(v)).$$

 $\phi^1(v) \ge \phi^i(v)$ so

(2.15)
$$\phi^{1}(v) \ge \sum_{i=2}^{N} \lambda^{i}(\phi^{1}(v) - \phi^{i}(v)).$$

By Lemma 2.2, we take the same vectors $v^i \in V$ as above for functionals ϕ^1, \ldots, ϕ^N , so (2.11) is satisfied. Analogously the numbers

(2.16)
$$(\phi^1(v) - a_i(v)\phi^i \frac{v^i}{\|v^i\|}), \quad (\phi^1(v) - \phi^{N+1}(v))$$

are not negative for every $i \in \{2, ..., N\}$. By (2.15), (2.2), (2.16), reasoning in the same way as in the previous situation, we get

$$(2 - 2\lambda_{min})\phi^{1}(v) \ge \sum_{i=2}^{N} \lambda^{i} |a_{i}(v)|\phi^{i}(\frac{v^{i}}{\|v^{i}\|}).$$

Hence

$$(2 - \lambda_{\min})\phi^1(v) \ge \sum_{i=2}^N \lambda^i |a_i(v)|\phi^i\left(\frac{v^i}{\|v^i\|}\right) + \lambda_{\min}\phi^1(v),$$

where

$$\phi^{1}(v) = a_{1}(v)\phi^{1}\left(\frac{v^{1}}{\|v^{1}\|}\right) \ge |a_{1}(v)|l(N+1).$$

Hence by (2.12), (2.9)

$$(2 - \lambda_{min})\phi^1(v) \ge \lambda_{min} \cdot l.$$

Taking the infimum and applying (2.9), we get the result.

3. The strong unicity constant for minimal and cominimal projections.

DEFINITION 3.1. Let X be a normed space, $Y \subset X$ a linear subspace and $P_o \in \mathcal{P}(X, Y)$ a cominimal projection. It is said that P_o is determined by *I-set* iff there exists a regular *I-set* with respect to $Id - P_o$ (see Def. 1.10 and Theorem 1.11).

Let $n, k \in \mathbb{N}, n \geq 3, n \geq k$. Let $X = l_{\infty}^{n}$ and $Y = \bigcap_{i=1}^{k} \ker g^{i}$, where $g^{i} \in S(X^{*})$ are linearly independent. Let $P_{o}, P \in \mathcal{P}(X, Y), P = Id - \sum_{i=1}^{k} g^{i}(\cdot)y^{i}, P = Id - \sum_{i=1}^{k} g^{i}(\cdot)\tilde{y}^{i}$, where $\tilde{y}^{i}, y^{i} \in X, i \in \{1, \ldots, k\}$. Then

Lemma 3.2.

(3.1)
$$\|P_o - P\| = \max_{i \in \{1, \dots, n\}} \left\{ \sum_{s=1}^n \left| \sum_{j=1}^k g_s^j (y_i^j - \widetilde{y}_i^j) \right| \right\}.$$

PROOF. Put $x \in S_X$. Then

$$\|(P_o)(x)\| = \max_{i \in \{1,\dots,n\}} \left\{ \left| \sum_{j=1}^k g^j(x)(y_i^j - \widetilde{y}_i^j) \right| \right\} \le \max_{i \in \{1,\dots,n\}} \left\{ \sum_{s=1}^n \left| \sum_{j=1}^k g^j_s(y_i^j - \widetilde{y}_i^j) \right| \right\}.$$

Setting $x = (x_1, x_2, \ldots, x_n)$ such that

$$x_s = \begin{cases} sgn\sum_{j=1}^k g_s^j (y_i^j - \widetilde{y}_i^j) & \text{if} \quad \sum_{j=1}^k g_s^j (y_i^j - \widetilde{y}_i^j) \neq 0\\ 0 & \text{if} \quad \sum_{j=1}^k g_s^j (y_i^j - \widetilde{y}_i^j) = 0 \end{cases}$$

for $s = \{1, 2, \dots, n\}$, we get (3.1).

Now, unless stated otherwise, we assume that k = 2. Let $g^1, g^2 \in S(X^*)$ be linearly independent functionals such that

$$(3.2) g^1 = (g_1^1, 0, g_3^1, \dots, g_n^1)$$

(3.3)
$$g^2 = (0, g_2^2, g_3^2, \dots, g_n^2),$$

(3.4) $g_1^1, g_2^2 > 0, \ g_j^1, \ g_j^2 \ge 0$ and $g_j^1 + g_j^2 > 0$ for $j \in \{1, \dots, n\}$. Suppose that

(3.5)
$$\det \begin{bmatrix} g_i^1 & g_j^1 \\ g_i^2 & g_j^2 \end{bmatrix} \neq 0$$

for every $i, j \in \{1, 2, ..., n\}, i \neq j$. Moreover, we assume that

(3.6)
$$\frac{g_3^1}{g_3^2} < \frac{g_4^1}{g_4^2} < \dots < \frac{g_n^1}{g_n^2}$$

Hence $Y = \ker g^1 \cap \ker g^2$ is a subspace of codimension 2 in \mathbb{R}^n . Let $y^1, y^2 \in \mathbb{R}^n$ satisfy (1.3), $P_o \in \mathcal{P}(X, Y)$ be projection determined by y^1, y^2 (see Def. 1.4), which means that

$$(Id - P_o)(x) = g^1(x)y^1 + g^2(x)y^2$$

First assume that n = 3.

LEMMA 3.3. Let $P \in \mathcal{P}(X, Y)$ and let $P_o \in \mathcal{P}(X, Y)$ be a cominimal projection determined by an I-set

(3.7)
$$\phi^1 = e_1 \otimes (1, -1, 1), \quad \phi^2 = e_2 \otimes (-1, 1, 1), \quad \phi^3 = e_3 \otimes (1, 1, 1).$$

 $\frac{Then}{(3.8)}$

$$\|P_o - P\| \le \max\{|\phi^1(P_o - P)|, |\phi^2(P_o - P)|, |\phi^3(P_o - P)|\} \cdot \max\{\frac{g_1^1}{g_3^1}, \frac{g_2^2}{g_3^2}, 1\} \cdot \|w^3\| = \frac{1}{2} + \frac$$

PROOF. Notice that by Theorem 2.5 in [16], if g^1 , g^2 satisfy (3.2)–(3.4), then the functionals ϕ^1 , ϕ^2 , ϕ^3 by (3.7) form a regular *I*-set. By Theorem 3.2 and Theorem 3.9 in [16], P_o determined by *I*-set (3.7) is cominimal. For every projection $P \in \mathcal{P}(X, Y)$, $P_o - P \in \mathcal{L}_Y(X, Y)$ and $\dim \mathcal{L}_Y(X, Y)$ = 2(3-2) = 2.

Moreover, the operators $\{g^1(\cdot)w^3, g^2(\cdot)w^3\}$, where $w^3 = \left(\frac{-g_3^1}{g_1^1}, \frac{-g_3^2}{g_2^2}, 1\right) \in X$, form a basis of the space $\mathcal{L}_Y(X, Y)$. Hence

$$(P_o - P)(x) = \alpha g^1(x) + \beta g^2(x),$$

for some $\alpha, \beta \in R$. By Lemma 3.2,

$$||P_o - P|| = |g^1(x)\alpha + g^2(x)\beta| ||w^3||_{\mathcal{H}}$$

where $x = \pm(1, -1, 1)$ or $x = \pm(-1, 1, 1)$ or $x = \pm(1, 1, 1)$. Hence

$$\|P_o - P\| = \max\left\{\frac{g_1^1}{g_3^1} |\phi^1(P_o - P)|, \frac{g_2^2}{g_3^2} |\phi^2(P_o - P)|, |\phi^3(P_o - P))| \|w^3\|\right\}.$$

Finally

$$\|P_o - P\| \le \max\{|\phi^1(P_o - P)|, |\phi^2(P_o - P)|, |\phi^3(P_o - P)|\} \max\{\frac{g_1^1}{g_3^1}, \frac{g_2^2}{g_3^2}, 1\} \|w^3\|.$$

Keeping the assumption of Lemma 3.3 we get

THEOREM 3.4. Let λ^1 , λ^2 , $\lambda^3 > 0$ be the constants (see Def. 1.10) for *I*-set (3.7). Put

$$\lambda_{min} = min\{\lambda^{i} : i = 1, 2, 3\},\$$
$$\lambda_{max} = max\{\lambda^{i} : i = 1, 2, 3\},\$$
$$w^{3} = \left(\frac{-g_{3}^{1}}{g_{1}^{1}}, \frac{-g_{3}^{2}}{g_{2}^{2}}, 1\right).$$

Then

(3.9)
$$r \ge \frac{\lambda_{min}}{\lambda_{max}} \cdot \frac{\min\left\{\frac{g_3^1}{g_1^1}, \frac{g_3^2}{g_2^2}, 1\right\}}{\|w^3\|}.$$

PROOF. By (2.5), it immediately follows that for every $v \in S(\mathcal{L}_Y(X,Y))$ it is sufficient to estimate from the number

$$\max\{\phi^i(v): i \in \{1, 2, 3\}\}$$

from below. Since $v = P - P_o$ for some $P \in \mathcal{P}(X, Y)$, $(P \neq P_o)$ by Lemma 3.3, we get

(3.10)
$$\max\left\{|\phi^{1}(v)|, |\phi^{2}(v)|, |\phi^{3}(v)|\right\} \ge \frac{\min\left\{\frac{g_{3}^{1}}{g_{1}^{1}}, \frac{g_{3}^{2}}{g_{2}^{2}}, 1\right\}}{\|w^{3}\|}.$$

Without loss of generality we may assume that

$$\phi^1(v) = \max\{\phi^1(v), \phi^2(v), \phi^3(v)\}.$$

Since ϕ^1 , ϕ^2 , ϕ^3 form a regular *I-set*, there is $\phi^1(v) > 0$. If $\phi^1(v) < \max\{|\phi^1(v)|, |\phi^2(v)|, |\phi^3(v)|\}$, then by (1.11) $\lambda^1 \phi^1(v) = -\lambda^2 \phi^2(v) - \lambda^3 \phi^3(v)$.

Hence

$$\phi^{1}(v) = \frac{\lambda^{2}}{\lambda^{1}}(-\phi^{2}(v)) + \frac{\lambda^{3}}{\lambda^{1}}(-\phi^{3}(v)).$$

It is easily seen that for i = 2 or i = 3

$$-\phi^{i}(v) = \max\left\{|\phi^{1}(v)|, |\phi^{2}(v)|, |\phi^{3}(v)|\right\} > 0.$$

Hence

58

$$\phi^{1}(v) \geq -\frac{\lambda_{min}}{\lambda_{max}}\phi^{i}(v)$$
$$\geq \frac{\lambda_{min}}{\lambda_{max}} \frac{\min\left\{\frac{g_{3}^{1}}{g_{1}^{1}}, \frac{g_{3}^{2}}{g_{2}^{2}}, 1\right\}}{\|w^{3}\|},$$

and by (2.5), we get the result.

If $\phi^1(v) = max\{|\phi^1(v)|, |\phi^2(v)|, |\phi^3(v)|\}$, then the theorem immediately follows from Lemma 3.3.

REMARK 3.5. The previous estimate is satisfied for n = 3 only because of the form of vectors x building functionals ϕ^1 , ϕ^2 , ϕ^3 .

Now estimate a strong unicity constant for projections (see Remark 1.9) in the case of $n \ge 3$.

Let
$$s \in \{3, ..., n\}$$
, $p \in \{1, 2, s\}$ and $k \in \{3, ..., n\}$, $k \neq s$. Let

(3.11)
$$\phi^p = e_p \otimes x^p, \quad \phi_1^k = e_k \otimes x^k, \quad \phi_2^k = e_k \otimes z^k$$

 $e_t(x) = x_t$ for $x \in \mathbb{R}^n$ and $t \in \{1, \ldots, n\}$.

REMARK 3.6. Let I be I-set of form (3.11). Suppose that this I-set determines $Id - P_o$ (see Def. 1.10) with λ^1 , λ^2 , λ^s , λ_1^k , λ_2^k , $(k \in \{3, \ldots, n\}, k \neq s)$ such that

(3.12)
$$\lambda^{1} + \lambda^{2} + \lambda^{s} + \sum_{k=3, k \neq s}^{n} (\lambda_{1}^{k} + \lambda_{2}^{k}) = 1.$$

Recall that the functional $0 \in V = \mathcal{L}_Y(X, Y)$ is the strongly unique best approximation for $Id-P_o$, $\dim \mathcal{L}_Y(X,Y) = 2(n-2)$ and a basis of $\mathcal{L}_Y(X,Y)$ is the set $\{g^1(\cdot)w^k, g^2(\cdot)w^k\}, k \in \{3, \ldots, n\}$ ($w^k = (\frac{-g_k^1}{g_1^1}, \frac{-g_k^2}{g_2^2}, 0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^n$, 1 is equal to k-th coordinate).

To estimate a strong unicity constant, we calculate or estimate from above the norm of v by Lemma 2.2.

Any operator $v \in \mathcal{L}_Y(X, Y)$ is of the form

(3.13)
$$v(\cdot) = \sum_{k=3}^{n} \alpha^k g^1(\cdot) w^k + \beta^k g^2(\cdot) w^k.$$

Hence

(3.14)
$$||v|| \leq \sum_{k=3}^{n} (|\alpha^{k}| + |\beta^{k}|) ||w^{k}||.$$

If v satisfies (2.4), then from (3.13) we calculate the numbers $\{\alpha^k, \beta^k\}$.

REMARK 3.7. Notice that for *I-set* (3.11)

(3.15)

$$\phi^{1}(v) = \sum_{k=3}^{n} \left(-\frac{g_{k}^{1}}{g_{1}^{1}} \right) \left(\alpha^{k} g^{1}(x^{1}) + \beta^{k} g^{2}(x^{1}) \right),$$

$$\phi^{2}(v) = \sum_{k=3}^{n} \left(-\frac{g_{k}^{2}}{g_{2}^{2}} \right) \left(\alpha^{k} g^{1}(x^{2}) + \beta^{k} g^{2}(x^{2}) \right),$$

$$\phi^{s}(v) = \alpha^{s} g^{1}(x^{s}) + \beta^{s} g^{2}(x^{s}),$$

$$\phi_{1}^{k}(v) = \alpha^{k} g^{1}(x^{k}) + \beta^{k} g^{2}(x^{k}),$$

$$\phi_2^k(v) = \alpha^k g^1(z^k) + \beta^k g^2(z^k).$$

By (2.4), (3.15) is a Cramer system of equations.

Now we will show how to estimate the strong unicity constant r satisfying (1.8) in case of a cominimal projection determined by *I-set*. The main technical problem is in calculating or estimating the number l(k) (see (2.8)) for some k or, which gives better accuracy, the number l (see (2.9)).

THEOREM 3.8. Let n = 4 and $Y = \ker g^1 \cap \ker g^2 \subset X$, where $g^1, g^2 \in S(X^*)$ are linearly independent functionals satisfying (3.2)–(3.4) and (3.6). Let $P_o \in \mathcal{P}(X, Y)$ be a cominimal projection determined by an I-set (see Theorem 2.5 and Theorem 3.2 in [16]):

$$\phi^1 = e_1 \otimes (1, -1, 1, 1), \quad \phi^2 = e_2 \otimes (-1, 1, 1, 1),$$

(3.16)
$$\phi^3 = e_3 \otimes (1, 1, 1, 1),$$

$$\phi_1^4 = e_4 \otimes (1, 1, 1, 1), \quad \phi_2^4 = e_4 \otimes (1, -1, 1, 1).$$

Then

(3.17)
$$r \ge \frac{\lambda_{min}}{2 - \lambda_{min}} \frac{\min_{l=1,2} \{g_l^l\} \min\left\{1, \frac{g_k^l}{g_l^l} : l = 1, 2, k = 3, 4\right\}}{\max_{k=3,4} \{\|w^k\|\}}.$$

PROOF. Using the form of the *I*-set determining the cominimal projection P_o we will estimate the number l(2) (see (2.8)). First we will calculate vectors $v \in \mathcal{L}_Y(X, Y)$ using Lemma 2.2.

Recall that if $v \in \mathcal{L}_Y(X, Y)$ then v satisfies (3.13). Then

(3.18)
$$\begin{cases} \phi^{1}(v) = \sum_{k=3}^{4} \left(-\frac{g_{k}^{1}}{g_{1}^{1}} \right) \left(\alpha^{k} g^{1}(x^{1}) + \beta^{k} g^{2}(x^{1}) \right) \\ \phi^{3}(v) = \alpha^{3} g^{1}(x^{3}) + \beta^{3} g^{2}(x^{3}) \\ \phi^{4}_{1}(v) = \alpha^{4} g^{1}(x^{4}) + \beta^{4} g^{2}(x^{4}) \\ \phi^{4}_{2}(v) = \alpha^{4} g^{1}(z^{4}) + \beta^{4} g^{2}(z^{4}), \end{cases}$$

where $x^1 = z^4 = (1, -1, 1, 1)$, $x^2 = (-1, 1, 1, 1)$, $x^3 = x^4 = (1, 1, 1, 1)$. By the fact that (3.16) forms an *I-set* (see Theorem 2.5 in [16]), (3.18) is a Cramer system of equations.

Let $v^2 = v^2(2) \in \mathcal{L}_Y(X, Y)$ satisfy (see Lemat 2.2):

(3.19)
$$\begin{cases} \phi^1(v) = 0\\ \phi^3(v) = 1\\ \phi^4_1(v) = 0\\ \phi^4_2(v) = 0. \end{cases}$$

Then

$$\alpha^3 = 1 - \frac{1}{2g_2^2}, \quad \beta^3 = \frac{1}{2g_2^2},$$

 $\alpha^4 = 0, \quad \beta^4 = 0,$

and

(3.20)
$$||v^2|| \le (|\alpha^3| + |\beta^3|)||w_3|| = \max\left\{\frac{1}{g_2^2} - 1, 1\right\}||w_3||.$$

Analogously, for $v^1 = v^1(2) \in \mathcal{L}_Y(X, Y)$ satisfying

(3.21)

$$\begin{cases} \phi^{1}(v) = 1\\ \phi^{3}(v) = 0\\ \phi^{4}_{1}(v) = 0\\ \phi^{4}_{2}(v) = 0, \end{cases}$$

$$\alpha^{3} = -\frac{g_{1}^{1}}{2g_{3}^{1}g_{2}^{2}}, \quad \beta^{3} = \frac{g_{1}^{1}}{2g_{3}^{1}g_{2}^{2}}, \\ \alpha^{4} = 0, \quad \beta^{4} = 0, \end{cases}$$

$$\|v^{1}\| \leq \frac{g_{1}^{1}}{g_{3}^{1}g_{2}^{2}}\|w_{3}\|.$$

For $v^3 = v^3(2) \in \mathcal{L}_Y(X, Y)$, which is given by

(3.23)
$$\begin{cases} \phi^1(v) = 0\\ \phi^3(v) = 0\\ \phi^4_1(v) = 1\\ \phi^4_2(v) = 0, \end{cases}$$

there is

(3.24)
$$||v^3|| \le \max\left\{\frac{1}{g_2^2} - 1, 1\right\} ||w_4||,$$

and for $v^4 = v^4(2) \in \mathcal{L}_Y(X, Y)$ being the solution of

(3.25)
$$\begin{cases} \phi^1(v) = 0\\ \phi^3(v) = 0\\ \phi^4_1(v) = 0\\ \phi^4_2(v) = 1, \end{cases}$$

we get

(3.26)
$$||v^4|| \le \frac{g_1^1}{g_4^1 g_2^2} ||w_3||.$$

Hence if $v \in \mathcal{L}_Y(X, Y)$ is given by Lemma 2.2, then v meets to one of the equalities: (3.19), (3.21), (3.23) or (3.25). Hence

(3.27)
$$||v|| \le \frac{\max_{k=3,4}\{||w^k||\}}{g_2^2 \min\left\{1, \frac{g_k^l}{g_l^l} : l=1, 2, k=3, 4\right\}}$$

and consequently (see (2.8))

(3.28)
$$l(2) \geq \frac{g_2^2 \min\left\{1, \frac{g_k^l}{g_l^l} : l = 1, 2, k = 3, 4\right\}}{\max_{k=3,4}\{\|w^k\|\}} \\ \geq \frac{\min_{l=1,2}\{g_l^l\} \min\left\{1, \frac{g_k^l}{g_l^l} : l = 1, 2, k = 3, 4\}}{\max_{k=3,4}\{\|w^k\|\}}.$$

The result easily follows from Theorem 2.3.

Now the estimate of the strong unicity constant r satisfying (1.7) for minimal projections will be presented. It concerns a minimal projection determined by the *I*-set from [14].

THEOREM 3.9. Let n = 4 and $Y = \ker g^1 \cap \ker g^2 \subset X$, where $g^1, g^2 \in S(X^*)$ are linearly independent functionals satisfying (3.2)–(3.4). Let $P_o \in \mathcal{P}(X, Y)$ be a minimal projection determined by the I-set (see [14])

$$\begin{split} \phi^1 &= e_2 \otimes (1,1,-1,-1), \\ \phi^3_1 &= e_3 \otimes (-1,-1,1,-1), \quad \phi^3_2 &= e_3 \otimes (-1,1,1,-1), \\ \phi^4_1 &= e_4 \otimes (-1,-1,-1,1) \quad \phi^4_2 &= e_4 \otimes (-1,1,-1,1). \end{split}$$

Then

(3.29)
$$r \ge \frac{\lambda_{min}}{2 - \lambda_{min}} \frac{1}{\Theta},$$

where

$$\Theta = \max\left\{\frac{1}{2g_i^i}\left(1 + \left|\frac{1 - 2g_k^i}{1 - 2g_l^j}\right|\right): \quad i, j = 1, 2, \ k, l = 3, 4\right\} \max\left\{\|w_3\|, \|w_4\|\right\}.$$

PROOF. Notice that in [14] one can find the proof of the fact that the above *I-set* determines a minimal projection. Hence, by Theorem 3.8, it is sufficient to calculate or estimate the number Θ . For convience, the constant l(1) (see (2.8)) will be estimated. The idea of the proof is the same as in Theorem 3.8. Let $v^1 = v^1(1) \in \mathcal{L}_Y(X, Y)$ satisfy the system of equations (see Lemma 2.2)

(3.30)
$$\begin{cases} \phi_1^3(v) = 1\\ \phi_2^3(v) = 0\\ \phi_1^4(v) = 0\\ \phi_2^4(v) = 0. \end{cases}$$

Hence

$$\begin{aligned} \alpha^3 &= \frac{2g_4^2 - 1}{2g_2^2(1 - 2g_3^1)}, \quad \beta^3 &= \frac{-1}{2g_2^2}, \\ \alpha^4 &= 0, \quad \beta^4 = 0. \end{aligned}$$

Thus

(3.31)
$$\|v^1\| \le (|\alpha^3| + |\beta^3|) \|w_3\| \le \Theta.$$

For $v^2 = v^2(1) \in \mathcal{L}_Y(X, Y)$, which is the solution of

(3.32)
$$\begin{cases} \phi_1^3(v) = 0\\ \phi_2^3(v) = 1\\ \phi_1^4(v) = 0\\ \phi_2^4(v) = 0, \end{cases}$$

we get

$$\alpha^3 = \frac{-(1-2g_3^2)}{2g_2^2(1-2g_3^1)}, \quad \beta^3 = \frac{1}{2g_2^2},$$

$$\alpha^4 = 0, \ \beta^4 = 0.$$

For $v^3 = v^3(1)$ and $v^4 = v^4(1)$, we proceed in the same way.

REMARK 3.10. Notice that all the above estimates of the strong unicity constant r satisfying (1.7) or (1.8) depend on the number λ_{min} . By assumption (2.2),

$$\lambda_{min} < \frac{1}{N+1},$$

where N is the dimension of the space $V = \mathcal{L}_Y(X, Y)$, so N = 2n - 4.

Let $n \in \mathbb{N}$, $n \geq 3$ and $X = l_{\infty}^n$. Let $g^1, g^2 \in S(X^*)$ be linearly independent functionals satisfying (3.2)–(3.4), (3.6); put $Y = \ker g^1 \cap \ker g^2$.

EXAMPLE 3.11. 1. Fix n = 3, $g^1 = \left(\frac{1}{3}, 0, \frac{2}{3}\right)$, $g^2 = \left(0, \frac{3}{4}, \frac{1}{4}\right)$. A cominimal projection P_o is determined by *I-set* (3.7), (see Theorem 2.5 and Theorem 3.9 in [16]). By Theorem 3.4, $r \ge 0,012346$, where $\lambda_{min} = \lambda^1 \approx 0,05556$, $\lambda_{max} = \lambda^2 = \frac{3}{4}$.

bio in [13]). By Theorem 6.1, $r \geq 0$, 012010, where $\lambda_{min} = \lambda^{-1} = 0$, 00000, $\lambda_{max} = \lambda^2 = \frac{3}{4}$. 2. Put n = 4, $g^1 = (\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3})$, $g^2 = (0, \frac{5}{12}, \frac{4}{12}, \frac{3}{12})$. By Theorem 2.5 and Theorem 3.2 in [16], a cominimal projection is determined by *I-set* from the thesis of Theorem 3.8. Using the estimate from Theorem 3.8, we get $r \geq 0,004839$.

3. Let n = 5, $g^1 = \left(\frac{11}{51}, 0, \frac{1}{51}, \frac{24}{51}, \frac{15}{51}\right)$, $g^2 = \left(0, \frac{11}{81}, \frac{10}{81}, \frac{42}{81}, \frac{18}{81}\right)$. Analogously as in Theorem 2.5 in [16], one can check that the system

$$\phi^{1} = e_{1} \otimes (1, -1, -1, 1, 1), \quad \phi^{2} = e_{2} \otimes (-1, 1, 1, 1, -1),$$

$$\phi^{3}_{1} = e_{3} \otimes (-1, 1, 1, 1, 1), \quad \phi^{3}_{2} = e_{3} \otimes (-1, 1, 1, 1, -1),$$

$$\phi^{4} = e_{4} \otimes (1, 1, 1, 1, 1),$$

$$\phi^{5} = (1 - 1 - 1 - 1), \quad \phi^{5} = (1 - 1 - 1 - 1),$$

 $\phi_1^{\scriptscriptstyle 5} = e_5 \otimes (1, 1, 1, 1, 1), \quad \phi_2^{\scriptscriptstyle 5} = e_5 \otimes (1, -1, 1, 1, 1)$

form a regular *I-set* (Def. 1.10), which determines a cominimal projection (see Def. 3.1 and Theorem 1.11). By Theorem 2.3 and by the simple calculation, we get $l \ge l(1) \approx 0,024897$ (see (2.8), (2.9)) and $r \ge 0,00045$.

4. Let n = 7, $g^1 = (\frac{1}{2}, 0, \frac{1}{10}, \frac{9}{200}, \frac{1}{200}, \frac{1}{4}, \frac{1}{10})$, $g^2 = (0, \frac{23}{50}, \frac{1}{4}, \frac{1}{10}, \frac{1}{100}, \frac{43}{250}, \frac{2}{250})$. Reasoning in the same way as in Theorem 2.5 in [16], we can check that

$$\begin{split} \phi^1 &= e_1 \otimes (1, -1, 1, 1, 1, 1), \quad \phi^2 = e_2 \otimes (-1, 1, 1, 1, 1, 1, 1, -1), \\ \phi^3_1 &= e_3 \otimes (1, 1, 1, 1, 1, 1), \quad \phi^3_2 = e_3 \otimes (-1, 1, 1, 1, 1, 1, 1), \\ \phi^4_1 &= e_4 \otimes x^4, \quad \phi^4_2 = e_4 \otimes z^4, \\ \phi^5_1 &= e_5 \otimes x^5, \quad \phi^5_2 = e_5 \otimes z^5, \\ \phi^6 &= e_6 \otimes (1, 1, 1, 1, 1, 1), \\ \phi^7_1 &= e_7 \otimes (1, 1, 1, 1, 1, 1), \quad \phi^7_2 = e_7 \otimes (1, -1, 1, 1, 1, 1), \end{split}$$

63

where $x^3 = x^4 = x^5$, $z^3 = z^4 = z^5$ form a regular *I-set* which determines a cominimal projection. By Theorem 2.3 (by estimate of l(1)), we get $r \ge 0,00023$.

EXAMPLE 3.12. Let n = 4, $g^1 = (\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3})$, $g^2 = (0, \frac{5}{12}, \frac{4}{12}, \frac{3}{12})$. Functionals g^1 , g^2 satisfy the assumptions of Theorem 3.9, so there exists a minimal projection $P_o \in \mathcal{P}(X, Y)$, where $Y = \ker g^1 \cap \ker g^2 \subset X$. Additionally one can check (see [14]) that the *I*-set which determines the minimal projections P_o is of the form

$$\phi^{1} = e_{2} \otimes (1, 1, -1, -1),$$

$$\phi^{3}_{1} = e_{3} \otimes (-1, -1, 1, -1), \quad \phi^{3}_{2} = e_{3} \otimes (-1, 1, 1, -1),$$

$$\phi^{4}_{1} = e_{4} \otimes (-1, -1, -1, 1), \quad \phi^{4}_{2} = e_{4} \otimes (-1, 1, -1, 1).$$

By Theorem 3.9, we get $r \geq \frac{5}{552}$, where $\Theta = \frac{18}{5}$, $\lambda_{min} = \frac{1}{15}$.

Let $n, k \in \mathbb{N}, n \geq 3, n \geq k$. Let $X = l_{\infty}^{n}$ and $Y = \bigcap_{i=1}^{k} \ker g^{i}$, where $g^{i} \in S(X^{*})$ satisfy the following conditions:

 $g_j^i \ge 0$ for every $i \in \{1, 2, \dots, k\}$, $j \in \{1, 2, \dots, n\}$, $g_i^i > 0$, $g_j^i = 0$ for $i \in \{1, 2, \dots, k\}$, $i \ne j$ supp $(g^i) \cap \text{supp}(g^j) = \emptyset$, for every $i \ne j$, where

$$supp(g^i) = \{k : g_k^i \neq 0\}.$$

Let $P_o \in \mathcal{P}(X, Y)$ be a cominimal projection. Then by Theorem 1.14, $\|Id - P_o\| = 1$ and P_o is determined by $y^j \in X$ satisfying (1.3) such that if $g_j^i \neq 0$ then for every $t \in \{1, \ldots, k\}$, (see Lemma 1.3) the assumption (1.13) is satisfied. Then the following is true.

THEOREM 3.13. If

(3.33)
$$\bigcup_{i=1}^{k} \operatorname{supp}(g^{i}) = \{1, \dots, n\}$$

then

$$r = \min\left\{\frac{g_j^i}{1 - g_j^i} : g_j^i \in (0, 1), i \in \{1, 2, \dots, k\}, j \in \{1, 2, \dots, n\}\right\}.$$

PROOF. We will work with inequality (2.6). Let $P \in \mathcal{P}(X, Y)$ be a projection determined by vectors $\tilde{y}^1, \tilde{y}^2 \in \mathbb{R}^n$ (see Def. 1.4). By Lemma 1.13 and by the form of functionals g^1, g^2 , we get

(3.34)
$$\|Id - P\| = \max_{j \in \{1, \dots, n\}} \left\{ \sum_{i=1}^{k} |\widetilde{y}_{j}^{i}| \right\},$$

(3.35)
$$\|P - P_o\| = \max_{j \in \{1, \dots, n\}} \left\{ \sum_{i=1}^k |\widetilde{y}_j^i - y_j^i| \right\}.$$

Without loss of generality (see Lemma 1.6), combining (1.13) and (3.33), we can assume that

(3.36)
$$||P - P_o|| = \left\{ |\widetilde{y}_1^1 - 1| + \sum_{i=2}^k |\widetilde{y}_1^i| \right\}.$$

Suppose that $\tilde{y}_1^1 < 1$. By (1.3) and by the fact that for $i \in \{1, \dots, n\}$

$$||g^i|| = \sum_{j=1}^n g_j^i = 1,$$

we get

$$\widetilde{y}_1^1 - 1 = \frac{1}{g_1^1} \sum_{j=k+1}^n g_j^1 (1 - \widetilde{y}_j^1).$$

Since $\widetilde{y}_1^1 < 1$,

$$|1 - \widetilde{y}_1^1| = \frac{1}{g_1^1} \sum_{j=k+1}^n g_j^1 (\widetilde{y}_j^1 - 1).$$

For $i \in \{2, ..., n\}$,

$$\widetilde{y}_1^i = -\frac{1}{g_1^1} \sum_{j=k+1}^n g_j^1 \widetilde{y}_j^i.$$

Hence

$$|\widetilde{y}_1^1 - 1| + \sum_{i=2}^k |\widetilde{y}_1^i| = \frac{1}{g_1^1} \sum_{j=k+1}^n g_j^1 \left((\widetilde{y}_j^1 - 1) + \sum_{i=2}^k |\widetilde{y}_j^i| \right) \le \|g^i\|.$$

Moreover,

$$\begin{split} & \frac{g_1^1}{1-g_1^1} \|P - P_o\| + 1 \\ & \leq \frac{1}{1-g_1^1} \sum_{j=k+1}^n g_j^1 \left((\widetilde{y}_j^1 - 1) + \sum_{i=2}^k |\widetilde{y}_j^i| + 1 - g_1^1 \right) \\ & = \frac{1}{1-g_1^1} \sum_{j=k+1}^n g_j^1 \left(\widetilde{y}_j^1 + \sum_{i=2}^k |\widetilde{y}_j^i| \right) \leq \dots \end{split}$$

(Since $||Id - P_o|| = 1$ and $||g^i|| = 1$ for $i \in \{2, \dots, n\}$ then $1 - g_1^1 = \sum_{j=k+1}^n g_j^1$.) $\dots \leq \frac{1}{1 - g_1^1} \sum_{j=k+1}^n g_j^1 \sum_{i=1}^k |\widetilde{y}_j^i| \leq ||Id - P||.$

Notice that if the coordinates \widetilde{y}_j^i are all positive or all negative for $i \in \{2, \ldots, k\}$, $j \in \{k + 1, \ldots, n\}$ and $\frac{g_1^1}{1-g_1^1} = \min\left\{\frac{g_j^i}{1-g_j^i} : g_j^i \in (0,1), i \in \{1, 2, \ldots, k\}, j \in \{1, 2, \ldots, n\}\right\}$, then the above inequalities change into equalities which gives the results.

If $\widetilde{y}_1^1 \ge 1$ we get that $||P - P_o|| = 1 + ||Id - P_o||$.

If (3.33) is not satisfied, then a cominimal projection P_o need not be strongly unique.

EXAMPLE 3.14. Let $n, k \in \mathbb{N}$, $n \ge 1$, k = 1 and $X = l_{\infty}^{n+1}$. Assume that $g \in S(X^*)$ is of the form

$$g=(0,g_2,\ldots,g_{n+1}),$$

where $g_2 > 0$. Let $Y = \ker g \subset X$ and $P_o \in \mathcal{P}(X, Y)$ be a cominimal projection. By Theorem 1.14, we get $||Id - P_o|| = 1$.

Let $P \in \mathcal{P}(X, Y)$ be a projection determined by a vector $y = (y_1, 1, \dots, 1) \in \mathbb{R}^{n+1}$, where $y_1 > 1$ (see Def. 1.4). Notice that by Lemma 3.2, $||P - P_o|| = 1$. Hence the projection P_o is not strongly unique.

REMARK 3.15. In the case of a subspace Y of $X = l_{\infty}^{n}$ for which $||Id - P_{o}|| = 1$, the constant r could be larger than in the case of a subspace for which $||Id - P_{o}|| > 1$, but r also depends on n. It follows from the equality

$$r = \min\left\{\frac{g_j^i}{1 - g_j^i} : g_j^i \in (0, 1), i \in \{1, 2, \dots, k\}, j \in \{1, 2, \dots, n\}\right\} = \frac{g_j^i}{1 - g_j^i},$$

where

$$g_j^i = \min\left\{g_j^i \in (0,1)\right\} \le \frac{1}{n-1}$$

Hence

$$r \le \frac{1}{n-2}.$$

EXAMPLE 3.16. 1. Let n = 3, $g^1 = (\frac{1}{3}, 0, \frac{2}{3})$, $g^2 = (0, 1, 0)$. Then by Theorem 3.13, $r = \frac{1}{2}$. 2. Let n = 4, $g^1 = (\frac{1}{3}, 0, \frac{2}{3}, 0)$, $g^2 = (0, \frac{1}{2}, 0, \frac{1}{2})$. Then $r = \frac{1}{2}$. 3. Let $n \ge 3$ and $g^1 = (\frac{1}{n-1}, 0, \frac{1}{n-1}, \dots, \frac{1}{n-1})$, $g^2 = (0, 1, 0, \dots, 0)$. Then $r = \frac{1}{n-2}$.

References

- Ault D.A., Deutsch F.R., Morris P.D., Olsen J.E., Interpolating subspaces in approximation theory, J. Approx. Theory, 3 (1970), 164–182.
- Baronti M., Lewicki G., Strongly unique minimal projections onto hyperlanes, J. Approx. Theory, 78, 1 (1994), 1–18.
- Bartelt M.W., Henry M.S., Continuity of the strong unicity constant on C(X) for changing X, J. Approx. Theory, 28 (1980), 85–97.
- Bartelt M.W., McLaughlin H.W., Characterizations of strong unicity in approximation theory, J. Approx. Theory, 9 (1973), 255–266.
- Blatter J., Cheney E.W., Minimal projections onto hyperplanes in sequence spaces, Ann. Mat. Pura Appl., 101 (1974), 215–227.
- Chalmers B.L., Metcalf F.T., A characterization and equations for minimal projections and extensions, J. Operator Theory, 32 (1994), 31–46.
- Chalmers B.L., Metcalf F.T., The determination of minimal projections and extensions in L₁, Trans. Amer. Math. Soc., **329** (1992), 289–305.
- 8. Cheney E.W., Introduction to Approximation Theory, Mc Grow Hill, New York, 1966.
- Cheney E.W., Franchetti C., *Minimal projections in L₁ Spaces*, Duke Math. J., **43**, No. **3** (1976), 501–510, MR 54 #11044.
- Dunham C.B., A uniform constant of strong uniqueness on an interval, J. Approx. Theory, 28 (1980), 207–211.
- Fisher S.D., Morris P.D., Wulbert D.E., Unique minimality of Fourier projections, Trans. Amer. Math. Soc., 265 (1981), 235–246.
- Franchetti C., Projections onto hyperplanes in Banach spaces, J. Approx. Theory, 38 (1983), 319–333.
- König H., Tomczak-Jaegermann N., Norms of minimal projections, J. Funct. Anal., 119 (1994), 253–280.
- Lewicki G., Minimal projections onto two dimensional subspaces of l⁴_∞, J. Approx. Theory, 88 (1997), 92–108.
- Lewicki G., Strong unicity criterion in some space of operators, Comment. Math. Univ. Carolinae, 34 (1993), 81–87.
- 16. Lipieta A., Cominimal projections in $l_\infty^n,$ J. Approx. Theory, ${\bf 96}$ (1999), 86–100.
- Lokot' V.V., The constant of strongly unique minimal projections onto hyperplanes in lⁿ_∞, Math. Zamet., **72**, **5** (2002), 723–728 (in Russian).
- Martinov O., Constants of strong unicity of minimal projections onto two dimensional subspaces of l⁴_∞, J. Approx. Theory, **118** (2002), 175–187.
- Newman D.J., Shapiro H.S., Some theorems on Czebyszew approximation, Duke Math. J., 30 (1963), 673–681.
- Odyniec W., Lewicki G., *Minimal projections in Banach spaces*, Lecture Notes in Math., Vol. **1449**, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

- Ruess W.M., Stegall C., Extreme points in duals of operator spaces, Math. Ann., 261 (1982), 535–546.
- 22. Sudolski J., Wójcik A., Some remarks on strong uniqueness of best approximation, J. Approx. Theory and its Appl., 6, No. 2 (1990), 44–78.

Received January 16, 2006

University of Economics Department of Mathematics Rakowicka 27 31-510 Kraków Poland. *e-mail*: eylipiet@kinga.cyf-kr.edu.pl