THE DEGREE OF THE INVERSE OF A POLYNOMIAL AUTOMORPHISM

by Sabrina Brusadin* and Gianluca Gorni

Abstract

Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be an invertible map for which both F and F^{-1} are polynomials. Then $\operatorname{deg} F^{-1} \leq(\operatorname{deg} F)^{n-1}$. This is a well-known result. The proof that we give here, at least for low n, does not depend on advanced algebraic geometry.

1. Introduction. In his 1939 paper [4] O.H. Keller introduced what is known as Jacobian Conjecture: prove or disprove that any polynomial mapping from \mathbb{C}^{n} to itself with everywhere nonvanishing Jacobian determinant is necessarily invertible. The conjecture has attracted quite a number of mathematicians over the years, but it is still unanswered, even in dimension $n=2$. A recent up-to-date report on the subject is van den Essen's book [3].

A polynomial mapping from \mathbb{C}^{n} to itself which has a polynomial inverse is called a polynomial automorphism. Among the encouraging results in favour of the Jacobian conjecture there are the known facts that an injective polynomial mapping is necessarily an automorphism, together with a sharp estimate on the degree of the inverse. Both these results have been long known among algebraic geometers, with proofs that are rather inaccessible to outsiders. W. Rudin in [7] (1995) gave a proof of the invertibility result that only draws from basic complex analysis and algebra. Here we try to do the same for the degree estimate.

The degree of a polynomial mapping $F=\left(F_{1}, \ldots, F_{n}\right)$ of \mathbb{C}^{n} into itself is defined as the largest of the degrees of the components F_{1}, \ldots, F_{n}. The estimate that we are going to prove is that if F is a polynomial automorphism

[^0]of \mathbb{C}^{n} then
\[

$$
\begin{equation*}
\operatorname{deg} F^{-1} \leq(\operatorname{deg} F)^{n-1} \tag{1}
\end{equation*}
$$

\]

The ingredients of our proof are some lemmas on the sets of zeros of holomorphic functions, straightforward consequences of Weierstrass' preparation theorem, and Bézout's classic theorem: if a system of m polynomial equations in m variables has a finite number of solutions, then this number is not larger than the product of the degrees of the polynomials (for a general proof see Łojasiewicz [5]). Actually, for the proof of estimate (1) in dimension n, only Bézout's theorem in dimension $n-1$ is needed. This means that when $n=2$ one can dispense with Bézout's theorem altogether and just use the Fundamental Theorem of Algebra. When $n=3$, we need Bézout's theorem in the plane, a case for which elementary proofs are known, using the concept of resultant of two polynomials (see, e.g., [2] and [9]).

Earlier proofs of the results, that we are aware of, can be found in Bass, Connell and Wright [1], Rusek and Winiarski [8], Płoski [6], Yu [10] (which is rather simple and also uses Bézout's theorem) and van den Essen [3].
2. Complex Analysis preliminaries. The following facts from Complex Analysis are easy, and something similar has probably already appeared in textbooks. We provide a proof for the convenience of the reader.

Proposition 1. Let $n \geq 2, m \geq 1, \Omega^{\prime}$ be a nonempty open subset of \mathbb{C}^{n-1}, $a_{0}, \ldots, a_{m}: \Omega^{\prime} \rightarrow \mathbb{C}$ be holomorphic functions, with a_{m} not identically 0. Define

$$
\begin{align*}
& f\left(z^{\prime}, z_{n}\right):=a_{0}\left(z^{\prime}\right)+a_{1}\left(z^{\prime}\right) z_{n}+\cdots+a_{m}\left(z^{\prime}\right) z_{n}^{m} \tag{2}\\
& \text { for } z^{\prime} \in \mathbb{C}^{n-1}, z_{n} \in \mathbb{C} .
\end{align*}
$$

Then there exist a nonempty open subset $\Omega^{\prime \prime}$ of Ω^{\prime} and holomorphic functions $\alpha_{1}, \ldots, \alpha_{M}: \Omega^{\prime \prime} \rightarrow \mathbb{C}$ and integers m_{1}, \ldots, m_{M} such that $\alpha_{1}\left(z^{\prime}\right), \ldots, \alpha_{M}\left(z^{\prime}\right)$ are pairwise distinct for any $z^{\prime} \in \Omega^{\prime \prime}$ and f factorizes as

$$
\begin{equation*}
f\left(z^{\prime}, z_{n}\right)=a_{m}\left(z^{\prime}\right) \prod_{k=1}^{M}\left(z_{n}-\alpha_{k}\left(z^{\prime}\right)\right)^{m_{k}} \quad \text { for all } z^{\prime} \in \Omega^{\prime \prime}, z_{n} \in \mathbb{C} \tag{3}
\end{equation*}
$$

Proof. We can assume that $a_{m} \neq 0$ on all of Ω^{\prime} (otherwise remove from Ω^{\prime} the set of zeros of a_{m}, which is closed with empty interior). Our claim is obvious if $m=1$. Suppose it is true for all $r<m$ and let us prove it for $r=m$. The set of zeros of f is nonempty. Let $\left(\bar{z}^{\prime}, \bar{z}_{n}\right) \in \Omega^{\prime} \times \mathbb{C}$ a zero of f with minimum order $k_{1} \geq 1$ with respect to z_{n}. By Weierstrass preparation theorem, possibly after shrinking Ω^{\prime}, we can factorize f as

$$
\begin{equation*}
f\left(z^{\prime}, z_{n}\right)=p\left(z^{\prime}, z_{n}\right) h\left(z^{\prime}, z_{n}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
p\left(z^{\prime}, z_{n}\right)=b_{0}\left(z^{\prime}\right)+\cdots+b_{k_{1}-1}\left(z^{\prime}\right) z_{n}^{k_{1}-1}+z_{n}^{k_{1}} \tag{5}
\end{equation*}
$$

$h, b_{1}, \ldots, b_{k_{1}-1}$ are holomorphic, and p and h share no zero. Now, for all z^{\prime} the roots of the polynomial mapping $z_{n} \mapsto p\left(z^{\prime}, z_{n}\right)$ must all coincide, because otherwise there would be a zero of p, and hence of f, with multiplicity strictly less than k_{1} with respect to z_{n}. Call this common root $\alpha_{1}\left(z^{\prime}\right)$. The function α_{1} is holomorphic, and we can write

$$
\begin{equation*}
f\left(z^{\prime}, z_{n}\right)=\left(z_{n}-\alpha_{1}\left(z^{\prime}\right)\right)^{k_{1}} h\left(z^{\prime}, z_{n}\right) . \tag{6}
\end{equation*}
$$

The function h is seen now to be obtained by dividing the one-variable polynomial $z_{n} \mapsto f\left(z^{\prime}, z_{n}\right) k_{1}$ times by the monomial $z_{n}-\alpha_{1}\left(z^{\prime}\right)$. Hence h is a function of the same form of f :

$$
\begin{equation*}
h\left(z^{\prime}, z_{n}\right)=b_{0}\left(z^{\prime}\right)+b_{1}\left(z^{\prime}\right) z_{n}+\cdots+b_{m-k_{1}}\left(z^{\prime}\right) z_{n}^{m-k_{1}} \tag{7}
\end{equation*}
$$

with b_{i} holomorphic and $b_{m-k_{1}}=a_{m}$. We can apply the induction hypothesis on h and get the result.

Proposition 2. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be an n-variable polynomial whose gradient never vanishes. Then there exists $\bar{z}^{\prime} \in \mathbb{C}^{n-1}$ such that all zeros of $z_{n} \mapsto$ $f\left(\bar{z}^{\prime}, z_{n}\right)$ are simple.

Proof. Let m be the degree of f with respect to z_{n}. If $m=0$ the claim is trivially true. If $m>0$ we can apply the previous Proposition, thus there exists a nonempty open set $\Omega^{\prime} \subset \mathbb{C}^{n-1}$ and holomorphic, everywhere distinct functions $\alpha_{1}, \ldots, \alpha_{M}: \Omega^{\prime} \rightarrow \mathbb{C}$, and integers m_{1}, \ldots, m_{M}, such that

$$
\begin{equation*}
f\left(z^{\prime}, z_{n}\right)=a_{m}\left(z^{\prime}\right) \prod_{k=1}^{M}\left(z_{n}-\alpha_{k}\left(z^{\prime}\right)\right)^{m_{k}} \tag{8}
\end{equation*}
$$

over $\Omega^{\prime} \times \mathbb{C} ; a_{m}$ is polynomial and does not vanish in Ω^{\prime}. For no k can the exponent m_{k} be larger than 1 , because otherwise the gradient of f would vanish at the points of the form $\left(z^{\prime}, \alpha_{k}\left(z^{\prime}\right)\right)$, as one can readily verify by differentiation. Hence for any $z^{\prime} \in \Omega$ the one-variable polynomial $z_{n} \mapsto f\left(z^{\prime}, z_{n}\right)$ has m distinct roots.

3. Estimate of the degree of the inverse.

Theorem 3. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a polynomial automorphism. Then

$$
\begin{equation*}
\operatorname{deg} F^{-1} \leq(\operatorname{deg} F)^{n-1} \tag{9}
\end{equation*}
$$

Proof. Denote by $\left(z_{1}, \ldots, z_{n}\right)$ the variables in $\mathbb{C}^{n}, F=\left(F_{1}, \ldots, F_{n}\right)$, $F^{-1}=G=\left(G_{1}, \ldots, G_{n}\right)$. Up to a linear change of coordinates, we can assume that the degree of G_{1} with respect to z_{n} coincides with the full degree of G :

$$
\begin{equation*}
\operatorname{deg} G=\operatorname{deg} G_{1}=\operatorname{deg}_{z_{n}} G_{1}=: m \geq 1 \tag{10}
\end{equation*}
$$

The gradient of G_{1} never vanishes, because it is the first row of the Jacobian matrix of G. Hence we can apply the previous Proposition to G_{1} : there exists $\bar{z}^{\prime} \in \mathbb{C}^{n-1}$ such that the number of distinct roots of the one-variable polynomial $z_{n} \mapsto G_{1}\left(\bar{z}^{\prime}, z_{n}\right)$ is the same as its degree:

$$
\begin{equation*}
m=\operatorname{deg} G=\operatorname{deg}_{z_{n}} G_{1}=\#\left\{z_{n} \in \mathbb{C}: G_{1}\left(\bar{z}^{\prime}, z_{n}\right)=0\right\} \tag{11}
\end{equation*}
$$

(\#A means the cardinality of the set A). Since G is bijective and $G(F(w))=w$, we can write

$$
\begin{aligned}
& m=\#\left\{z_{n} \in \mathbb{C}: G_{1}\left(\bar{z}^{\prime}, z_{n}\right)=0\right\} \\
&=\#\left\{\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}: z^{\prime}=\bar{z}^{\prime}, G_{1}\left(\bar{z}^{\prime}, z_{n}\right)=0\right\} \\
&=\# G\left(\left\{\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}: z^{\prime}=\bar{z}^{\prime}, G_{1}\left(\bar{z}^{\prime}, z_{n}\right)=0\right\}\right) \\
&=\#\left\{w \in \mathbb{C}^{n}: \exists\left(z^{\prime}, z_{n}\right) \text { s.t. } w=G\left(z^{\prime}, z_{n}\right), z^{\prime}=\bar{z}^{\prime}, G_{1}\left(\bar{z}^{\prime}, z_{n}\right)=0\right\} \\
&=\#\left\{w \in \mathbb{C}^{n}: \exists\left(z^{\prime}, z_{n}\right) \text { s.t. }\left(z^{\prime}, z_{n}\right)=F(w), z^{\prime}=\bar{z}^{\prime}, G_{1}\left(\bar{z}^{\prime}, z_{n}\right)=0\right\} \\
&=\#\left\{w \in \mathbb{C}^{n}: \exists z_{n} \text { s.t. }\left(F_{1}(w), \ldots, F_{n-1}(w)\right)=\bar{z}^{\prime}\right. \\
&\left.\quad F_{n}(w)=z_{n}, G_{1}(F(w))=0\right\} \\
&=\#\left\{w \in \mathbb{C}^{n}:\left(F_{1}(w), \ldots, F_{n-1}(w)\right)=\bar{z}^{\prime}, w_{1}=0\right\} \\
&=\#\left\{\left(w_{2}, \ldots, w_{n}\right) \in \mathbb{C}^{n-1}: \quad F_{1}\left(0, w_{2}, \ldots, w_{n}\right)=\bar{z}_{1}, \ldots,\right. \\
&\left.F_{n-1}\left(0, w_{2}, \ldots, w_{n}\right)=\bar{z}_{n-1}\right\} .
\end{aligned}
$$

This means that the degree of G is the same as the number of solutions of the following system of $n-1$ polynomial equations in the $n-1$ unknowns w_{2}, \ldots, w_{n} :

$$
\left\{\begin{array}{c}
F_{1}\left(0, w_{2}, \ldots, w_{n}\right)=\bar{z}_{1} \tag{12}\\
\vdots \\
F_{n-1}\left(0, w_{2}, \ldots, w_{n}\right)=\bar{z}_{n-1}
\end{array}\right.
$$

$\left(\bar{z}_{1}, \ldots, \bar{z}_{n-1}\right.$ are fixed). Hence the number of solutions of this system is finite, and by Bézout's theorem

$$
\begin{equation*}
m \leq\left(\operatorname{deg} F_{1}\right)\left(\operatorname{deg} F_{2}\right) \cdots\left(\operatorname{deg} F_{n-1}\right) \leq(\operatorname{deg} F)^{n-1} \tag{13}
\end{equation*}
$$

References

1. Bass H., Connel E., Wright D., The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 7 (1982), 287-330.
2. Coolidge J.L., A treatise on algebraic plane curves, Dover Publications, Inc., New York, 1959.
3. Essen van den A., Polynomial Automorphisms, Prog. Math., 190 (2000), Birkhäuser.
4. Keller O.H., Ganze Cremona-Transformationen, Monatsh. Math. Phis., 47 (1939), 299306.
5. Lojasiewicz S., Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991.
6. Płoski A., On the growth of proper polynomial mappings, Ann. Polon. Math., 45 (1985), 297-309.
7. Rudin W., Injective polynomial maps are Automorphisms, Amer. Math. Monthly, 102 (1995), 540-543.
8. Rusek K., Winiarski T., Polynomial automorphisms of \mathbb{C}^{n}, Univ. Iagel. Acta Math., 24 (1984), 143-149.
9. Walker R.J., Algebraic curves, Princeton Math. Ser., Vol. 13, Princeton University Press, Princeton, N. J., 1950.
10. Yu J.-T., Degree bounds of minimal polynomials and polynomial automorphisms, J. Pure Appl. Algebra 92 (1994), 199-201.
Received August 30, 2003

S.B.

e-mail: yrbas@inwind.it
G.G.

University of Udine
Dipartimento di Matematica e Informatica
I-33100 Udine UD
Italy
e-mail: gorni@dimi.uniud.it

[^0]: * This research was part of Sabrina Brusadin's graduation thesis in mathematics at the University of Udine, Italy.

