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ON A FAMILY OF ELLIPTIC CURVES

by Anna Antoniewicz

Abstract. The main aim of this paper is to put a lower bound on the rank
of elliptic curves from the infinite family Cm : y2 = x3−m2x+1, m ∈ Z+.
We shall prove that rank Cm ≥ 2 for m ≥ 2 and that rank C4k ≥ 3 for the
infinite subfamily C4k, k ≥ 1. The idea has been taken from paper [1]; in
fact we are attempting to solve two problems stated there.

1. Introduction. An elliptic curve over the field Q is a plane curve E
defined by the equation y2 = x3+ax+b where a, b ∈ Z and the cubic x3+ax+b
has distinct roots together with the point at infinity denoted O.

A point (x, y) on a curve E is said to be integer (resp. rational), if both
of its coordinates are integer (resp. rational). The set of all rational points of
E is denoted by E(Q). We assume the point O to be integer and rational.

On an elliptic curve E, one can define a law of addition of a curve’s points.
The definition is very simple and geometrical. In particular, the point at
infinity is the neutral element and the opposite of A = (x, y) ∈ E(Q) is −A :=
(x,−y). For more details see [3].

The set of all points of an elliptic curve E together with this law of addition
forms an abelian group, of which E(Q) is a subgroup.

The well-known and absolutely fundamental Mordell Theorem says that the
group E(Q) of all rational points of an elliptic curve E is a finitely generated
abelian group, which means that

E(Q) = Zr ⊕ TorsE(Q),

where r is a uniquely determined positive integer and TorsE(Q) is the finite
abelian group consisting of all elements of finite rank in E(Q).
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Preserving the above notation, we call r the rank of an elliptic curve
E (denoted rankE). The finite subgroup TorsE(Q) is called the torsion
subgroup of E.

The notion of rank of an elliptic curve has been studied in great detail but
its characterisation is in general a really hard task, the main reason being that
the rank cannot be computed effectively from the coefficients a, b of the curve
equation.

In this note we concentrate on an infinite family of elliptic curves

(1.1) Cm : y2 = x3 −m2x + 1, m ∈ Z+.

This equation has a very simple arithmetic interpretation. It can easily be
rewritten as

(y − 1)(y + 1) = x(x−m)(x + m),
from which we can see that it describes the following problem:
“When the product of two consecutive numbers of the same oddity is equal to
the product of three consecutive terms of an arithmetic progression.”

Our aim is to show that

rank Cm ≥ 2 for m ≥ 2,

rank Cm ≥ 3 for m ≥ 4, m ≡ 0 (mod 4).

2. Preparational theorems. Now we shall focus on some special prop-
erties of the curves from the family Cm. The theorems to be proved work as
the main tools in our method of bounding the curves’ ranks.

First we will show that the torsion subgroup TorsCm(Q) is trivial for
m ≥ 1, i.e., that any non-trivial element of Cm(Q) is of infinite order in that
group.

Next we will describe some useful properties of points lying in 2Cm(Q).
The law of addition of a curve’s points in the special case of A = (x, y) ∈

Cm(Q) and A + A = 2A = (x′, y′) reveals the following formulas for the
coordinates of the doubled point:

x′ =
x4 + 2m2x2 + m4 − 8x

4(x3 −m2x + 1)
,(2.1)

y′ = −y − 3x2 −m2

2y
(x′ − x).(2.2)

The above formulas will be used frequently in the sequel.

2.1. Triviality of the torsion subgroup. To prove that the torsion subgroup
is trivial, we need to show a few simple properties.

Property 2.1. For m ≥ 1, there is no point of order 2 in the group
Cm(Q).
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Proof. Let A = (x, y) ∈ Cm(Q), m ≥ 1. Suppose that, on the contrary,
2A = O. It means that A = −A, or (x, y) = (x,−y), hence y = 0, and x 6= 0.
We then have x3 −m2x + 1 = 0. Now x has to be an integer. Indeed, putting
x = u

v , GCD(u, v) = 1 and multiplying by v3 we get u3 −m2uv2 + v3 = 0,
hence v2|u3, which gives v2 = 1 and x ∈ Z.
Next we see that

x2 +
1
x

=
x3 + 1

x
= m2

is an integer, so 1
x ∈ Z, which gives x ∈ {−1, 1}. From this, m2 ∈ {0, 2} which

is impossible, a contradiction.

Property 2.2. For m ≥ 1, there is no point of order 3 in the group
Cm(Q).

Proof. Suppose that, on the contrary, 3A = O, or equivalently, 2A = −A.
Putting A = (x, y), 2A = (x′, y′), one can see that in particular x = x′.
Substituting this equality to formula (2.1), after a short computation one gets

(∗) m4 + 6x2m2 − 3x4 − 12x = 0.

As in the previous proof, we substitute x = u
v , GCD(u, v) = 1 in order to

get
3u4 − 6m2u2v2 + 12uv3 −m4v4 = 0,

from which v2|3u4, hence v2 = 1 and x ∈ Z.
The left-hand side of (∗) is a square polynomial in the variable m2. One can
compute

∆ = 48x(x3 + 1) and m2 =
−6x2 +

√
∆

2
.

From the second equation there follows that ∆ = (2m2 + 6x2)2 is a square of
an integer. Hence, ∃n ∈ N such that x(x3 + 1) = 3n2.
First notice that GCD(x, x3 + 1) = 1, so that two cases may occur:

1.

{
x = α2

x3 + 1 = 3β2
or 2.

{
x = 3α2

x3 + 1 = β2

for some α, β ∈ N. Moreover, since x3 + 1 = (x + 1)(x2 − x + 1) and
x2 − x + 1 = (x + 1)(x− 2) + 3, there is GCD(x + 1, x2 − x + 1) ∈ {1, 3}.
Let us test these cases.
Ad 1. From the above properties, there are two possible ways of factoring the
equation x3 + 1 = 3β2:

1.(a)


x = α2

x + 1 = γ2

x2 − x + 1 = 3δ2

or 1.(b)


x = α2

x + 1 = 3γ2

x2 − x + 1 = δ2

for some α, γ, δ ∈ N.
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In case 1.(a), there is γ2 − α2 = x + 1− x = 1 , so γ = 1 and α = 0 , hence
x = 0, a contradiction.
In case 1.(b), there is δ2 = x2 − x + 1 = α4 − α2 + 1, so for α ≥ 2 there is

α4 − 2α2 + 1 < δ2 < α4

or equivalently α2 − 1 < δ < α2, which is impossible.
The remaining α ∈ {0, 1} implies x ∈ {0, 1}, a contradiction.
Ad 2. Similarly, factoring the equation x3 + 1 = β2, we get

2.(a)


x = 3α2

x + 1 = γ2

x2 − x + 1 = δ2

or 2.(b)


x = 3α2

x + 1 = 3γ2

x2 − x + 1 = 3δ2

In case 2.(a), there is δ2 = x2 − x + 1 = 9α4 − 3α2 + 1. If α ≥ 1, then

(3α2)2 > 9α4 − 3α2 + 1 > (3α2 − 1)2,

or equivalently 3α2 > δ > 3α2 − 1, which is impossible. The remaining
α = 0 implies x = 0 and from (∗), m = 0.
In case 2.(b), there is 3γ2 − 3α2 = x + 1− x = 1, a contradiction.
So the only solution is x = m = 0, which completes the proof.

The last tool we need is the Nagell–Lutz theorem. For a prime p and a, b ∈ Z,
we may regard the elliptic curve E : y2 = x3 + ax + b as a curve over the
field Fp of p elements, with a, b, x, y ∈ Fp. It is an elliptic curve over Fp iff the
discriminant ∆(E) = −16(4a3 + 27b2) is prime to p (then it is non-zero in Fp

so the curve is nonsingular); we then say that E has good reduction at p.
By E(Fp) we denote the group of Fp-points of E. The theorem says that if E
has good reduction at a prime p, then TorsE(Q) can be embedded into the
group E(Fp) ([3], 5.5, Theorem 5.1).

Theorem 2.3.

TorsCm(Q) = {O} for m ≥ 1.

Proof. Compute the discriminant for a curve Cm:

∆(Cm) = 16(4m6 − 27).

Notice that p = 5 is prime to ∆(Cm), so we may consider the curve reduced
modulo 5. To this end, we test cases, depending on the remainder of m mod-
ulo 5.
1. Case m ≡ 0 (mod 5). The reduced curve is of the form

C5
m : y2 = x3 + 1.

One can easily compute that C5
m(F5) = {O, (4, 0),±(0, 1),±(2, 2)}, so

|C5
m(F5)| = 6. From the Nagell–Lutz Theorem and the Lagrange Theorem,
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TorsCm(Q) may in this case consist of elements of order 1, 2, 3, 6 only. Due to
Properties 2.1, 2.2, there is TorsCm(Q) = {O} for m ≡ 0 (mod 5).
The other cases: m ≡ ±1 (mod 5) and m ≡ ±2 (mod 5) can be analysed in
the same way.

Remark 2.4. The above theorem is not true for m = 0. In that case, we
get the curve C0 : y2 = x3 + 1, which is well known and characterised; in
particular, C0(Q) = TorsC0(Q) ∼= Z6 ([3], 1.3, Theorem 3.3).

2.2. Doubling a point on a curve. We shall now describe a few properties
of doubling an element of the group Cm(Q).

Property 2.5. Let A = (x′, y′) and B = (x, y) be points in Cm(Q),
m ≥ 1, such that A = 2B and x′ ∈ Z. Then:
(i) x ∈ Z,
(ii) x ≡ m (mod 2).

Proof. Ad (i). Substituting x = u
s , GCD(u, s) = 1 to (2.1), after a

short computation we get

u4 − 4x′u3s + 2m2u2s2 + (4x′m2 − 8)us3 + (m4 − 4x′)s4 = 0,

from which s | u4, so s ∈ {−1, 1} and x ∈ Z.
Ad (ii). Observe that (2.1) can be rewritten as

(x2 + m2)2 = 4
(
x′(x3 −m2x + 1) + 2x

)
,

which gives 2 | (x2 + m2) and finally x ≡ m (mod 2).

Property 2.6. Let A ∈ 2Cm(Q), m ≥ 1, A = (a
b , y), a ∈ Z, b ∈ N,

GCD(a, b) = 1. Then:
(i) If m ≡ 0 (mod 2) and b ≡ 1 (mod 2) then a ≡ 0 (mod 4) and

a
4 ≡

m4

16 (mod 2).
(ii) If m ≡ 1 (mod 2) and b ≡ 1 (mod 2) then a + b ≡ 0 (mod 4).

Proof. Take formula (2.1) and substitute x′ = a
b , x = u

s , GCD(u, s) = 1.
After a computation we get

4as(u3 −m2us2 + s3)− b(u4 + 2m2u2s2 + m4s4 − 8us3) = 0.

In the proof we will work on this equation.
Ad (i). Let m ≡ 0 (mod 2). Clearly, u is even and s is odd, so we can

substitute m = 2k, b = 2c + 1, u = 2v. After dividing the equation by 4 and
reducing, we get as4 ≡ 0 (mod 4) and, since s is odd, a ≡ 0 (mod 4).
For the other equivalence, substitute a = 4e and divide the equation by 16.
After the reduction we get

s4(e + k4) + v(v3 + s3) ≡ 0 (mod 2).
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The second component is always even, s is odd, so e ≡ k4 (mod 2), as desired.
Ad (ii). Let m ≡ 1 (mod 2). Reducing the equation, we get b(s4 + u4) ≡

0 (mod 2). So in our case, since GCD(u, s) = 1, both u and s are odd. After
substitutions m = 2k + 1, s = 2t + 1, u = 2v + 1 we divide the equation by 4
and, upon reducing, we get a + b ≡ 0 (mod 4).

3. Lower bound of the Cm curves’ rank. The principal aim of this
paper is to show, using methods as simple as possible, that

rank Cm ≥ 2 for m ≥ 2.

To this end, it is sufficient to find at least two independent points, say Pm

and Qm, in each curve. To check their independence we must show that none
of Pm, Qm and Pm + Qm is an element of 2Cm(Q).

Moreover, we will prove that rankCm ≥ 3 for m ≥ 4, m ≡ 0 (mod 4).
In this purpose we shall find the third point, independent of Pm and Qm for
such m.

The proof consists of two main steps. First we show that the chosen third
point is in 2Cm(Q) iff m ∈ {3, 7, 24} for m ≥ 1. This is not an easy task; in
fact, it has been stated in [1] as a separate problem. Some calculations needed
to be done by a computer. After this we shall prove the independence of three
points for m ≡ 0 (mod 4). The proof goes analogically as the one for two
points. It is important to notice that without the trivial torsion subgroup of
Cm (Theorem 2.3) it would not be possible to show the independence of points
with these methods, because the image of torsion subgroup in Cm(Q)/2Cm(Q),
not necessarily trivial, could affect the proof of Theorem 3.4.

3.1. The general boundary: rank Cm ≥ 2 for m ≥ 2. In each curve Cm one
can find the obvious points

Pm = P = (0, 1), Qm = (−1,m).

In order to bound the rank of Cm, we shall prove their independence.

Lemma 3.1. The point P = (0, 1) is an element of Cm(Q) \ 2Cm(Q) for
m ≥ 1.

Proof. Suppose that P = 2B for some m ∈ N and B ∈ Cm(Q).
Letting B = (x, y), from (2.1) we derive:

x4 + 2m2x2 + m4 − 8x

4(x3 −m2x + 1)
= 0,

from which (x2 + m2)2 = 8x. Using Property 2.5 (i) we see that ∃k ∈ N :
x = 2k2. Solving the previous equation in m2, we get m2 = −x2 + 2

√
2x,

which, together with the above, gives m2 = −4k(k3 − 1). Since m2 ≥ 0, we
get k = 0, 1, for which m = 0. There are no solutions for m ≥ 1.
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Lemma 3.2. The point Qm = (−1,m) is an element of Cm(Q) \ 2Cm(Q)
for m ≥ 2.

Proof. Proceeding as in the previous proof, from (2.1) one gets

x4 + 2m2x2 + m4 − 8x

4(x3 −m2x + 1)
= −1,

which gives

8x = 4(x3 −m2x + 1) + (x2 + m2)2 = 4y2 + (x2 + m2)2 ≥ 0,

so that x ≥ 0.
The above formula can be transformed into a quadratic equation in m2:

m4 + m2(2x2 − 4x) + (x4 + 4x3 − 8x + 4) = 0,

which has real solutions iff ∆ = −32(x − 1)(x + 1)(x − 1
2) ≥ 0, from which

x ∈ (−∞,−1]∪ [12 , 1]. By Property 2.5 (i) and the condition x ≥ 0, only x = 1
remains. Hence, y2 = 2−m2, a contradiction for m ≥ 2.

Lemma 3.3. The point P + Qm = (m2 − 2m + 2,m3 − 3m2 + 4m − 3) is
an element of Cm(Q) \ 2Cm(Q) for m ≥ 1.

Proof. Take m ≥ 1 and put P +Qm =: (x′, y′). Letting m = 2n for even
m, one gets x′ = 4n2−4n+2 ≡ 2 (mod 4). For odd m, let m = 2n+1. Then
x′ = 4n2 + 1 ≡ 1 (mod 4). Now apply Property 2.6.

We are now in a position to prove that rankCm ≥ 2.

Theorem 3.4. The points P = (0, 1) and Qm = (−1,m) are Z-independent
in Cm(Q) for m ≥ 2, i.e., ∀n, k ∈ Z : (nP + kQm = O ⇒ k = n = 0).

Proof. Fix an arbitrary m ≥ 2 and put Qm =: Q. Let nP +kQ = O for
some k, n ∈ Z with minimal positive n. If k is even and n is odd then in the
group Cm(Q)/2Cm(Q) there is [O] = [nP + kQ] = [P ], which contradicts 3.1.
Similarly, for n even and k odd, one gets [Q] = [O], which contradicts 3.2,
and for both odd there is [P +Q] = [O] which contradicts 3.3. For both k and
n even there is 2(n′P + k′Q) = O, which means that n′P + k′Q is a 2-order
torsion point. Due to Th. 2.3, there is n′P + k′Q = O, which contradicts the
minimality of n.

Remark 3.5. For m = 1 the point Q = (−1, 1) is the double of the point
R := (1, 1) and is not independent of P . Indeed, one can easily compute that
P +R = −Q. Multiplying by 2 and substuting Q = 2R one gets 2P +3Q = O.

The attempts to find another point independent of P have failed. Com-
puter calculations (using MWrank by J. E. Cremona) revealed that rank C1 = 1.

Thus we have proved that rankCm(Q) ≥ 2 for m ≥ 2.
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3.2. The third point problem. In order to lift up the lower bound of our
curves’ rank, we need to find a third point, Z-independent of P and Qm. This
will require much more computation and more theorems to be applied.

Note that on each curve Cm there is a third obvious point,

Rm := (m, 1).

Theorem 3.6. For m ≥ 1, the point Rm = (m, 1) is an element of Cm(Q)\
2Cm(Q) iff m /∈ {3, 7, 24}.

Proof. Suppose that Rm = 2B for some m ≥ 1 and B = (x, y) ∈ Cm(Q).
From formula (2.1) there follows

x4 − 4mx3 + 2m2x2 + (4m3 − 8)x + m4 − 4m = 0.

We shall find all the values of m for which any integral solutions in x exist.
From Property 2.5 (i) we know that there can be no other rational solutions.
The above formula can be easily put into the form

(x−m)4 − 4(x−m)2m2 − 8(x−m)− 12m + 4m4 = 0.

Due to Property 2.5 (ii), we can substitute x − m =: 2s, which puts our
equation in the form (2s2−m2)2 = 4s+3m. Next, substituting n := 2s2−m2,
we obtain n2 = 4s + 3m, from which

(∗) m =
n2 − 4s

3
.

Now substituting (∗) to the definition of n, one gets

(∗∗) 2(s + 2n2)2 − 9n4 − 9n = 0.

From this we can see that n4 + n is of the form 2k2 for some k ∈ Z.
There is the decomposition n4 +n = n(n+1)(n2−n+1), where the last factor
is odd; moreover, GCD(n + 1, n2−n + 1) ∈ {1, 3}. By this, there are the two
possibilities:

1.

{
n2 − n + 1 = u2

n(n + 1) = 2v2
or 2.

{
n2 − n + 1 = 3u2

n(n + 1) = 6v2

for some u, v ∈ N.

Ad 1. Compute the discriminant ∆ = 4u2 − 3 of the quadratic equation
n2 − n + (1 − u2) = 0 in the variable n. The solution is n = 1±

√
∆

2 , so
∆ = (2n− 1)2, the square of a positive integer t. Hence, there is 4u2 − 3 = t2,
thus (2u − t)(2u + t) = 3. The factors of the above product can only take
values in the set {1,−1, 3,−3}, all of which give u2 = 1. Our equation gets
the form n2 − n = 0, from which n ∈ {0, 1}.
For n = 0, from (∗∗) and (∗), we get s = m = 0.
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For n = 1, in the same way as above, we get (s,m) = (1,−1) and (s,m) =
(−5, 7).
To sum up, the case (1.) gives rise to the solutions m ∈ {−1, 0, 7}.

Ad 2. Due to n and n+1 being relatively prime, the equation n(n+1) = 6v2

allows four possible decompositions, namely

2.(a)


n2 − n + 1 = 3u2

n = ±2w2

n + 1 = ±3z2

or 2.(b)


n2 − n + 1 = 3u2

n = ±w2

n + 1 = ±6z2

Transforming the first of the above equations one gets

n(n + 1)− 2n + 1 = 3u2.

Since n(n + 1) = 6v2 , there is −2n + 1 ≡ 0(mod 3), so n ≡ 2(mod 3). Thus,
we need to consider two cases only:

2.(a’)


n2 − n + 1 = 3u2

n = 2w2

n + 1 = 3z2

and 2.(b’)


n2 − n + 1 = 3u2

n = −w2

n + 1 = −6z2

In case (2.a’) there is

u2 = 3z4 − 3z2 + 1

which is the equation of a quartic with a rational point (z, u) = (0, 1), hence
it can be birationally transformed into an elliptic curve ([2]) by the following
substitution:

z =
2X − 4

Y
, u =

X3 − 6X2 + 15X − 14
Y 2

with the inverse given by

X =
2u + 2− z2

z2
, Y =

4u + 4− 6z2

z3
.

We get the elliptic curve

E1 : Y 2 = X3 − 15X + 22 = (X − 2)(X2 + 2X − 11)

birational to our quartic. For the elliptic curves of this form, it is easy to
compute rank E1 = 0 and TorsE1(Q) ∼= Z6. The whole calculation connected
with this kind of transformations has been done by computer using Apecs
(Maple V, I. Connell).



30

The following table lists the points (X, Y ) ∈ TorsE1(Q) (since rankE1 = 0,
these are all of the rational points of E1) and their corresponding rational
solutions (z, u).

(X, Y ) (z, u)
(−1, 6) (−1,−1)

(−1,−6) (1,−1)
(3, 2) (1, 1)

(3,−2) (−1, 1)
(2, 0) (0,−1), (0, 1) – singularity of the parametrization

For the points (z, u) with z = 0, we get n + 1 = 0 and 2w2 = −1, a
contradiction. The points with z2 = 1 give the solution n = 2, from which
w2 = 1, u2 = 1. As in the previous case, we compute (s,m) = (1, 0) and
(s,m) = (−17, 24).

In case (2.b’) there is

u2 =
1
3
w4 +

1
3
w2 +

1
3
.

It is, similarly, a quartic with a rational point (z, u) = (1, 1). Applying the
birational substitution:

w =
Y + 3X + 15
Y − 3X − 15

, u =
X3 + 15X2 + 39X − 55

(Y − 3X − 15)2
,

with the inverse given by

X =
18u + 4w + 7w2 + 7

(w − 1)2
, Y =

54u + 36 + 18w + 18w2 + 54uw + 36w3

(w − 1)3

we get the following elliptic curve

E2 : Y 2 = X3 − 39X − 70 = (X + 2)(X + 5)(X − 7).

As above, we compute rank E2 = 0 and TorsE2(Q) ∼= Z2 ⊕ Z2.
The following table contains the points (X, Y ) ∈ TorsE2(Q) which are all
the rational points of E2 (since rankE2 = 0) and their corresponding rational
solutions (w, u).

(X, Y ) (w, u)
(−2, 0) (−1,−1)
(7, 0) (−1, 1)

(−5, 0) (1,−1), (1, 1) – singularity of the parametrisation

From this, n = −1 and we get (s,m) = (−1, 3). Together with the above,
case (2.) gives solutions m ∈ {0, 3, 24}.

To sum up, cases (1.) and (2.) supply the solutions m ∈ {−1, 0, 3, 7, 24},
which completes the proof.
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A natural question arises of what happens for Rm ∈ 2Cm(Q), or equally
for m ∈ {3, 7, 24}.
For m = 3 we shall not find the third point. In this case R = 2Q, so these
three points are not independent. Indeed, computer calculations revealed that
rank C3 = 2.
The cases m = 7 and m = 24 are considered below.

Fact 3.7. Let m = 7. Then:
1. The point R = (7, 1) is the double of the point R′ := (−3, 11).
2. The points R′, P + R′ = (127

9 , 1243
27 ), Q + R′ = (8, 11), P + Q + R′ =

(−103
16 , 451

64 ) are the elements of C7(Q) \ 2C7(Q).

Proof. For the points R′ and Q + R′, apply Property 2.6 (ii). For
P +R′ and P +Q+R′, do computations using (2.1); the appearing polynomials
have no rational zeros.

Fact 3.8. Let m = 24. Then:
1. The point R = (24, 1) is the double of the point R′′ := (−10, 69).
2. The points R′′, P+R′′ = (1406

25 , 47679
125 ), Q+R′′ = (36, 161), P+Q+R′′ =

(−1316
81 , 51911

729 ) are the elements of C24(Q) \ 2C24(Q).

Proof. Apply Property 2.6 (i).

Thus we have proved that rankC7 ≥ 3 and rankC24 ≥ 3.

3.3. The subfamily of higher rank. We are now left to consider the general
case of m ≥ 4, m 6= 7, 24. We choose

Sm := −(P + Rm) = (−m, 1)

as the third independent point.
The choice of Sm was designed to minimalize the complexity of required

computation, such complexity depending on the coordinates of points involved
in the computation.

To simplify the notation we shall omit the indices when denoting Pm, Qm,
Rm and Sm.

We are now in a position to prove that the points P, Q and S are inde-
pendent for m ≡ 0 (mod 4). This will provide

rank Cm ≥ 3 for m ≥ 4, m ≡ 0 (mod 4).

Lemma 3.9. Let m ≥ 4 and m 6= 7, 24. The points S and S + P are
the elements of Cm(Q) \ 2Cm(Q).

Proof. Notice that the coordinates of points S and R differ only by
the sign at m, so there is

{m : S ∈ 2Cm(Q)} = {−m : R ∈ 2Cm(Q)} = {1, 0,−3,−7,−24},
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hence S /∈ 2Cm(Q). Next, there is P + S = P − (P + R) = −R, so P + S /∈
2Cm(Q), because R /∈ 2Cm(Q).

The combinations of the point S with points Q, P + Q are considered in
the following lemma, which is a direct consequence of Property 2.5.

Lemma 3.10. Under the above assumptions, there is
1. Q + S = (m + 2,−2m − 3) is an element of Cm(Q) \ 2Cm(Q) for m ≡

0 (mod 4), m ≡ −1 (mod 4).
2. P + Q + S = (2 −m,−2m + 3) is an element of Cm(Q) \ 2Cm(Q) for

m ≡ 0 (mod 4), m ≡ 1 (mod 4). �

So we managed to bound the rank of elliptic curves from the family Cm

applying elementary methods. The obtained results are summarised in the
following theorem.

Theorem 3.11.
1. For m ≥ 2, there is rank Cm ≥ 2.
2. For m ≥ 4, m ≡ 0(mod 4) and for m = 7, there is rank Cm ≥ 3.

For the further research, it seems possible to prove that the ranks of all
curves Cm are at least equal to 3; also, one may look for a subfamily of rank
at least equal to 4.
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