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AN ABSTRACT SEMILINEAR FIRST ORDER

DIFFERENTIAL EQUATIONS IN THE HYPERBOLIC CASE

by Ma lgorzata Radoń

Abstract. Using the extrapolation spaces, the existence and uniqueness
of the solution of a semilinear first order equation in the hyperbolic case
are studied.

1. Introduction. Let (X,‖·‖) be a Banach space and for each t ∈ [0, T ] let
A(t) : X ⊃ Dt → X be a linear closed operator with domain Dt dependent on
t. Let u be an unknown function from [0, T ] into X, f be a nonlinear function
from [0, T ]×X into X and x0 ∈ X. We consider the abstract semilinear initial
value problem

(1)

{
u′(t) = A(t)u(t) + f(t, u(t)), t ∈ (0, T ]

u(0) = x0 ∈ X.

Our purpose is to study the existence and uniqueness of solution of (1).
First we shall reduce problem (1) to a problem with densely defined operator
whose domain can depend on t. Next, using the same method as in [4], we
shall introduce the extrapolation space and reduce our problem to the problem
with an operator whose domain is independent of t.

2. Preliminaries. Let (X, ‖·‖) be a Banach space. Let for each t ∈ [0, T ],
ρ(A(t)) denote the resolvent set and R(λ, A(t)) = (λI − A(t))−1, λ ∈ ρ(A(t))
be the resolvent of A(t). We make the following assumptions:
(Z1) For each t ∈ [0, T ], A(t) : X ⊃ Dt → X is a closed densely defined linear

operator with the domain Dt dependent on t.
(Z2) The resolvent set ρ(A(t)) does not depend on t and 0 belongs to ρ(A(t)).
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(Z3) The family {A(t)}, t ∈ [0, T ], is stable in the sense that there exist real
numbers M ≥ 1 and ω such that

‖
k∏

j=1

R(λ, A(tj))‖ ≤ M(λ− ω)−k

for all λ > ω, 0 ≤ t1 ≤ ... ≤ tk ≤ T, k ∈ N.
(Z4) For each x ∈ X, the function [0, T ] 3 t → R(λ, A(t))x ∈ X is of class

C1.
(Z5) For each t, s ∈ [0, T ] the operator A−1(t)A(s) is closable and for each

fixed s ∈ [0, T ] the mapping t → A−1(t)A(s) is continuous in t = s on
[0,T] in the sense that limt→s ‖A−1(t)A(s)− I‖ = 0.

From the Hille–Yosida Theorem ([3], Th.1.5.3) and from (Z1), (Z3) it fol-
lows that for each t ∈ [0, T ], A(t) is the generator of a C0-semigroup on X.

For each fixed µ ∈ ρ(A(t))

(2) |x|t := ‖R(µ,A(t))x‖, x ∈ X, t ∈ [0, T ]

defines a new norm on X.

Theorem 2.1. ([4], Th.3.1). If assumptions (Z1)–(Z5) hold then for each
t ∈ [0, T ] the norms | · |0 and | · |t are equivalent.

We remark that from Theorem 2.1 it follows that X0 := (X, | · |0) is not a
Banach space. Since X0 is the normed space, we can complete it in the sense of
norm | · |0 to the complete space X̂0. The extrapolation space X̂0 is a Banach
space and does not depend on t.

Next, for each t ∈ [0, T ], we extend A(t). We denote by Â(t) the extension
of A(t) with domain D(Â(t)) = X independent of t and X is dense in X̂0. We
collect some facts about Â(t) in the following theorem.

Theorem 2.2. ([4], Sec.4). Suppose that assumptions (Z1)–(Z5) hold.
Then

(i) if λ ∈ ρ(A(t)), then λ ∈ ρ(Â(t)) and R(λ, A(t)) = R(λ, Â(t))|X ,
t ∈ [0, T ],

(ii) the family {Â(t)}, t ∈ [0, T ] is stable on X̂0,
(iii) the mapping [0, T ] 3 t → Â(t)x, x ∈ X, is of class C1.

Let assumptions (Z1)–(Z5) hold. We adapt the following definition.

Definition 2.3. A function u ∈ C([0, T ], X) given by

u(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)f(s)ds, t ∈ [0, T ],
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where {Û(t, s)}, 0 ≤ s ≤ t ≤ T is the evolution system of the problem{
u′(t) = Â(t)u(t), t ∈ (0, T ]

u(0) = x0,

is called a mild solution of the linear problem

(3)

{
u′(t) = A(t)u(t) + f(t), t ∈ (0, T ]

u(0) = x0 ∈ X.

Theorem 2.4. ([4], Sec.6). Let assumptions (Z1)–(Z5) hold.
If f ∈ L1(0, T ;X), then for every x0 ∈ X there exists exactly one mild solution
of linear problem (3).

The mild solution of initial value problem (1) is defined analogously to the
mild solution of (3).

Theorem 2.5. ([4], Sec.7). Let assumptions (Z1)–(Z5) hold.
If f : [0, T ]×X → X is such that

(i) for each x ∈ X, f(·, x) ∈ L1(0, T ;X),
(ii) there exists L > 0 such that for t ∈ [0, T ], u, v ∈ X

‖f(t, u)− f(t, v)‖ ≤ L‖u− v‖,
then for every x0 ∈ X there exists exactly one mild solution of initial value
problem (1).

3. The family of operators {A0(t)}, t ∈ [0, T ]. Let the family {A(t)},
t ∈ [0, T ], satisfy assumptions (Z2)–(Z5) from Section 2 and the following
assumption:
(Z ′

1) Y0 is a closed subspace of X and for each t ∈ [0, T ]

Y0 := Dt
‖·‖

, Y0 ⊂ X, Y0 6= X.

We remark that assumption (Z ′
1) holds particularly if Dt = D does not

depend on t ∈ [0, T ] and D 6= X.
Let for each t ∈ [0, T ], A0(t) be the part of A(t) in Y0.
We shall prove that the family {A0(t)}, t ∈ [0, T ], satisfies assumptions

(Z1)–(Z5) from Section 2.
Since the family {A(t)}, t ∈ [0, T ] is stable on X, it follows from ([2],

Theorem 3.1.10) that

Proposition 3.1. For each t ∈ [0, T ] the operator

A0(t) : Y0 ⊃ D0
t → Y0

generates a C0-semigroup S0
t (s), s ≥ 0 on Y0 and

R(λ, A0(t)) = R(λ, A(t))|Y0 , λ ∈ ρ(A(t)) ⊂ ρ(A0(t)).
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Consequently, for each t ∈ [0, T ], A0(t) is a linear closed operator whose

domain D0
t can depend on t and D0

t

‖·‖
= Y0.

Applying Proposition 3.1 we obtain the following theorem.

Theorem 3.2. Suppose that assumptions (Z ′
1)–(Z5) hold. Then

(i) the family {A0(t)}, t ∈ [0, T ] is stable on Y0,
(ii) the mapping [0, T ] 3 t → R(λ, A0(t))y ∈ (Y0, ‖ · ‖) is of class C1,
(iii) for each t, s ∈ [0, T ], the operator A−1

0 (t)A0(s) is closable and for each
fixed s ∈ [0, T ] the mapping [0, T ] 3 t → A−1

0 (t)A0(s) is continuous in
t = s.

4. The family of operators {Â0(t)}, t ∈ [0, T ]. Let assumptions (Z ′
1)–

(Z5) be satisfied.
Since the family {A0(t)}, t ∈ [0, T ] satisfies assumptions (Z1)–(Z5) from

Section 2, we can construct the extrapolation space of Y0.
Analogously to norm (2), for each fixed µ ∈ ρ(A(t)) ⊂ ρ(A0(t)) define

a new norm on Y0 as

|y|t := ‖R(µ,A0(t))y‖, y ∈ Y0, t ∈ [0, T ].

Analogously as in Section 2, there exists a space X̂0 which is the closure
of Y0 in the norm | · |0.

From ([2], Theorem 3.1.10), the next theorem follows.

Theorem 4.1. X̂0 is isomorphic to the space which is the closure of X in
the norm:

|x|0 := ‖R(µ,A(0))x‖, x ∈ X.

In the sequel, for each t ∈ [0, T ], we extend the operator A0(t) to the
operator

Â0(t) : X̂0 ⊃ (Y0, | · |0) → X̂0.

The domains D(Â0(t)) = Y0 do not depend on t and Y0 is dense in X̂0.
Applying Theorem 2.2, we obtain the following theorem.

Theorem 4.2. Suppose that assumptions (Z ′
1)–(Z5) hold. Then

(i) if λ ∈ ρ(A0(t)), then λ ∈ ρ(Â0(t)) and R(λ, A0(t)) = R(λ, Â0(t))|Y0,
t ∈ [0, T ],

(ii) the family {Â0(t)}, t ∈ [0, T ] is stable on X̂0,
(iii) the mapping [0, T ] 3 t → Â0(t)y, y ∈ Y0 is of class C1.

From this theorem it follows that the norm on X̂0 is given by

‖x̂‖X̂0
= |x̂|0 = ‖R(µ, Â0(0))x̂‖, x̂ ∈ X̂0, µ ∈ ρ(A(0)).
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5. The linear case. In this section we consider the following linear prob-
lem

(4)

{
u′(t) = A(t)u(t) + f(t), t ∈ (0, T ]

u(0) = x0,

where {A(t)}, t ∈ [0, T ], satisfies assumptions (Z ′
1)–(Z5) from Section 3.

We remark that from ([3], Theorem 5.4.8) it follows that under assumptions
(Z ′

1)–(Z5) there exists the unique evolution system {Û(t, s)}, 0 ≤ s ≤ t ≤ T of
the problem

(5)

{
u′(t) = Â0(t)u(t), t ∈ (0, T ]

u(0) = x0 ∈ X̂0.

Now we recall the following definition.

Definition 5.1. A function u : [0, T ] → X̂0 is a classical solution of the
problem

(6)

{
u′(t) = Â0(t)u(t) + f(t), t ∈ (0, T ]

u(0) = x0 ∈ X̂0,

if u is continuous on [0,T], continuously differentiable on (0,T], u(t) ∈ Y0 for
t ∈ [0, T ] and (6) is satisfied.

Applying Theorem 4.1 and ([3], Theorem 5.5.3) we obtain the following
theorem.

Theorem 5.2. Suppose that assumptions (Z ′
1)–(Z5) hold.

If f ∈ C1([0, T ], X), then for each x0 ∈ Y0 problem (6) has exactly one classical
solution u given by

(7) u(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)f(s)ds,

where {Û(t, s)}, 0 ≤ s ≤ t ≤ T is the evolution system of (5).

Furthermore, from the proof of Theorem 5.5.3 in [3] it follows that the
function u given by (7) is of class C1([0, T ], X̂0).

Theorem 5.3. Let assumptions (Z
′
1)−(Z5) be satisfied. If f ∈ C1([0, T ], X)

and x0 ∈ Y0, then the function u given by (7) is continuous in (X, ‖ · ‖).

Proof. From Theorem 5.2 and Definition 5.1 it follows that u(t) ∈ X for
t ∈ [0, T ].

The norm

‖y‖D(Â0(0)) := |y|0 + |Â0(0)y|0, y ∈ Y0
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is equivalent to the norm ‖·‖ (see [4], Prop. 5.3). Thus for each fixed t0 ∈ [0, T ]
and for each t ∈ [0, T ]

‖u(t)−u(t0)‖ ≤

≤ M [|u(t)− u(t0)|0 + |[Â0(0)(Â0(t))−1][Â0(t)u(t)− Â0(t0)u(t0)]|0
+ |[Â0(0)(Â0(t))−1][Â0(t0)u(t0)− Â0(t)u(t0)]|0],

where M := max{|µ|, 1}. By Definition 5.1

|u(t)− u(t0)|0 → 0, t → t0.

Therefore from Theorem 4.2

|[Â0(0)(Â0(t))−1][Â0(t0)u(t0)− Â0(t)u(t0)]|0 → 0, t → t0.

From Definition 5.1 it follows that

Â0(t)u(t) = u
′
(t)− f(t).

Since u
′ ∈ C([0, T ], X̂0) and f ∈ C1([0, T ], X̂0), there is

|[Â0(0)(Â0(t))−1][Â0(t)u(t)− Â0(t0)u(t0)]|0 → 0, t → t0.

Hence u given by (7) is continuous in (X, ‖ · ‖).

A mild solution of initial value problem (4) is defined analogously to a mild
solution of (3).

From Theorem 5.2 and Theorem 5.3, it follows the following theorem.

Theorem 5.4. Assume (Z ′
1)–(Z5). If f ∈ C1([0, T ], X) and x0 ∈ Y0, then

problem (4) has the unique mild solution.

6. The semilinear case. In this section we consider nonlinear problem
(1), mentioned in the introduction, where {A(t)}, t ∈ [0, T ] satisfies (Z ′

1)–(Z5).
We remark that if the function f : [0, T ] × Y0 → Y0 satisfies assumption

from Theorem 2.5 we obtain the theorem on the existence and uniqueness for
the problem (1).

But if the function f : [0, T ]×X → X, we need the following assumption.
(Z6) The function f : [0, T ]×X → X is of class C1 and

‖∂f

∂x
(t, x)‖X→X ≤ L and ‖∂f

∂x
(t, x)‖X̂0→X̂0

≤ L0,

where L > 0 and L0 > 0 independent of t and x.
From this assumption it follows that

(8) ‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖, x1, x2 ∈ X, t ∈ [0, T ],

and

(9) |f(t, x1)− f(t, x2)|0 ≤ L0|x1 − x2|0, x1, x2 ∈ X, t ∈ [0, T ].
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The classical solution of the problem

(10)

{
u′(t) = Â0(t)u(t) + f(t, u(t)), t ∈ (0, T ]

u(0) = x0 ∈ X̂0

is defined analogously to the classical solution of (6) (Def. 5.1).
The following theorem holds true.

Theorem 6.1. Let assumptions (Z ′
1)–(Z6) hold. If u is a classical solution

of (10), then u satisfies the integral equation

(11) u(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)f(s, u(s))ds,

where {Û(t, s)}, 0 ≤ s ≤ t ≤ T is the evolution system of (5).

In the sequel, we shall need the following lemma.

Lemat 6.2. Let assumptions (Z ′
1)–(Z6) hold. Suppose that

u ∈ C([0, T ], X) ∩ C1([0, T ], X̂0). Then the function g : [0, T ] 3 t → f(t, u(t))
is of class C1([0, T ], (X̂0, | · |0)).

Proof. Let t, t + h ∈ [0, T ].
1
h

[g(t + h)− g(t)] =
1
h

[f(t + h, u(t + h))− f(t, u(t))]

=
1
h

[f(t + h, u(t + h))− f(t, u(t + h))]

+ f
′
x(t, u(t))

1
h

[u(t + h)− u(t)] + η(t, u(t), h).

This, together with Theorem 4.1 and assumption (Z6), shows that g′ exists in
X̂0 and for each t ∈ [0, T ]

g′(t) = f
′
t (t, u(t)) + f

′
x(t, u(t))u′(t).

Now for t0 ∈ [0, T ] and t ∈ [0, T ] there is

|g′(t)− g′(t0)|0 ≤ |f ′
t (t, u(t))− f

′
t (t, u(t)) |t=t0 |0

+ |f ′
x(t, u(t))u′(t)− f

′
x(t, u(t)) |t=t0 u′(t0)|0

≤ C
M

µ− ω
‖f ′

t (t, u(t))− f
′
t (t, u(t)) |t=t0 ‖

+ |f ′
x(t, u(t))[u′(t)− u′(t0)]|0 + |[f ′

x(t, u(t))− f
′
x(t, u(t)) |t=t0 ]u

′(t0)|0.

Thus the function [0, T ] 3 t → g′(t) ∈ X̂0 is continuous. Hence the function
g : [0, T ] 3 t → f(t, u(t)) is of class C1([0, T ], (X̂0, | · |0)). This concludes the
proof of Lemma 6.2.
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Now we shall prove the following theorem.

Theorem 6.3. Assume (Z ′
1)–(Z6) and let x0 ∈ Y0. Then there exists

exactly one solution of (11) continuous in (X, ‖ · ‖).

Proof. Let
u0(t) := x0, t ∈ [0, T ],

g0(t) := f(t, u0(t)), t ∈ [0, T ].

Applying Theorem 5.2, we see that the problem{
u′(t) = Â0(t)u(t) + g0(t), t ∈ (0, T ]

u(0) = x0 ∈ Y0

has exactly one classical solution u1 given by

u1(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)g0(s)ds,

where {Û(t, s)}, 0 ≤ s ≤ t ≤ T is the evolution system of (5). Therefore, from
Theorem 5.3 and ([3], Theorem 5.5.3), we have

u1 ∈ C([0, T ], X) ∩ C1([0, T ], X̂0).

Let
g1(t) := f(t, u1(t)), t ∈ [0, T ].

By Lemma 6.2, the function [0, T ] 3 t → g1(t) ∈ X̂0 is of class C1. Once again
using Theorem 5.5.3 in [3] and Theorem 5.3, we see that the problem{

u′(t) = Â0(t)u(t) + g1(t), t ∈ (0, T ]

u(0) = x0 ∈ Y0

has exactly one classical solution u2 given by

u2(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)g1(s)ds

and
u2 ∈ C([0, T ], X) ∩ C1([0, T ], X̂0).

After n steps, we conclude that there exists exactly one function
un+1 ∈ C([0, T ], X) given by

un+1(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)f(s, un(s))ds, n = 0, 1, 2, ...,

where
un ∈ C([0, T ], X) ∩ C1([0, T ], X̂0).
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Let k := sup{‖Û(t, s)‖ : 0 ≤ s ≤ t ≤ T}. In the space C([0, T ], X), consider
two equivalent norms:

‖u‖ := sup{‖u(t)‖ : 0 ≤ t ≤ T},

‖u‖′
:= sup{e−kLt‖u(t)‖ : 0 ≤ t ≤ T},

where L > 0 is the Lipschitz constant (see (8)). Therefore

‖un+1 − un‖
′
= sup

t∈[0,T ]
{e−kLt‖un+1(t)− un(t)‖}

≤ sup
t∈[0,T ]

{e−kLt

∫ t

0
‖Û(t, s)[f(s, un(s))− f(s, un−1(s))]‖ds}

≤ sup
t∈[0,T ]

{e−kLtk

∫ t

0
L‖un(s)− un−1(s)‖ds}

≤ kL sup
t∈[0,T ]

{e−kLt‖un − un−1‖
′
∫ t

0
ekLsds} ≤ (1− e−CLT )‖un − un−1‖

′
.

Setting Q := 1− e−CLT , by induction we obtain

‖un+1 − un‖
′ ≤ Qn‖u1 − u0‖

′
, n = 0, 1, 2, . . .

Consequently, for n < m

‖un − um‖
′ ≤ Qn

1−Q
‖u1 − u0‖

′
.

Since limn→∞ Qn = 0, {un}∞n=1 is a Cauchy sequence. Thus, by letting n →∞,
we see that u ∈ C([0, T ], X).

A mild solution of initial value problem (1) is defined analogously to a mild
solution of (3).

From Theorem 6.3 the next theorem follows.

Theorem 6.4. Assume (Z ′
1)–(Z6) and let x0 ∈ Y0. Then there exists

exactly one mild solution of initial value problem (1).

7. Example. We shall give an example of the family {A(t)}, t ∈ [0, T ]
with a domain which is not dense and can depend on t. For each t ∈ [0, T ],
the operator A(t) will hold assumptions (Z2)–(Z5).

Let Ω := Ω1 \ Ω2, where

Ω1 := {(x, y) ∈ R2 : x > 0 y > 0},

Ω2 := {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1, (x− 1)2 + (y − 1)2 ≥ 1}.
We shall consider the differential operator of second order:

(12) A(t;x, y;D) := B(x, y;D) + b(t;x, y)I, (x, y) ∈ Ω, t ∈ [0, T ],



92

where

(13) B(x, y;D) := b1(x, y)
∂2

∂x2
+ 2b2(x, y)

∂2

∂x∂y
+ b3(x, y)

∂2

∂y2
.

We make the following assumptions:
(P1) For each t ∈ [0, T ], the operator A(t;x, y;D) is uniformly strongly ellip-

tic on Ω in the sense that there is a constant C > 0 such that for all
(x, y) ∈ Ω and (ξ1, ξ2) ∈ R2

b1(x, y)ξ2
1 + 2b2(x, y)ξ1ξ2 + b3(x, y)ξ2

2 ≥ C(ξ2
1 + ξ2

2).

(P2) The coefficients b1, b2, b3 are uniformly continuous on Ω; are continuous
and uniformly bounded on Ω. We remark that from (P1) it follows that
the inverse operator B−1 exists and there is K > 0 that ‖B−1‖ ≤ K.

Moreover, we assume that:
(P3) The coefficient b on [0, T ]× Ω is of class C1 and |b(t;x, y)| < 1

K .

With the family {A(t;x, y;D)}, t ∈ [0, T ], we associate the family of linear
operators {A(t)}, t ∈ [0, T ], on the space

C0(Ω) := {u ∈ C(Ω) : lim
Q→∞

u(Q) = 0, Q ∈ Ω}.

The norm in C0(Ω) is defined by

‖u‖ := max{|u(Q)| : Q ∈ Ω}.

Let

D(A) := {u ∈ C0(Ω) : u ∈ W 2,q
loc , A(t;x, y;D)u ∈ C0(Ω), u |∂Ω= 0}

be the domain of the operator A(t) for each t ∈ [0, T ] and let

A(t)u = A(t;x, y;D)u, u ∈ D(A).

W 2,q
loc denotes the set of all functions which are in W 2,q(Ω∩Γ) for all closed

bounded sets Γ.
D(A) is clearly independent of t and from [5] it follows that this is not

dense in C0(Ω).
We remark that from (P3) it follows that for each u ∈ D(A),

[0, T ] 3 t → A(t)u ∈ C0(Ω) is of class C1.
We collect some facts about A(t) in the following theorem.

Theorem 7.1. Let assumptions (P1)–(P3) hold. Then
(i) 0 ∈ ρ(A(t)),
(ii) for each t, s ∈ [0, T ] the operator A−1(t)A(s) is closable and for each

fixed s ∈ [0, T ] the mapping t → A−1(t)A(s) is continuous in t = s.
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From (P1) it follows that the operator B : C0(Ω) ⊃ D(A) → C0(Ω) is uni-
formly strongly elliptic on Ω. Consequently ([3], Sec.7.3) there is the operator
B

1
2 : C0(Ω) ⊃ D(B

1
2 ) → C0(Ω) given by

B
1
2 u =

1
π

∫ ∞

0
z−

1
2 BR(z, B)udz, u ∈ D(A)

and such that [B
1
2 ]2 = B.

Thus from [6] (Prop.2.7 and Prop.2.6), we have the following theorem.

Theorem 7.2. The operator

B :=
[

0 I
B 0

]
,

with domain D(A) ×D(B
1
2 ) is a Hille–Yosida operator on [D(B

1
2 )] × C0(Ω),

where [D(B
1
2 )] denotes the linear space D(B

1
2 ) with the norm

|u| := ‖u‖+ ‖B
1
2 u‖, u ∈ D(B

1
2 ).

Therefore, for each t ∈ [0, T ] we may define the operator

A(t) : [D(B
1
2 )]× C0(Ω) ⊃ D(A) → [D(B

1
2 )]× C0(Ω)

by

A(t) :=
[

0 I
A(t) 0

]
.

The domain of {A(t)}, t ∈ [0, T ] is D(A) = D(A) × D(B
1
2 ). For each

t ∈ [0, T ], the operator A(t) is not densely defined.

Theorem 7.3. Suppose assumptions (P1)–(P3) hold. Then
(i) 0 ∈ ρ(A(t)),
(ii) the family {A(t)}, t ∈ [0, T ] is stable,
(iii) the mapping [0, T ] 3 t → A(t)x ∈ [D(B

1
2 )] × C0(Ω), x ∈ D(A) is of

class C1.
(iv) for each t, s ∈ [0, T ] operator A−1(t)A(s) is closable and for an arbitrary

s ∈ [0, T ] the mapping [0, T ] 3 t → A−1(t)A(s) is continuous in t = s.
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