AN ABSTRACT SEMILINEAR FIRST ORDER DIFFERENTIAL EQUATIONS IN THE HYPERBOLIC CASE

by Ma£gorzata Radoń

Abstract

Using the extrapolation spaces, the existence and uniqueness of the solution of a semilinear first order equation in the hyperbolic case are studied.

1. Introduction. Let $(\mathrm{X},\|\cdot\|)$ be a Banach space and for each $t \in[0, T]$ let $A(t): X \supset D_{t} \rightarrow X$ be a linear closed operator with domain D_{t} dependent on t . Let u be an unknown function from $[0, T]$ into X, f be a nonlinear function from $[0, T] \times X$ into X and $x_{0} \in X$. We consider the abstract semilinear initial value problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A(t) u(t)+f(t, u(t)), \quad t \in(0, T] \tag{1}\\
u(0)=x_{0} \in X
\end{array}\right.
$$

Our purpose is to study the existence and uniqueness of solution of (1). First we shall reduce problem (1) to a problem with densely defined operator whose domain can depend on t. Next, using the same method as in [4], we shall introduce the extrapolation space and reduce our problem to the problem with an operator whose domain is independent of t.
2. Preliminaries. Let $(X,\|\cdot\|)$ be a Banach space. Let for each $t \in[0, T]$, $\rho(A(t))$ denote the resolvent set and $R(\lambda, A(t))=(\lambda I-A(t))^{-1}, \lambda \in \rho(A(t))$ be the resolvent of $A(t)$. We make the following assumptions:
$\left(Z_{1}\right)$ For each $t \in[0, T], A(t): X \supset D_{t} \rightarrow X$ is a closed densely defined linear operator with the domain D_{t} dependent on t.
$\left(Z_{2}\right)$ The resolvent set $\rho(A(t))$ does not depend on t and 0 belongs to $\rho(A(t))$.
$\left(Z_{3}\right)$ The family $\{A(t)\}, t \in[0, T]$, is stable in the sense that there exist real numbers $M \geq 1$ and ω such that

$$
\left\|\prod_{j=1}^{k} R\left(\lambda, A\left(t_{j}\right)\right)\right\| \leq M(\lambda-\omega)^{-k}
$$

for all $\lambda>\omega, 0 \leq t_{1} \leq \ldots \leq t_{k} \leq T, k \in \mathbb{N}$.
$\left(Z_{4}\right)$ For each $x \in X$, the function $[0, T] \ni t \rightarrow R(\lambda, A(t)) x \in X$ is of class C^{1}.
$\left(Z_{5}\right)$ For each $t, s \in[0, T]$ the operator $A^{-1}(t) A(s)$ is closable and for each fixed $s \in[0, T]$ the mapping $t \rightarrow \overline{A^{-1}(t) A(s)}$ is continuous in $t=s$ on $[0, \mathrm{~T}]$ in the sense that $\lim _{t \rightarrow s}\left\|\overline{A^{-1}(t) A(s)}-I\right\|=0$.
From the Hille-Yosida Theorem ([3], Th.1.5.3) and from $\left(Z_{1}\right),\left(Z_{3}\right)$ it follows that for each $t \in[0, T], A(t)$ is the generator of a C_{0}-semigroup on X.

For each fixed $\mu \in \rho(A(t))$

$$
\begin{equation*}
|x|_{t}:=\|R(\mu, A(t)) x\|, \quad x \in X, \quad t \in[0, T] \tag{2}
\end{equation*}
$$

defines a new norm on X.
Theorem 2.1. ([4, Th.3.1). If assumptions $\left(Z_{1}\right)-\left(Z_{5}\right)$ hold then for each $t \in[0, T]$ the norms $|\cdot|_{0}$ and $|\cdot|_{t}$ are equivalent.

We remark that from Theorem 2.1 it follows that $X_{0}:=\left(X,|\cdot|_{0}\right)$ is not a Banach space. Since X_{0} is the normed space, we can complete it in the sense of norm $|\cdot|_{0}$ to the complete space \hat{X}_{0}. The extrapolation space \hat{X}_{0} is a Banach space and does not depend on t .

Next, for each $t \in[0, T]$, we extend $A(t)$. We denote by $\hat{A}(t)$ the extension of $A(t)$ with domain $D(\hat{A}(t))=X$ independent of t and X is dense in \hat{X}_{0}. We collect some facts about $\hat{A}(t)$ in the following theorem.

THEOREM 2.2. (4 , Sec.4). Suppose that assumptions $\left(Z_{1}\right)-\left(Z_{5}\right)$ hold. Then
(i) if $\lambda \in \rho(A(t))$, then $\lambda \in \rho(\hat{A}(t))$ and $R(\lambda, A(t))=\left.R(\lambda, \hat{A}(t))\right|_{X}$, $t \in[0, T]$,
(ii) the family $\{\hat{A}(t)\}, t \in[0, T]$ is stable on \hat{X}_{0},
(iii) the mapping $[0, T] \ni t \rightarrow \hat{A}(t) x, x \in X$, is of class C^{1}.

Let assumptions $\left(Z_{1}\right)-\left(Z_{5}\right)$ hold. We adapt the following definition.
Definition 2.3. A function $u \in C([0, T], X)$ given by

$$
u(t)=\hat{U}(t, 0) x_{0}+\int_{0}^{t} \hat{U}(t, s) f(s) d s, \quad t \in[0, T]
$$

where $\{\hat{U}(t, s)\}, 0 \leq s \leq t \leq T$ is the evolution system of the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=\hat{A}(t) u(t), \quad t \in(0, T] \\
u(0)=x_{0}
\end{array}\right.
$$

is called a mild solution of the linear problem

$$
\left\{\begin{align*}
u^{\prime}(t) & =A(t) u(t)+f(t), \quad t \in(0, T] \tag{3}\\
u(0) & =x_{0} \in X
\end{align*}\right.
$$

Theorem 2.4. ([4], Sec.6). Let assumptions $\left(Z_{1}\right)-\left(Z_{5}\right)$ hold.
If $f \in L^{1}(0, T ; X)$, then for every $x_{0} \in X$ there exists exactly one mild solution of linear problem (3).

The mild solution of initial value problem (1) is defined analogously to the mild solution of (3).

Theorem 2.5. ([4], Sec.7). Let assumptions $\left(Z_{1}\right)-\left(Z_{5}\right)$ hold. If $f:[0, T] \times X \rightarrow X$ is such that
(i) for each $x \in X, f(\cdot, x) \in L^{1}(0, T ; X)$,
(ii) there exists $L>0$ such that for $t \in[0, T], u, v \in X$

$$
\|f(t, u)-f(t, v)\| \leq L\|u-v\|
$$

then for every $x_{0} \in X$ there exists exactly one mild solution of initial value problem (1).
3. The family of operators $\left\{A_{0}(t)\right\}, t \in[0, T]$. Let the family $\{A(t)\}$, $t \in[0, T]$, satisfy assumptions $\left(Z_{2}\right)-\left(Z_{5}\right)$ from Section 2 and the following assumption:
$\left(Z_{1}^{\prime}\right) Y_{0}$ is a closed subspace of X and for each $t \in[0, T]$

$$
Y_{0}:={\overline{D_{t}}}^{\|\cdot\|}, \quad Y_{0} \subset X, \quad Y_{0} \neq X
$$

We remark that assumption $\left(Z_{1}^{\prime}\right)$ holds particularly if $D_{t}=D$ does not depend on $t \in[0, T]$ and $\bar{D} \neq X$.

Let for each $t \in[0, T], A_{0}(t)$ be the part of $A(t)$ in Y_{0}.
We shall prove that the family $\left\{A_{0}(t)\right\}, t \in[0, T]$, satisfies assumptions $\left(Z_{1}\right)-\left(Z_{5}\right)$ from Section 2 .

Since the family $\{\overrightarrow{A(t)}\}, t \in[0, T]$ is stable on X, it follows from ([2], Theorem 3.1.10) that

Proposition 3.1. For each $t \in[0, T]$ the operator

$$
A_{0}(t): Y_{0} \supset D_{t}^{0} \rightarrow Y_{0}
$$

generates a C_{0}-semigroup $S_{t}^{0}(s), s \geq 0$ on Y_{0} and

$$
R\left(\lambda, A_{0}(t)\right)=\left.R(\lambda, A(t))\right|_{Y_{0}}, \quad \lambda \in \rho(A(t)) \subset \rho\left(A_{0}(t)\right)
$$

Consequently, for each $t \in[0, T], A_{0}(t)$ is a linear closed operator whose domain D_{t}^{0} can depend on t and $\overline{D_{t}^{0}}\|\cdot\|=Y_{0}$.

Applying Proposition 3.1 we obtain the following theorem.
THEOREM 3.2. Suppose that assumptions $\left(Z_{1}^{\prime}\right)\left(Z_{5}\right)$ hold. Then
(i) the family $\left\{A_{0}(t)\right\}, t \in[0, T]$ is stable on Y_{0},
(ii) the mapping $[0, T] \ni t \rightarrow R\left(\lambda, A_{0}(t)\right) y \in\left(Y_{0},\|\cdot\|\right)$ is of class C^{1},
(iii) for each $t, s \in[0, T]$, the operator $A_{0}^{-1}(t) A_{0}(s)$ is closable and for each fixed $s \in[0, T]$ the mapping $[0, T] \ni t \rightarrow \overline{A_{0}^{-1}(t) A_{0}(s)}$ is continuous in $t=s$.
4. The family of operators $\left\{\hat{A}_{0}(t)\right\}, t \in[0, T]$. Let assumptions (Z_{1}^{\prime} $\left(Z_{5}\right)$ be satisfied.

Since the family $\left\{A_{0}(t)\right\}, t \in[0, T]$ satisfies assumptions $\left(Z_{1}\right)-\left(Z_{5}\right)$ from Section 2, we can construct the extrapolation space of Y_{0}.

Analogously to norm (2), for each fixed $\mu \in \rho(A(t)) \subset \rho\left(A_{0}(t)\right)$ define a new norm on Y_{0} as

$$
|y|_{t}:=\left\|R\left(\mu, A_{0}(t)\right) y\right\|, \quad y \in Y_{0}, t \in[0, T]
$$

Analogously as in Section 2, there exists a space \hat{X}_{0} which is the closure of Y_{0} in the norm $|\cdot|_{0}$.

From ([2], Theorem 3.1.10), the next theorem follows.
ThEOREM 4.1. \hat{X}_{0} is isomorphic to the space which is the closure of X in the norm:

$$
|x|_{0}:=\|R(\mu, A(0)) x\|, \quad x \in X
$$

In the sequel, for each $t \in[0, T]$, we extend the operator $A_{0}(t)$ to the operator

$$
\hat{A}_{0}(t): \hat{X}_{0} \supset\left(Y_{0},|\cdot|_{0}\right) \rightarrow \hat{X}_{0}
$$

The domains $D\left(\hat{A}_{0}(t)\right)=Y_{0}$ do not depend on t and Y_{0} is dense in \hat{X}_{0}.
Applying Theorem 2.2, we obtain the following theorem.
THEOREM 4.2. Suppose that assumptions $\left(Z_{1}^{\prime}\right)\left(Z_{5}\right)$ hold. Then
(i) if $\lambda \in \rho\left(A_{0}(t)\right)$, then $\lambda \in \rho\left(\hat{A}_{0}(t)\right)$ and $R\left(\lambda, A_{0}(t)\right)=\left.R\left(\lambda, \hat{A}_{0}(t)\right)\right|_{Y_{0}}$, $t \in[0, T]$,
(ii) the family $\left\{\hat{A}_{0}(t)\right\}, t \in[0, T]$ is stable on \hat{X}_{0},
(iii) the mapping $[0, T] \ni t \rightarrow \hat{A}_{0}(t) y, y \in Y_{0}$ is of class C^{1}.

From this theorem it follows that the norm on \hat{X}_{0} is given by

$$
\|\hat{x}\|_{\hat{X}_{0}}=|\hat{x}|_{0}=\left\|R\left(\mu, \hat{A}_{0}(0)\right) \hat{x}\right\|, \quad \hat{x} \in \hat{X}_{0}, \quad \mu \in \rho(A(0))
$$

5. The linear case. In this section we consider the following linear problem

$$
\left\{\begin{align*}
u^{\prime}(t) & =A(t) u(t)+f(t), \quad t \in(0, T] \tag{4}\\
u(0) & =x_{0}
\end{align*}\right.
$$

where $\{A(t)\}, t \in[0, T]$, satisfies assumptions $\left(Z_{1}^{\prime}\right)\left(Z_{5}\right)$ from Section 3
We remark that from ([3], Theorem 5.4.8) it follows that under assumptions $\left(Z_{1}^{\prime}\right)\left(Z_{5}\right)$ there exists the unique evolution system $\{\hat{U}(t, s)\}, 0 \leq s \leq t \leq T$ of the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=\hat{A}_{0}(t) u(t), \quad t \in(0, T] \tag{5}\\
u(0)=x_{0} \in \hat{X}_{0}
\end{array}\right.
$$

Now we recall the following definition.
Definition 5.1. A function $u:[0, T] \rightarrow \hat{X}_{0}$ is a classical solution of the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=\hat{A}_{0}(t) u(t)+f(t), \quad t \in(0, T] \tag{6}\\
u(0)=x_{0} \in \hat{X}_{0},
\end{array}\right.
$$

if u is continuous on $[0, \mathrm{~T}]$, continuously differentiable on $(0, T], u(t) \in Y_{0}$ for $t \in[0, T]$ and (6) is satisfied.

Applying Theorem 4.1 and ([3], Theorem 5.5.3) we obtain the following theorem.

THEOREM 5.2. Suppose that assumptions $\left(Z_{1}^{\prime}\right)\left(Z_{5}\right)$ hold. If $f \in C^{1}([0, T], X)$, then for each $x_{0} \in Y_{0}$ problem (6) has exactly one classical solution u given by

$$
\begin{equation*}
u(t)=\hat{U}(t, 0) x_{0}+\int_{0}^{t} \hat{U}(t, s) f(s) d s \tag{7}
\end{equation*}
$$

where $\{\hat{U}(t, s)\}, 0 \leq s \leq t \leq T$ is the evolution system of (5).
Furthermore, from the proof of Theorem 5.5.3 in [3] it follows that the function u given by 7 is of class $C^{1}\left([0, T], \hat{X}_{0}\right)$.

THEOREM 5.3. Let assumptions $\left(Z_{1}^{\prime}\right)-\left(Z_{5}\right)$ be satisfied. If $f \in C^{1}([0, T], X)$ and $x_{0} \in Y_{0}$, then the function u given by (7) is continuous in $(X,\|\cdot\|)$.

Proof. From Theorem 5.2 and Definition 5.1 it follows that $u(t) \in X$ for $t \in[0, T]$.

The norm

$$
\|y\|_{D\left(\hat{A}_{0}(0)\right)}:=|y|_{0}+\left|\hat{A}_{0}(0) y\right|_{0}, \quad y \in Y_{0}
$$

is equivalent to the norm $\|\cdot\|$ (see [4], Prop. 5.3). Thus for each fixed $t_{0} \in[0, T]$ and for each $t \in[0, T]$

$$
\begin{aligned}
&\left\|u(t)-u\left(t_{0}\right)\right\| \leq \\
& \leq M\left[\left|u(t)-u\left(t_{0}\right)\right|_{0}+\left|\left[\hat{A}_{0}(0)\left(\hat{A}_{0}(t)\right)^{-1}\right]\left[\hat{A}_{0}(t) u(t)-\hat{A}_{0}\left(t_{0}\right) u\left(t_{0}\right)\right]\right|_{0}\right. \\
&\left.+\left|\left[\hat{A}_{0}(0)\left(\hat{A}_{0}(t)\right)^{-1}\right]\left[\hat{A}_{0}\left(t_{0}\right) u\left(t_{0}\right)-\hat{A}_{0}(t) u\left(t_{0}\right)\right]\right|_{0}\right],
\end{aligned}
$$

where $M:=\max \{|\mu|, 1\}$. By Definition 5.1

$$
\left|u(t)-u\left(t_{0}\right)\right|_{0} \rightarrow 0, \quad t \rightarrow t_{0} .
$$

Therefore from Theorem 4.2

$$
\left|\left[\hat{A}_{0}(0)\left(\hat{A}_{0}(t)\right)^{-1}\right]\left[\hat{A}_{0}\left(t_{0}\right) u\left(t_{0}\right)-\hat{A}_{0}(t) u\left(t_{0}\right)\right]\right|_{0} \rightarrow 0, \quad t \rightarrow t_{0} .
$$

From Definition 5.1 it follows that

$$
\hat{A}_{0}(t) u(t)=u^{\prime}(t)-f(t) .
$$

Since $u^{\prime} \in C\left([0, T], \hat{X}_{0}\right)$ and $f \in C^{1}\left([0, T], \hat{X}_{0}\right)$, there is

$$
\left|\left[\hat{A}_{0}(0)\left(\hat{A}_{0}(t)\right)^{-1}\right]\left[\hat{A}_{0}(t) u(t)-\hat{A}_{0}\left(t_{0}\right) u\left(t_{0}\right)\right]\right|_{0} \rightarrow 0, \quad t \rightarrow t_{0} .
$$

Hence u given by (7) is continuous in $(X,\|\cdot\|)$.
A mild solution of initial value problem (4) is defined analogously to a mild solution of (3).

From Theorem 5.2 and Theorem 5.3, it follows the following theorem.
Theorem 5.4. Assume $\left(Z_{1}^{\prime}\right)-\left(Z_{5}\right)$, If $f \in C^{1}([0, T], X)$ and $x_{0} \in Y_{0}$, then problem (4) has the unique mild solution.
6. The semilinear case. In this section we consider nonlinear problem (11), mentioned in the introduction, where $\{A(t)\}, t \in[0, T]$ satisfies $\left.\left(Z_{1}^{\prime}\right)\right\}\left(Z_{5}\right)$,

We remark that if the function $f:[0, T] \times Y_{0} \rightarrow Y_{0}$ satisfies assumption from Theorem 2.5 we obtain the theorem on the existence and uniqueness for the problem (1).

But if the function $f:[0, T] \times X \rightarrow X$, we need the following assumption.
$\left(Z_{6}\right)$ The function $f:[0, T] \times X \rightarrow X$ is of class C^{1} and

$$
\left\|\frac{\partial f}{\partial x}(t, x)\right\|_{X \rightarrow X} \leq L \quad \text { and } \quad\left\|\frac{\partial f}{\partial x}(t, x)\right\|_{\hat{X}_{0} \rightarrow \hat{X}_{0}} \leq L_{0}
$$

where $L>0$ and $L_{0}>0$ independent of t and x.
From this assumption it follows that

$$
\begin{equation*}
\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|, \quad x_{1}, x_{2} \in X, \quad t \in[0, T], \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right|_{0} \leq L_{0}\left|x_{1}-x_{2}\right|_{0}, \quad x_{1}, x_{2} \in X, \quad t \in[0, T] . \tag{9}
\end{equation*}
$$

The classical solution of the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=\hat{A}_{0}(t) u(t)+f(t, u(t)), \quad t \in(0, T] \tag{10}\\
u(0)=x_{0} \in \hat{X}_{0}
\end{array}\right.
$$

is defined analogously to the classical solution of (6) (Def. 5.1).
The following theorem holds true.
Theorem 6.1. Let assumptions $\left(Z_{1}^{\prime}\right) \|\left(Z_{6}\right)$ hold. If u is a classical solution of (10), then u satisfies the integral equation

$$
\begin{equation*}
u(t)=\hat{U}(t, 0) x_{0}+\int_{0}^{t} \hat{U}(t, s) f(s, u(s)) d s \tag{11}
\end{equation*}
$$

where $\{\hat{U}(t, s)\}, 0 \leq s \leq t \leq T$ is the evolution system of (5).
In the sequel, we shall need the following lemma.
Lemat 6.2. Let assumptions $\left(Z_{1}^{\prime}\right) \|\left(Z_{6}\right)$ hold. Suppose that
$u \in C([0, T], X) \cap C^{1}\left([0, T], \hat{X}_{0}\right)$. Then the function $g:[0, T] \ni t \rightarrow f(t, u(t))$ is of class $C^{1}\left([0, T],\left(\hat{X}_{0},|\cdot|_{0}\right)\right)$.

Proof. Let $t, t+h \in[0, T]$.

$$
\begin{aligned}
\frac{1}{h}[g(t+h)-g(t)]= & \frac{1}{h}[f(t+h, u(t+h))-f(t, u(t))] \\
= & \frac{1}{h}[f(t+h, u(t+h))-f(t, u(t+h))] \\
& +f_{x}^{\prime}(t, u(t)) \frac{1}{h}[u(t+h)-u(t)]+\eta(t, u(t), h) .
\end{aligned}
$$

This, together with Theorem 4.1 and assumption $\left(Z_{6}\right)$, shows that g^{\prime} exists in \hat{X}_{0} and for each $t \in[0, T]$

$$
g^{\prime}(t)=f_{t}^{\prime}(t, u(t))+f_{x}^{\prime}(t, u(t)) u^{\prime}(t) .
$$

Now for $t_{0} \in[0, T]$ and $t \in[0, T]$ there is

$$
\begin{aligned}
\mid g^{\prime}(t)- & \left.g^{\prime}\left(t_{0}\right)\right|_{0} \leq\left.\left|f_{t}^{\prime}(t, u(t))-f_{t}^{\prime}(t, u(t))\right|_{t=t_{0}}\right|_{0} \\
& \quad+\left.\left|f_{x}^{\prime}(t, u(t)) u^{\prime}(t)-f_{x}^{\prime}(t, u(t))\right|_{t=t_{0}} u^{\prime}\left(t_{0}\right)\right|_{0} \\
\leq & C \frac{M}{\mu-\omega}\left\|f_{t}^{\prime}(t, u(t))-\left.f_{t}^{\prime}(t, u(t))\right|_{t=t_{0}}\right\| \\
& \quad+\left|f_{x}^{\prime}(t, u(t))\left[u^{\prime}(t)-u^{\prime}\left(t_{0}\right)\right]\right|_{0}+\left|\left[f_{x}^{\prime}(t, u(t))-\left.f_{x}^{\prime}(t, u(t))\right|_{t=t_{0}}\right] u^{\prime}\left(t_{0}\right)\right|_{0} .
\end{aligned}
$$

Thus the function $[0, T] \ni t \rightarrow g^{\prime}(t) \in \hat{X}_{0}$ is continuous. Hence the function $g:[0, T] \ni t \rightarrow f(t, u(t))$ is of class $C^{1}\left([0, T],\left(\hat{X}_{0},|\cdot|_{0}\right)\right)$. This concludes the proof of Lemma 6.2.

Now we shall prove the following theorem.
Theorem 6.3. Assume $\left(Z_{1}^{\prime}\right) \|\left(Z_{6}\right)$ and let $x_{0} \in Y_{0}$. Then there exists exactly one solution of (11) continuous in $(X,\|\cdot\|)$.

Proof. Let

$$
\begin{aligned}
u_{0}(t) & :=x_{0}, \quad t \in[0, T], \\
g_{0}(t) & :=f\left(t, u_{0}(t)\right), \quad t \in[0, T] .
\end{aligned}
$$

Applying Theorem 5.2, we see that the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=\hat{A}_{0}(t) u(t)+g_{0}(t), \quad t \in(0, T] \\
u(0)=x_{0} \in Y_{0}
\end{array}\right.
$$

has exactly one classical solution u_{1} given by

$$
u_{1}(t)=\hat{U}(t, 0) x_{0}+\int_{0}^{t} \hat{U}(t, s) g_{0}(s) d s
$$

where $\{\hat{U}(t, s)\}, 0 \leq s \leq t \leq T$ is the evolution system of (5). Therefore, from Theorem 5.3 and ($\mathbf{3}$, Theorem 5.5.3), we have

$$
u_{1} \in C([0, T], X) \cap C^{1}\left([0, T], \hat{X}_{0}\right) .
$$

Let

$$
g_{1}(t):=f\left(t, u_{1}(t)\right), \quad t \in[0, T] .
$$

By Lemma 6.2, the function $[0, T] \ni t \rightarrow g_{1}(t) \in \hat{X}_{0}$ is of class C^{1}. Once again using Theorem 5.5.3 in [3] and Theorem 5.3, we see that the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=\hat{A}_{0}(t) u(t)+g_{1}(t), \quad t \in(0, T] \\
u(0)=x_{0} \in Y_{0}
\end{array}\right.
$$

has exactly one classical solution u_{2} given by

$$
u_{2}(t)=\hat{U}(t, 0) x_{0}+\int_{0}^{t} \hat{U}(t, s) g_{1}(s) d s
$$

and

$$
u_{2} \in C([0, T], X) \cap C^{1}\left([0, T], \hat{X}_{0}\right)
$$

After n steps, we conclude that there exists exactly one function $u_{n+1} \in C([0, T], X)$ given by

$$
u_{n+1}(t)=\hat{U}(t, 0) x_{0}+\int_{0}^{t} \hat{U}(t, s) f\left(s, u_{n}(s)\right) d s, \quad n=0,1,2, \ldots
$$

where

$$
u_{n} \in C([0, T], X) \cap C^{1}\left([0, T], \hat{X}_{0}\right) .
$$

Let $k:=\sup \{\|\hat{U}(t, s)\|: 0 \leq s \leq t \leq T\}$. In the space $C([0, T], X)$, consider two equivalent norms:

$$
\begin{aligned}
\|u\| & :=\sup \{\|u(t)\|: 0 \leq t \leq T\} \\
\|u\|^{\prime} & :=\sup \left\{e^{-k L t}\|u(t)\|: 0 \leq t \leq T\right\}
\end{aligned}
$$

where $L>0$ is the Lipschitz constant (see (8)). Therefore

$$
\begin{aligned}
\| u_{n+1} & -u_{n} \|^{\prime}=\sup _{t \in[0, T]}\left\{e^{-k L t}\left\|u_{n+1}(t)-u_{n}(t)\right\|\right\} \\
& \leq \sup _{t \in[0, T]}\left\{e^{-k L t} \int_{0}^{t}\left\|\hat{U}(t, s)\left[f\left(s, u_{n}(s)\right)-f\left(s, u_{n-1}(s)\right)\right]\right\| d s\right\} \\
& \leq \sup _{t \in[0, T]}\left\{e^{-k L t} k \int_{0}^{t} L\left\|u_{n}(s)-u_{n-1}(s)\right\| d s\right\} \\
& \leq k L \sup _{t \in[0, T]}\left\{e^{-k L t}\left\|u_{n}-u_{n-1}\right\|^{\prime} \int_{0}^{t} e^{k L s} d s\right\} \leq\left(1-e^{-C L T}\right)\left\|u_{n}-u_{n-1}\right\|^{\prime}
\end{aligned}
$$

Setting $Q:=1-e^{-C L T}$, by induction we obtain

$$
\left\|u_{n+1}-u_{n}\right\|^{\prime} \leq Q^{n}\left\|u_{1}-u_{0}\right\|^{\prime}, \quad n=0,1,2, \ldots
$$

Consequently, for $n<m$

$$
\left\|u_{n}-u_{m}\right\|^{\prime} \leq \frac{Q^{n}}{1-Q}\left\|u_{1}-u_{0}\right\|^{\prime}
$$

Since $\lim _{n \rightarrow \infty} Q^{n}=0,\left\{u_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Thus, by letting $n \rightarrow \infty$, we see that $u \in C([0, T], X)$.

A mild solution of initial value problem (1) is defined analogously to a mild solution of (3).

From Theorem 6.3 the next theorem follows.
Theorem 6.4. Assume $\left(Z_{1}^{\prime}\right) \|\left(Z_{6}\right)$ and let $x_{0} \in Y_{0}$. Then there exists exactly one mild solution of initial value problem (1).
7. Example. We shall give an example of the family $\{\mathcal{A}(t)\}, t \in[0, T]$ with a domain which is not dense and can depend on t . For each $t \in[0, T]$, the operator $\mathcal{A}(t)$ will hold assumptions $\left(Z_{2}\right)-\left(Z_{5}\right)$.

Let $\Omega:=\Omega_{1} \backslash \Omega_{2}$, where

$$
\begin{gathered}
\Omega_{1}:=\left\{(x, y) \in \mathbb{R}^{2}: x>0 \quad y>0\right\}, \\
\Omega_{2}:=\left\{(x, y) \in \mathbb{R}^{2}: \quad 0<x<1, \quad 0<y<1, \quad(x-1)^{2}+(y-1)^{2} \geq 1\right\} .
\end{gathered}
$$

We shall consider the differential operator of second order:

$$
\begin{equation*}
A(t ; x, y ; D):=B(x, y ; D)+b(t ; x, y) I, \quad(x, y) \in \Omega, \quad t \in[0, T] \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
B(x, y ; D):=b_{1}(x, y) \frac{\partial^{2}}{\partial x^{2}}+2 b_{2}(x, y) \frac{\partial^{2}}{\partial x \partial y}+b_{3}(x, y) \frac{\partial^{2}}{\partial y^{2}} . \tag{13}
\end{equation*}
$$

We make the following assumptions:
(P_{1}) For each $t \in[0, T]$, the operator $A(t ; x, y ; D)$ is uniformly strongly elliptic on Ω in the sense that there is a constant $C>0$ such that for all $(x, y) \in \Omega$ and $\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$

$$
b_{1}(x, y) \xi_{1}^{2}+2 b_{2}(x, y) \xi_{1} \xi_{2}+b_{3}(x, y) \xi_{2}^{2} \geq C\left(\xi_{1}^{2}+\xi_{2}^{2}\right)
$$

$\left(P_{2}\right)$ The coefficients b_{1}, b_{2}, b_{3} are uniformly continuous on Ω; are continuous and uniformly bounded on $\bar{\Omega}$. We remark that from $\left(P_{1}\right)$ it follows that the inverse operator B^{-1} exists and there is $K>0$ that $\left\|B^{-1}\right\| \leq K$.

Moreover, we assume that:
$\left(P_{3}\right)$ The coefficient b on $[0, T] \times \bar{\Omega}$ is of class C^{1} and $|b(t ; x, y)|<\frac{1}{K}$.
With the family $\{A(t ; x, y ; D)\}, t \in[0, T]$, we associate the family of linear operators $\{A(t)\}, t \in[0, T]$, on the space

$$
C_{0}(\bar{\Omega}):=\left\{u \in C(\bar{\Omega}): \lim _{Q \rightarrow \infty} u(Q)=0, \quad Q \in \bar{\Omega}\right\} .
$$

The norm in $C_{0}(\bar{\Omega})$ is defined by

$$
\|u\|:=\max \{|u(Q)|: \quad Q \in \bar{\Omega}\} .
$$

Let

$$
D(A):=\left\{u \in C_{0}(\bar{\Omega}): \quad u \in W_{l o c}^{2, q}, \quad A(t ; x, y ; D) u \in C_{0}(\bar{\Omega}),\left.\quad u\right|_{\partial \Omega}=0\right\}
$$

be the domain of the operator $A(t)$ for each $t \in[0, T]$ and let

$$
A(t) u=A(t ; x, y ; D) u, \quad u \in D(A) .
$$

$W_{l o c}^{2, q}$ denotes the set of all functions which are in $W^{2, q}(\Omega \cap \Gamma)$ for all closed bounded sets Γ.
$D(A)$ is clearly independent of t and from [5] it follows that this is not dense in $C_{0}(\bar{\Omega})$.

We remark that from $\left(P_{3}\right)$ it follows that for each $u \in D(A)$, $[0, T] \ni t \rightarrow A(t) u \in C_{0}(\bar{\Omega})$ is of class C^{1}.

We collect some facts about $A(t)$ in the following theorem.
Theorem 7.1. Let assumptions $\left(P_{1}\right)-\left(P_{3}\right)$ hold. Then
(i) $0 \in \rho(A(t))$,
(ii) for each $t, s \in[0, T]$ the operator $A^{-1}(t) A(s)$ is closable and for each fixed $s \in[0, T]$ the mapping $t \rightarrow \overline{A^{-1}(t) A(s)}$ is continuous in $t=s$.

From $\left(P_{1}\right)$ it follows that the operator $B: C_{0}(\bar{\Omega}) \supset D(A) \rightarrow C_{0}(\bar{\Omega})$ is uniformly strongly elliptic on Ω. Consequently ([3], Sec.7.3) there is the operator $B^{\frac{1}{2}}: C_{0}(\bar{\Omega}) \supset D\left(B^{\frac{1}{2}}\right) \rightarrow C_{0}(\bar{\Omega})$ given by

$$
B^{\frac{1}{2}} u=\frac{1}{\pi} \int_{0}^{\infty} z^{-\frac{1}{2}} B R(z, B) u d z, \quad u \in D(A)
$$

and such that $\left[B^{\frac{1}{2}}\right]^{2}=B$.
Thus from [6] (Prop.2.7 and Prop.2.6), we have the following theorem.
Theorem 7.2. The operator

$$
\mathcal{B}:=\left[\begin{array}{cc}
0 & I \\
B & 0
\end{array}\right]
$$

with domain $D(A) \times D\left(B^{\frac{1}{2}}\right)$ is a Hille-Yosida operator on $\left[D\left(B^{\frac{1}{2}}\right)\right] \times C_{0}(\bar{\Omega})$, where $\left[D\left(B^{\frac{1}{2}}\right)\right]$ denotes the linear space $D\left(B^{\frac{1}{2}}\right)$ with the norm

$$
|u|:=\|u\|+\left\|B^{\frac{1}{2}} u\right\|, \quad u \in D\left(B^{\frac{1}{2}}\right)
$$

Therefore, for each $t \in[0, T]$ we may define the operator

$$
\mathcal{A}(t):\left[D\left(B^{\frac{1}{2}}\right)\right] \times C_{0}(\bar{\Omega}) \supset D(\mathcal{A}) \rightarrow\left[D\left(B^{\frac{1}{2}}\right)\right] \times C_{0}(\bar{\Omega})
$$

by

$$
\mathcal{A}(\mathbf{t}):=\left[\begin{array}{cc}
0 & I \\
A(t) & 0
\end{array}\right]
$$

The domain of $\{\mathcal{A}(t)\}, t \in[0, T]$ is $D(\mathcal{A})=D(A) \times D\left(B^{\frac{1}{2}}\right)$. For each $t \in[0, T]$, the operator $\mathcal{A}(t)$ is not densely defined.

Theorem 7.3. Suppose assumptions $\left(P_{1}\right)-\left(P_{3}\right)$ hold. Then
(i) $0 \in \rho(\mathcal{A}(t))$,
(ii) the family $\{\mathcal{A}(t)\}, t \in[0, T]$ is stable,
(iii) the mapping $[0, T] \ni t \rightarrow \mathcal{A}(t) x \in\left[D\left(B^{\frac{1}{2}}\right)\right] \times C_{0}(\bar{\Omega}), x \in D(\mathcal{A})$ is of class C^{1}.
(iv) for each $t, s \in[0, T]$ operator $\mathcal{A}^{-1}(t) \mathcal{A}(s)$ is closable and for an arbitrary $s \in[0, T]$ the mapping $[0, T] \ni t \rightarrow \overline{\mathcal{A}^{-1}(t) \mathcal{A}(s)}$ is continuous in $t=s$.

References

1. Hille E., Phillips R.S., Functional Analysis and Semi-Groups, Amer. Math. Soc., 1985.
2. van Neerven J., The Adjoint of a Semigroup of Linear Operators, Springer-Verlag, 1992.
3. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
4. Radoń M., First-Order Differential Equations of the Hyperbolic Type, Univ. Iagell. Acta Math., XL (2002), 57-68.
5. Stewart H.B., Generation of Analytic Semigroups by Strongly Elliptic Operators under General Boundary Conditions, Trans. Amer. Math. Soc., Vol. 259, No. 1 (1980).
6. Travis C.C., Webb G.F., Cosine Families and Abstract Nonlinear Second Order Differential Equations, Acta Math. Academia Scientiarum Hungaricae, t. 32 (3-4) (1978), 75-96.

Received October 22, 2004
Cracow University of Technology
Institute of Mathematics
Warszawska 24
31-155 Kraków, Poland

