ON FIBRATIONS WITH THE GRASSMANN MANIFOLD OF TWO-PLANES AS FIBER

By Július Korbaš

Abstract

Let $p: E \rightarrow B$ be a Serre fibration with E compact, B a connected finite $C W$-complex, and fiber either the real Grassmann manifold $O(n) / O(2) \times O(n-2)$ or the complex Grassmann manifold $U(n) / U(2) \times$ $U(n-2)$, where $n \geq 4$. We prove that if n is odd, then the fiber is totally non-homologous to zero in E with respect to \mathbb{Z}_{2}.

1. Introduction and statement of a theorem. Let $F G_{n, k}$ be the Grassmann manifold of all k-dimensional vector subspaces in F^{n}, where F is either the field \mathbb{R} of reals or the field \mathbb{C} of complex numbers. In the sequel, we shall suppose that $2 k \leq n$ (the manifolds $F G_{n, k}$ and $F G_{n, n-k}$ can naturally be identified with each other). Let ξ_{k} and γ_{k} be the canonical k-plane bundles over $\mathbb{R} G_{n, k}$ and $\mathbb{C} G_{n, k}$, respectively. The i-th Stiefel-Whitney class of a real vector bundle α will be denoted by $w_{i}(\alpha)$, and the i-th Chern class of a complex vector bundle β by $c_{i}(\beta)$.

It is known (cf. Hiller [3]) that the mod 2 cohomology algebra of $\mathbb{R} G_{n, k}$ is

$$
H^{*}\left(\mathbb{R} G_{n, k} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[w_{1}\left(\xi_{k}\right), \ldots, w_{k}\left(\xi_{k}\right)\right] / J(k, n-k)
$$

where the ideal $J(k, n-k)$ is generated by the homogeneous elements

$$
f_{1, n-k}, \ldots, f_{k, n-k}
$$

2000 Mathematics Subject Classification. Primary: 55R20; Secondary: 57R19, 57R20.
Key words and phrases. Grassmann manifold, Serre fibration, totally non-homologous to zero, derivation, cohomology spectral sequence, Stiefel-Whitney class, Chern class.

The author was supported in part by two grants of VEGA (Slovakia). The paper is in final form and will not be published elsewhere.
given by

$$
\left(\begin{array}{c}
f_{1, n-k} \\
f_{2, n-k} \\
\vdots \\
f_{k, n-k}
\end{array}\right)=\left(\begin{array}{ccccc}
w_{1}\left(\xi_{k}\right) & 1 & 0 & \ldots & 0 \\
w_{2}\left(\xi_{k}\right) & 0 & 1 & \ldots & 0 \\
\cdots & \cdots & \cdots & \ldots & \cdots \\
\cdots & 0 & \cdots & \ldots & 1 \\
w_{k}\left(\xi_{k}\right) & 0 & 0 & \ldots & 0
\end{array}\right)^{n-k+1}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

By Borel 1], there is an isomorphism of the cohomology algebras,

$$
\begin{aligned}
\varphi: H^{*}\left(\mathbb{R} G_{n, k} ; \mathbb{Z}_{2}\right) & \rightarrow H^{*}\left(\mathbb{C} G_{n, k} ; \mathbb{Z}_{2}\right) \\
\varphi\left(w_{i}\left(\xi_{k}\right)\right) & =w_{2 i}\left(\gamma_{k}\right)
\end{aligned}
$$

where $w_{2 i}\left(\gamma_{k}\right)$ is the $2 i$-th Stiefel-Whitney class of the realification of the complex vector bundle γ_{k}.

Now we consider the special case of $k=2$. Our aim is to prove the following generalization of Theorem $B(2)$ of Korbaš [5].

Theorem 1.1. Let $p: E \rightarrow B$ be a Serre fibration with E compact, B a connected finite $C W$-complex, and fiber either the real Grassmann manifold $\mathbb{R} G_{n, 2}(n \geq 4)$ or the complex Grassmann manifold $\mathbb{C} G_{n, 2}(n \geq 4)$. If n is odd, then the fiber is totally non-homologous to zero in E with respect to \mathbb{Z}_{2}.

In [5], where we proved a particular case of this result for n of the form $1+2^{s}$, one can find other interpretations of 1.1 , comments on its applications, and some related results and considerations.
2. Proof of Theorem 1.1. We shall abbreviate the Stiefel-Whitney class $w_{j}\left(\xi_{k}\right) \in H^{j}\left(\mathbb{R} G_{n, k} ; \mathbb{Z}_{2}\right)$ to w_{j}. In the proof of Theorem 1.1, we shall need the following auxiliary result.

Lemma 2.1. Let $n \geq 4$. Then

$$
H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[w_{1}\left(\xi_{2}\right), w_{2}\left(\xi_{2}\right)\right] / J(2, n-2)
$$

where the ideal $J(2, n-2)$ is generated by the two homogeneous elements

$$
f_{1, n-2}=\sum_{i=0}^{\infty}\binom{n-i-1}{i} w_{1}^{n-2 i-1}\left(\xi_{2}\right) w_{2}^{i}\left(\xi_{2}\right)
$$

(in dimension $n-1$), and

$$
f_{2, n-2}=\sum_{i=0}^{\infty}\binom{n-i-1}{i-1} w_{1}^{n-2 i}\left(\xi_{2}\right) w_{2}^{i}\left(\xi_{2}\right)
$$

(in dimension n). Here $\binom{u}{v}$ is the binomial coefficient reduced $\bmod 2$ if $u \geq v$; $\binom{u}{v}=1$ if $v=0$, and $\binom{u}{v}=0$ if $u<v$.

Lemma 2.1 can readily be proved using (for instance) the Hiller description; we shall omit the details.

Proof of Theorem 1.1. We proved in [5. Proposition 3] that the fibrations considered in the theorem under proof are \mathbb{Z}_{2}-orientable. Hence to prove the theorem it is enough to verify that the graded \mathbb{Z}_{2}-vector space $\operatorname{Der}_{<0}\left(H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)\right)$ resp. $\operatorname{Der}_{<0}\left(H^{*}\left(\mathbb{C} G_{n, 2} ; \mathbb{Z}_{2}\right)\right)$ of all derivations (in the graded \mathbb{Z}_{2}-algebras $H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)$ resp. $\left.H^{*}\left(\mathbb{C} G_{n, 2} ; \mathbb{Z}_{2}\right)\right)$ of negative degrees is trivial if n is odd. Indeed, this enables us to conclude (change the coefficient field \mathbb{Q} to \mathbb{Z}_{2} in Meier [6, Lemma 2.5]) that the corresponding Leray-Serre spectral sequence collapses, and the fiber is therefore totally non-homologous to zero with respect to \mathbb{Z}_{2}.

We shall show that $\operatorname{Der}_{<0}\left(H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)\right)=0$ if n is odd; the complex case can be analysed analogously, when one uses the above mentioned isomorphism

$$
\varphi: H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(\mathbb{C} G_{n, 2} ; \mathbb{Z}_{2}\right)
$$

In the rest of the proof, the number n will be odd.
Since the algebra $H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)$ is generated by the Stiefel-Whitney classes w_{1} and w_{2}, it is clear that an element in $\operatorname{Der}_{<0}\left(H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)\right)$ will be trivial if it vanishes at w_{1} and w_{2}.

If an element θ of $\operatorname{Der}_{<0}\left(H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)\right)$ has a nontrivial value at w_{1}, then θ must be of degree -1 , so $\theta\left(w_{1}\right)=1$ in $H^{0}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$. It is known (Stong [7]) that if s is the unique integer such that $2^{s}<n \leq 2^{s+1}$, then $w_{1}^{2^{s+1}-2} \neq 0$, but $w_{1}^{2 s+1}-1=0$. We see that $\theta\left(w_{1}\right)=1$ implies
$0=\theta\left(w_{1}^{2^{s+1}-1}\right)=\theta\left(w_{1}\right) w_{1}^{2^{s+1}-2}+w_{1} \theta\left(w_{1}^{2^{s+1}-2}\right)=1 \cdot w_{1}^{2^{s+1}-2}+w_{1} \cdot 0=w_{1}^{2^{s+1}-2}$, which is a contradiction. Hence, for any $\theta \in \operatorname{Der}_{<0}\left(H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)\right), \theta\left(w_{1}\right)=0$.

Now, an element of $\operatorname{Der}_{<0}\left(H^{*}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)\right)$ having a nonzero value at w_{2} must be of degree -1 or -2 . Suppose that σ is a derivation of degree -1 such that $\sigma\left(w_{2}\right) \neq 0$, and that τ is a derivation of degree -2 such that $\tau\left(w_{2}\right) \neq 0$. Then $\sigma\left(w_{2}\right)=w_{1}$, because

$$
H^{1}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2} \cong\left\{0, w_{1}\right\}
$$

and we conclude

$$
\tau\left(w_{2}\right)=1 \in H^{0}\left(\mathbb{R} G_{n, 2} ; \mathbb{Z}_{2}\right)
$$

Further, we know from Lemma 2.1 that $\sum_{i=0}^{\infty}\binom{n-i-1}{i} w_{1}^{n-2 i-1} w_{2}^{i}=0$. Using this, together with the fact that $\sigma\left(w_{1}\right)=0$, we compute

$$
\begin{aligned}
0 & =\sigma\left(\sum_{i=0}^{\infty}\binom{n-i-1}{i} w_{1}^{n-2 i-1} w_{2}^{i}\right) \\
& =\sigma\left(w_{1}^{n-1}+w_{1}^{n-3} w_{2}+\sum_{i=2}^{\infty}\binom{n-i-1}{i} w_{1}^{n-2 i-1} w_{2}^{i}\right) \\
& =\sigma\left(w_{1}^{n-1}\right)+\sigma\left(w_{1}^{n-3} w_{2}\right)+\sum_{i=2}^{\infty}\binom{n-i-1}{i} \sigma\left(w_{1}^{n-2 i-1} w_{2}^{i}\right) \\
& =0+w_{1}^{n-2}+\sum_{i \geq 3, i \text { odd }}^{\infty}\binom{n-i-1}{i} \sigma\left(w_{1}^{n-2 i-1} w_{2}^{i}\right),
\end{aligned}
$$

because for even values of $i \geq 2$

$$
\sigma\left(w_{1}^{n-2 i-1} w_{2}^{i}\right)=\sigma\left(\left(w_{1}^{\frac{n-2 i-1}{2}} w_{2}^{\frac{i}{2}}\right)^{2}\right)=0 .
$$

In other words,

$$
\begin{aligned}
0 & =w_{1}^{n-2}+\sum_{j=1}^{\infty}\binom{n-2 j-2}{2 j+1} \sigma\left(w_{1}^{n-4 j-3} w_{2}^{2 j+1}\right) \\
& =w_{1}^{n-2}+\sum_{j=1}^{\infty}\binom{n-2 j-2}{2 j+1} w_{1}^{n-4 j-3} \sigma\left(w_{2} \cdot w_{2}^{2 j}\right) \\
& =w_{1}^{n-2}+\sum_{j=1}^{\infty}\binom{n-2 j-2}{2 j+1} w_{1}^{n-4 j-2} w_{2}^{2 j} .
\end{aligned}
$$

But this is a contradiction, because (as is well known; one also can see it from the Hiller description) w_{1} and w_{2} satisfy no algebraic relations in dimensions less than or equal to $n-2$. In this way we have shown that $\sigma\left(w_{2}\right)=0$.

Now in a similar way we show that $\tau\left(w_{2}\right)=0$. Indeed, using Lemma 2.1 we obtain

$$
\begin{aligned}
0 & =\tau\left(\sum_{i=0}^{\infty}\binom{n-i-1}{i} w_{1}^{n-2 i-1} w_{2}^{i}\right) \\
& =\tau\left(w_{1}^{n-1}\right)+\tau\left(w_{1}^{n-3} w_{2}\right)+\sum_{i=2}^{\infty}\binom{n-i-1}{i} \tau\left(w_{1}^{n-2 i-1} w_{2}^{i}\right) \\
& =0+w_{1}^{n-3}+\sum_{j=1}^{\infty}\binom{n-2 j-2}{2 j+1} \tau\left(w_{1}^{n-4 j-3} w_{2}^{2 j+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =w_{1}^{n-3}+\sum_{j=1}^{\infty}\binom{n-2 j-2}{2 j+1} w_{1}^{n-4 j-3} \tau\left(w_{2} \cdot w_{2}^{2 j}\right) \\
& =w_{1}^{n-3}+\sum_{j=1}^{\infty}\binom{n-2 j-2}{2 j+1} w_{1}^{n-4 j-3} w_{2}^{2 j} .
\end{aligned}
$$

This again is an impossible algebraic relation, and therefore $\tau\left(w_{2}\right)=0$. This finishes the proof of Theorem 1.1.

We have not found a way to prove it, but the following might be true.
Conjecture 2.2. Theorem 1.1 remains valid when the fiber is any $\mathbb{R} G_{n, k}$ $(k \leq n-k)$ with n odd or any $\mathbb{C} G_{n, k}(k \leq n-k)$ with n odd.

Note that for smooth fiber bundles the conjecture was proved in Horanská, Korbaš 4] and Korbaš [5]. In attempts to prove the conjecture in general, one perhaps can use a combination of the "smooth" results with something similar to the Fiber Smoothing Theorems of Casson and Gottlieb [2].

References

1. Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
2. Casson A., Gottlieb D.H., Fibrations with compact fibres, Amer. J. Math., 99 (1977), 159-189.
3. Hiller H., On the cohomology of real Grassmannians, Trans. Amer. Math. Soc., 257 (1980), 521-533.
4. Horanská L., Korbaš J., On cup products in some manifolds, Bull. Belgian Math. Soc., 7 (2000), 21-28.
5. Korbaš J., On fibrations with Grassmannian fibers, Bull. Belgian Math. Soc., 8 (2001), 119-130.
6. Meier W., Rational universal fibrations and flag manifolds, Math. Ann., 258 (1982), 329340.
7. Stong R.E., Cup products in Grassmannians, Topology Appl., 13 (1982), 103-113.

Received December 3, 2002
Comenius University
Department of Algebra
Faculty of Mathematics, Physics, and Informatics
Mlynská dolina SK-842 48 Bratislava 4, Slovakia e-mail: korbas@fmph.uniba.sk

Slovak Academy of Sciences
Mathematical Institute
Štefánikova 49 SK-814 73 Bratislava 1, Slovakia e-mail: matekorb@savba.sk

