ON SPECIAL VALUES FOR PENCILS OF PLANE CURVE SINGULARITIES

by Arkadiusz PŁoski

Abstract

Let ($F_{t}: t \in \mathbf{P}^{1}$) be a pencil of plane curve singularities and let μ_{0}^{t} be the Milnor number of the fiber F_{t}. We prove a formula for the jumps $\mu_{0}^{t}-\inf \left\{\mu_{0}^{t}: t \in \mathbf{P}^{1}\right\}$. As an application, we give a description of the special values of the pencil $\left(F_{t}: t \in \mathbf{P}^{1}\right)$.

Introduction. Let $\left(F_{t}: t \in \mathbf{P}^{1}\right), \mathbf{P}^{1}=\mathbf{C} \cup\{\infty\}$ be a pencil of plane curve singularities defined by two coprime power series $f, g \in \mathbf{C}\{X, Y\}$ without constant term. That is $F_{t}=f-t g$ for $t \in \mathbf{C}$ and $F_{\infty}=g$. Let μ_{0}^{t} be the Milnor number of the fiber F_{t} and let

$$
\mu_{0}^{\min }=\inf \left\{\mu_{0}^{t}: t \in \mathbf{P}^{1}\right\} .
$$

Our aim is to give a formula for the jumps $\mu_{0}^{t}-\mu_{0}^{\min }$ by means of the meromorphic fraction f / g considered on the branches of the Jacobian curve

$$
j(F)=\frac{\partial f}{\partial X} \frac{\partial g}{\partial Y}-\frac{\partial f}{\partial Y} \frac{\partial g}{\partial X}=0
$$

Roughly speaking we will show that $\mu_{0}^{t}-\mu_{0}^{\text {min }}=$ the number of zeros of $f / g-t$ if $t \in \mathbf{C}$ and $\mu_{0}^{\infty}-\mu_{0}^{\min }=$ the number of poles of f / g on the branches of the Jacobian curve $j(F)=0$ provided that $\mu_{0}^{t} \neq+\infty$ (resp. $\mu_{0}^{\infty} \neq+\infty$). Then we prove a known result on the special values of the pencil $\left(F_{t}: t \in \mathbf{P}^{1}\right)$.

2000 Mathematics Subject Classification. 14H20, 32S10.
Key words and phrases. Pencil of plane curve singularities, Milnor number, special value.
Supported in part by the KBN grant No 2 P03A 02215.

1. Preliminaries. Let $f \in \mathbf{C}\{X, Y\}$ be a non-zero power series without constant term. We say that the curve $f=0$ is singular if $\partial f / \partial X(0,0)=$ $\partial f / \partial Y(0,0)=0$. A branch P is a prime ideal of $\mathbf{C}\{X, Y\}$ generated by an irreducible power series p. Let \mathcal{B} be the set of all branches. For any curve $f=0$, we put

$$
\mathcal{B}(f)=\{P \in \mathcal{B}: f \equiv 0(\bmod P)\}
$$

We put by definition $(f, g)_{0}=\operatorname{dim}_{\mathbf{C}} \mathbf{C}\{X, Y\} /(f, g)$, the intersection multiplicity of f and g. Note that $(f, g)_{0}=+\infty$ if and only if f and g have a common factor. The Milnor number $\mu_{0}(f)$ is defined to be $\mu_{0}(f)=(\partial f / \partial X, \partial f / \partial Y)_{0}$. Then $\mu_{0}(f)=+\infty$ if and only if the curve $f=0$ is not reduced (i.e. the power series f has a multiple factor).

The following lemma is well known (see [3] and [6]).
Lemma 1.1. Let $f=0$ and $g=0$ be two curves without a common branch. Let $j(f, g)=(\partial f / \partial X)(\partial g / \partial Y)-(\partial f / \partial Y)(\partial g / \partial X)$. Then

$$
(f, j(f, g))_{0}=\mu_{0}(f)+(f, g)_{0}-1
$$

In particular, the curve $f=0$ is not reduced if and only if the curves $f=0$ and $j(f, g)=0$ share a common branch.

Proof. ([5], [10], Prop. 4.1). We may assume that $f(0, Y) \neq 0$. Using Delgado's formula ([1] , Prop. 7.4.1) we get

$$
\begin{equation*}
(f, j(f, g))_{0}=(f, \partial f / \partial Y)_{0}+(f, g)_{0}-(f, X)_{0} \tag{1}
\end{equation*}
$$

On the other hand, by Teissier's formula ([1] , Chap. II, Prop. 1.2), one can write

$$
\begin{equation*}
(f, \partial f / \partial Y)_{0}=\mu_{0}(f)+(f, X)_{0}-1 \tag{2}
\end{equation*}
$$

and the lemma follows.
For every branch P we denote by \mathcal{M}_{P} the field of fractions of the ring $\mathbf{C}\{X, Y\} / P$. Let $f, g \in \mathbf{C}\{X, Y\}$ be coprime power series. Put

$$
\mathcal{D}(f / g)=\{P \in \mathcal{B}: g \not \equiv 0(\bmod P)\} .
$$

Then for every $P \in \mathcal{D}(f / g)$ the fraction f / g defines an element of \mathcal{M}_{P} which we also denote by f / g. We put, for $P \in \mathcal{D}(f / g)$:

$$
\operatorname{ord}_{P}(f / g)=(f, p)_{0}-(g, p)_{0}
$$

where p is a generator of P. Clearly, ord_{P} is a valuation of the field \mathcal{M}_{P}.
Let $\mathbf{P}^{1}=\mathbf{C} \cup\{\infty\}$ and let us denote by $f / g \mapsto(f / g)(P) \in \mathbf{P}^{1}$ the place associated with ord_{P}.

Recall that $(f / g)(P)=\infty$ if $\operatorname{ord}_{P} f<\operatorname{ord}_{P} g<+\infty$ and $(f / g)(P)=0$ if $\operatorname{ord}_{P} g<\operatorname{ord}_{P} f$.

Lemma 1.2. Suppose that $\operatorname{ord}_{P} f / g \geq 0$ for a $P \in \mathcal{D}(f / g)$ and let $t_{0}=$ $(f / g)(P)$. Then $\operatorname{ord}_{P}(f-t g)=\operatorname{ord}_{P} g$ if $t \neq t_{0}$ and $\operatorname{ord}_{P}\left(f-t_{0} g\right)>\operatorname{ord}_{P} g$.

Proof. Obvious.
2. Result. Let $f=0$ and $g=0$ be two curves without a common branch. We put $F=(f, g)$ and $j(F)=j(f, g)$. Let us consider the pencil $\left(F_{t}: t \in \mathbf{P}^{1}\right)$ where $F_{t}=f-t g$ for $t \in \mathbf{C}$ and $F_{\infty}=g$. Let $\mu_{0}^{t}=\mu_{0}\left(F_{t}\right)$. If $j(F)(0,0) \neq 0$ then $\mu_{0}^{t}=0$ for all $t \in \mathbf{P}^{1}$. In the sequel we assume that $j(F)(0,0)=0$.

Proposition 2.1. Let $t \in \mathbf{P}^{1}$. Then the following two conditions are equivalent:
(i) $\mu_{0}^{t}=+\infty$,
(ii) the curves $j(F)=0$ and $F_{t}=0$ share a common branch.

Proof. We use Lemma 1.1 to power series F_{t}, g if $t \in \mathbf{C}$ and to power series $F_{\infty}=g$ and f if $t=\infty$.

Proposition 2.1 implies Bertini's theorem "the set $\left\{t \in \mathbf{P}^{1}: F_{t}\right.$ is not reduced $\}$ is finite". Indeed, it is easy to check that

$$
\#\left\{t \in \mathbf{P}^{1}: \mu_{0}^{t}=+\infty\right\} \leq \# \mathcal{B}(j(F)) .
$$

Let $\mu_{0}^{\min }=\inf \left\{\mu_{o}^{t}: t \in \mathbf{P}^{1}\right\}$. By Bertini's theorem, $\mu_{0}^{\min }$ is an integer.
Let us put

$$
\mathcal{U}(F)=\left\{P \in \mathcal{B}(j(F)): \operatorname{ord}_{P} f \geq \operatorname{ord}_{P} g\right\}
$$

and

$$
\mathcal{U}(F)^{c}=\left\{P \in \mathcal{B}(j(F)): \operatorname{ord}_{P} f<\operatorname{ord}_{P} g\right\} .
$$

Thus $\mathcal{U}(F) \subset \mathcal{D}(f / g)$ and $\mathcal{U}(F)^{c} \subset \mathcal{D}(f / g)$ provided that $\mu_{0}^{\infty}<+\infty$.
For every branch P of the Jacobian curve $j(F)=0$ we denote by $m(P)$ the multiplicity of P, i.e., the greatest integer $m>0$ such that $j(F) \equiv 0\left(\bmod P^{m}\right)$. By convention, a sum extended over an empty set equals zero.

Our main result is the following.
Theorem 2.2. With the notation introduced above
(i) if $\mu_{0}^{t} \neq+\infty$ for a $t \in \mathbf{C}$, then

$$
\mu_{0}^{t}-\mu_{0}^{\min }=\sum_{P \in \mathcal{U}(F)} m(P) \operatorname{ord}_{P}(f / g-t) ;
$$

(ii) if $\mu_{0}^{\infty} \neq+\infty$, then

$$
\mu_{0}^{\infty}-\mu_{0}^{\min }=-\sum_{P \in \mathcal{U}(F)^{c}} m(P) \operatorname{ord}_{P}(f / g) .
$$

Proof. Let us fix a $t \in \mathbf{C}$ such that $\mu_{0}^{t} \neq+\infty$. We have $j\left(F_{t}, g\right)=j(f, g)$ and $\left(F_{t}, g\right)_{0}=(f, g)_{0}$. Applying Lemma 1.1 to F_{t} and g, we get

$$
\begin{equation*}
\mu_{0}^{t}=\left(F_{t}, j(f, g)\right)_{0}-(f, g)_{0}+1 . \tag{3}
\end{equation*}
$$

Let us write

$$
j(f, g)=\prod_{i=1}^{k} p_{i}
$$

with irreducible $p_{i} \in \mathbf{C}\{X, Y\}$ and let $P_{i}=\left(p_{i}\right) \mathbf{C}\{X, Y\}$. Therefore $\left(P_{i}\right)_{i=1 \ldots, k}$ is a sequence of branches of $j(f, g)=0$ counted with multiplicities. Let

$$
I=\left\{i \in[1, k]: \operatorname{ord}_{P_{i}} f \geq \operatorname{ord}_{P_{i}} g\right\}
$$

and observe that $\operatorname{ord}_{P_{i}} F_{t}=\operatorname{ord}_{P_{i}} f$ for $i \notin I$. Then

$$
\left(F_{t}, j(f, g)\right)_{0}=\sum_{i=1}^{k} \operatorname{ord}_{P_{i}} F_{t}=\sum_{i \in I} \operatorname{ord}_{P_{i}} F_{t}+\sum_{i \notin I} \operatorname{ord}_{P_{i}} f
$$

and by (3) we get

$$
\begin{equation*}
\mu_{0}^{t}=\sum_{i \in I} \operatorname{ord}_{P_{i}} F_{t}+\sum_{i \notin I} \operatorname{ord}_{P_{i}} f-(f, g)_{0}+1 . \tag{4}
\end{equation*}
$$

If $i \in I$ then by Lemma 1.2 we have $\operatorname{ord}_{P_{i}} F_{t} \geq \operatorname{ord}_{P_{i}} g$ with equality for $t \neq(f / g)\left(P_{i}\right)$. Using (4) we get

$$
\begin{equation*}
\mu_{0}^{\min }=\sum_{i \in I} \operatorname{ord}_{P_{i}} g+\sum_{i \notin I} \operatorname{ord}_{P_{i}} f-(f, g)_{0}+1 . \tag{5}
\end{equation*}
$$

and consequently

$$
\begin{aligned}
\mu_{0}^{t}-\mu_{0}^{\min } & =\sum_{i \in I} \operatorname{ord}_{P_{i}} F_{t}-\operatorname{ord}_{P_{i}} g=\sum_{i \in I} \operatorname{ord}_{P_{i}}\left(F_{t} / g\right) \\
& =\sum_{P \in \mathcal{U}(F)} m(P) \operatorname{ord}_{P}(f / g-t)
\end{aligned}
$$

for $F_{t} / g=f / g-t$. We have thus proved (i).
Let us suppose that $\mu_{0}^{\infty} \neq+\infty$. By Lemma 1.1 applied to g and f, we get
(6) $\mu_{0}^{\infty}=(g, j(f, g))_{0}-(f, g)_{0}+1=\sum_{i \in I} \operatorname{ord}_{P_{i}} g+\sum_{i \notin I} \operatorname{ord}_{P_{i}} g-(f, g)_{0}+1$.

Now, by (5) and (6), we get

$$
\begin{aligned}
\mu_{0}^{\infty}-\mu_{0}^{\min } & =\sum_{i \notin I} \operatorname{ord}_{P_{i}} g-\operatorname{ord}_{P_{i}} f=-\sum_{i \notin I} \operatorname{ord}_{P_{i}}(f / g) \\
& =-\sum_{P \in \mathcal{U}(F)^{c}} m(P) \operatorname{ord}_{P}(f / g)
\end{aligned}
$$

which proves (ii).

Remark 2.3. We can write (5) in the following form

$$
\mu_{0}^{\min }=\sum_{P} \inf \left\{\operatorname{ord}_{P} f, \operatorname{ord}_{P} g\right\}-(f, g)_{0}+1 .
$$

3. Description of special values. Let

$$
\Lambda(F)=\left\{t \in \mathbf{P}^{1}: \mu_{0}^{t}>\mu_{0}^{\min }\right\}
$$

be the set of special values of the pencil $\left(F_{t}: t \in \mathbf{P}^{1}\right)$ (see [7] and [6]). We put by convention $(f / g)(P)=\infty$ if $g \equiv 0(\bmod P)$.

The following description of the special values is due to different authors:
Theorem 3.1. (see [9, Théorème 1, [8], p. 410-411, [1], 7.4).
We have

$$
\Lambda(F)=\{(f / g)(P): P \in \mathcal{B}(j(F))\} .
$$

Proof. First we prove the following:

$$
\begin{equation*}
\left\{t \in \mathbf{C}: \mu_{0}^{t}>\mu_{0}^{\min }\right\}=\{(f / g)(P): P \in \mathcal{U}(F)\} \tag{7}
\end{equation*}
$$

Fix $t \in \mathbf{C}$. We will check that $\mu_{o}^{t}>\mu_{0}^{\min }$ if and only if there exists a $P \in \mathcal{U}(F)$ such that $(f / g)(P)=t$. If $\mu_{0}^{t}=+\infty$ then F_{t} has multiple factors. Thus there exists a branch P such that $F_{t} \equiv 0\left(\bmod P^{2}\right)$. It is easy to check that $P \in \mathcal{U}(F)$ and $(f / g)(P)=t$.

Now suppose that $\mu_{0}^{t}<+\infty$. According to Theorem 2.2(i), the inequality $\mu_{0}^{t}>\mu_{0}^{\min }$ holds if and only if there exists $P \in \mathcal{U}(F)$ such that $\operatorname{ord}_{P}(f-t g)>$ $\operatorname{ord}_{P} g$. The last inequality is equivalent to the condition $(f / g)(P)=t$. This proves (7).

Let us check the following property

$$
\begin{equation*}
\mu_{0}^{\infty}>\mu_{0}^{\min } \text { if and only if } \mathcal{U}(F)^{c} \neq \emptyset \tag{8}
\end{equation*}
$$

Indeed, if $\mu_{0}^{\infty}=+\infty$, then there is a branch P such that $g \equiv 0(\bmod P)$ and $P \in \mathcal{B}(j(F))$ by Proposition 2.1. Obviously $f \not \equiv 0(\bmod P)$ and we get $\operatorname{ord}_{P} g=+\infty>\operatorname{ord}_{P} f$. Thus $P \in \mathcal{U}(F)^{c}$. If $\mu_{0}^{\infty}<+\infty$, then (8) follows from Theorem [2.2(ii). Theorem 3.1 follows from (7) and (8) for $(f / g)(P)=\infty$ if $P \in \mathcal{U}(F)^{c}$.

When studying the singularities at infinity of a polynomial in two complex variables of degree $N>1$, one considers the pencil defined by $F=\left(f, l^{N}\right)$, where $l=0$ is a smooth curve which is not a component of the curve $f=0$. Clearly, $\mu_{0}^{\infty}=+\infty$. Using Theorem 3.1, we get

Corollary 3.2. (see 4], Proposition 2.2).

$$
\Lambda(F) \cap \mathbf{C}=\left\{\left(f / l^{N}\right)(P): P \in \mathcal{B}(j(f, l)) \text { and } \operatorname{ord}_{P} f / \operatorname{ord}_{P} l \geq N\right\}
$$

4. Special values and the discriminant curve. Let U, V be variables. For every branch P of $\mathbf{C}\{X, Y\}$ we define

$$
F(P)=\{\Phi(U, V) \in \mathbf{C}\{U, V\}: \Phi(f(X, Y), g(X, Y)) \equiv 0(\bmod P)\}
$$

Thus $F(P)$ is a branch of $\mathbf{C}\{U, V\}$. Let $L=(U, V)$. By definition, we have $L_{t}=U-t V$ for $t \in \mathbf{C}$ and $L_{\infty}=V$.

The (reduced) discriminant curve $\Delta_{F}=0$ is the curve with branches $F(P)$, where P runs over branches of the Jacobian curve $j(F)=0$. The description of special values by means of the discriminant is due to Lê Dũng Tráng [6] (see also [2]). Both authors use topological methods.

Theorem 4.1. (see [6] Proposition 3.6.4, [2] Corollary 4.7) Let $t_{0} \in \mathbf{P}^{1}$. Then t_{0} is a special value of the pencil $\left(F_{t}: t \in \mathbf{P}^{1}\right)$ if and only if $L_{t_{0}}$ is a tangent to the discriminant curve $\Delta_{F}=0$. Moreover, the fiber $F_{t_{0}}$ is not reduced if and only if the line $L_{t_{0}}=0$ is a branch of $\Delta_{F}=0$.

To prove Theorem 4.1 we need the following.
Lemma 4.2. For every branch P of $\mathbf{C}\{X, Y\}$,

$$
\left(\frac{f}{g}\right)(P)=\left(\frac{U}{V}\right)(F(P))
$$

Proof. Let $(x(T), y(T)) \in \mathbf{C}\{T\}^{2}, x(0)=y(0)=0$ be a parametrization of P. Therefore $P=\{h(X, Y): h(x(T), y(T))=0\}$ and

$$
\left(\frac{f}{g}\right)(P)=\left.\frac{f(x(T), y(T))}{g(x(T), y(T))}\right|_{T=0}
$$

To check (4.2) it suffices to observe that

$$
F(x(T), y(T))=(f(x(T), y(T)), g(x(T), y(T)))
$$

is a parametrization of $F(P)$.
Now we can give a proof.
Proof of Theorem 4.1. By Theorem 3.1 and Lemma 4.2, we get

$$
\Lambda(F)=\left\{\left(\frac{U}{V}\right)(F(P)): P \in \mathcal{B}(j(F))\right\}=\left\{\left(\frac{U}{V}\right)(Q): Q \in \mathcal{B}\left(\Delta_{F}\right)\right\}
$$

On the other hand, it is very easy to see that $(U / V)(Q)=t$ if and only if the line $L_{t}=0$ is tangent to the branch Q. This proves the first part of (4.1).

The second part of (4.1) follows from Proposition 2.1. Indeed, by (2.1) F_{t} is not reduced if and only if there is a branch $P \in \mathcal{B}(j(F))$ such that $F_{t} \equiv 0(\bmod P)$ which is equivalent to $L_{t} \equiv 0(\bmod F(P))$ that is to $F(P)=$ $\left(L_{t}\right)$.

References

1. Casas-Alvero E., Singularities of Plane Curves, London Math. Soc. Lecture Note Series, 276, Cambridge Univ. Press, 2000.
2. Caubel C., Variation of the Milnor fibration in pencils of hypersurface singularities, Proc. London Math. Soc., (3) 83 (2001), 330-350.
3. Greuel G.-M., Der Gauß-Manin Zusammenhang isolierter Singulatitäten von vollständingen Durchschuitten, Math. Ann., 214 (1975), 235-266.
4. Garcia Barroso E., Płoski A., Pinceaux de courbes planes et invariants polaires, Ann. Polon. Math., 83, 2 (2004), 113-128.
5. Gabrielov A., Lion J.M., Moussu R., Ordre de contact de courbes intégral du plan, C. R. Acad. Sci. Paris, t. 319, Série I (1994), 219-221.
6. Lê Dũng Tráng, Calculation of the Milnor number of isolated singularity of complete intersection, Funct. Anal. Appl., 8 (1974), 127-131, Funkc. Anal. i Priloz., 8, No. 2 (1974), 45-49.
7. Lê Dũng Tráng, Weber C., Équisingularité dans les pinceaux de germes de courbes planes et C^{0}-suffisance, L'Enseignement Mathématique, t. 43 (1997), 355-380.
8. Lê Văn Thành, Oka M., Note on estimation of the number of the critical values at infinity, Kodai Math. J., 17 (1994), 409-414.
9. Maugendre H., Michel F., Fibration associée à un pinceau de courbes planes, Annales de la Fac. des Sciences de Toulouse, Vol. X, N ${ }^{\circ} 4$ (2001), 745-777.
10. Płoski A., The Milnor Number of a plane algebroid curve, in: Materiały XVI Konferencji Szkoleniowej z Analizy i Geometrii Zespolonej, Łódź, 1995, 73-82.
11. Teissier B., Cycles évanescentes, section planes et conditions de Whitney, Astérisque, No. 7-8 (1973).

Received March 3, 2003

Technical University
Department of Mathematics
AL. 1000 L PP 7
25-314 Kielce
Poland
e-mail: matap@tu.kielce.pl

