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A FUNCTIONAL EQUATION CHARACTERIZING

MONOMIAL FUNCTIONS USED IN PERMANENCE THEORY

FOR ECOLOGICAL DIFFERENTIAL EQUATIONS

by Barnabas M. Garay

Abstract. It is well known that monomial average Liapunov functions of
the form R(x1, x2, . . . , xn) = r0

∏n
i=1 xri

i (ri > 0, i = 0, 1, 2, . . . , n) play
an eminent role in the permanence theory of ecological (or Kolmogorov)
differential equations. A functional equation characterizing the above class
of functions is presented.

1. Introduction. We consider an autonomous differential equation of the
Kolmogorov type

(1) ẋi = xifi(x) (i = 1, 2, . . . , n) , x = (x1, x2, . . . , xn) ∈ X

where X is the probability simplex {x ∈ Rn | xi ≥ 0,
∑

i xi = 1} and f : X →
Rn is a C` function satisfying

∑
i xifi(x) = 0 for each x ∈ X (` ≥ 1 is an

integer). The solving dynamical system is denoted by Φ : R × X → X. It is
immediate that ∂X, the boundary of X, is Φ–invariant. System (1) is called
permanent (or uniformly persistent) [4] if ∂X is a repellor. The standard
biological interpretation is that xi represents the relative frequency of the i–th
species (i = 1, 2, . . . , n) in a given ecosystem whereas permanence means the
ultimate survival of all the species involved.

Besides stability theory, criteria ensuring permanence involve various bran-
ches of mathematics (index theory [11], [10], ergodic theory [9], [8], Morse
decompositions [3], linear programming [2]) and have been intensively studied
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in recent years (for more results, see the references in [4], [5]). Monomial
functions of the form

(2) R(x) = r0

n∏
i=1

xri
i ; ri is a positive constant (i = 0, 1, 2, . . . , n) , x ∈ X

have played a distinguished role in this development.
The aim of this paper is to characterize functions of the form (2) by a func-

tional equation. When doing this, we follow a tradition which goes back to
Cauchy, who characterized linear functions of the form L : R → R, x → const·x
as continuous solutions of the functional equation L(x + a) = L(x) + L(a),
x, a ∈ R. As for the second example, we refer to the important contribution
of functional equations theory in characterizing (multivariate) normal distri-
butions. These and many more examples can be found in the monographs by
Kuczma [7] and by Aczél and Dhombres [1].

Ecological differential systems of the form ẋi = xifi(x) (i = 1, 2, . . . , n)
can be defined on Rn

+ as well. The permanence theory for ecological equa-
tions on X is more or less parallel to the permanence theory for dissipative
ecological equations on Rn

+: the non-compactness of the phase space can be
counterbalanced by a compactness condition on the flow. On the other hand,
from the viewpoint of functional equations, the lack of compactness of Rn

+ is
irrelevant. Moreover, when solving functional equations on Rn

+, the lack of
constraints like

∑
i xi = 1 or

∑
i xif(x) = 0 is truly advantageous and makes

various simplifications possible.
Throughout this paper, we shall be working within the framework of the

probability simplex X. The case of Rn
+ will be settled by Remark 2.

2. Average Liapunov functions and a functional equation. Recall
that a continuous mapping P : Rn

+ → R is a good average Liapunov function
for (1) (or, equivalently, for the induced continuous–time dynamical system Φ)
[2] (a version of earlier concepts in [4]) if
(a) P (x) = 0 for all x ∈ ∂Rn

+, P (x) > 0 for all x ∈ int(Rn
+);

(b) P is differentiable on int(Rn
+) and pi(x) := xi

P (x)
∂P
∂xi

can be extended to a
continuous function on X for every i; and
(c) For every x ∈ ∂X there is a positive constant Tx with the property that∫ Tx

0

∑
i pi(Φ(t, x))fi(Φ(t, x)) dt > 0.

The existence of a good average Liapunov function for (1) implies a partic-
ularly strong form of permanence: it implies that ∂X is robustly and exponen-
tially repulsive [2]. The standard candidate for a good average Liapunov func-
tion belongs to the function class (2). In this case pi(x) = ri (i = 1, 2, . . . , n),



71

assumptions (a) and (b) are automatically satisfied, and the inequality in as-
sumption (c) simplifies to

∫ Tx

0

∑
i rifi(Φ(t, x)) dt > 0.

The functional equation characterizing function class (2) will be derived
by a heuristic application of Euler’s discretization method to the differential
identity

d

dt
log(P (Φ(t, x))) =

n∑
i=1

pi(Φ(t, x))fi(Φ(t, x)) , (t, x) ∈ R× (X \ ∂X).

By the definition of the time derivative at t0 = 0, it follows that

(3) log
(

P (Φ1(t, x),Φ2(t, x), . . . ,Φn(t, x))
P (x1, x2, . . . , xn)

)
= t

n∑
i=1

pi(x)fi(x) + o(t)

whenever (t, x) ∈ R × (X \ ∂X). On the other hand, system (1) can be
reformulated on X \ ∂X as

d

dt
log(Φi(t, x)) = fi(Φ(t, x)) (i = 1, 2, . . . , n) , (t, x) ∈ R× (X \ ∂X).

It is not hard to show that Φi(t, x) = xiQi(t, x) where Q = (Q1, Q2, . . . , Qn) :
R × X → R+ \ {0} is a C` function. (The existence and continuity of the
highest-order derivative is a consequence of the C` parametrized version of
the Picard–Lindelöf theorem. Indeed, with x ∈ X as a parameter, let z(·;x)
denote the solution of the initial value problem

żi = zifi(x1z1, x2z2, . . . , xnzn) and zi(0) = 1, i = 1, 2, . . . , n.

Since (x1z1(·;x), x2z2(·;x), . . . , xnzn(·;x)) is a solution to (1), we have by
uniqueness that z(t;x) = Q(t, x) for all t ∈ R and x ∈ X.) Thus

∑
i xiQi(t, x)

= 1 for each (t, x) ∈ R×X by invariance and

(4) log(Qi(t, x)) = t fi(x) + o(t) (i = 1, 2, . . . , n) , (t, x) ∈ R× (X \ ∂X).

Omitting the o(t) terms in (3)–(4), we conclude that

log
(

P (x1Q1(1, x), x2Q2(1, x), . . . , xnQn(1, x))
P (x1, x2, . . . , xn)

)
≈

n∑
i=1

pi(x) · log(Qi(1, x)).

Thus we feel motivated enough to investigate the class of continuous func-
tions R : X → R with the following properties:
(A) R(x) = 0 for all x ∈ ∂X, R(x) > 0 for all x ∈ X \ ∂X; and
(B) There exist continuous functions ri : X → R (i = 1, 2, . . . , n) such that

log
(

R(x1F1, x2F2, . . . , xnFn)
R(x1, x2, . . . , xn)

)
=

n∑
i=1

ri(x1, x2, . . . , xn) · log(Fi)

whenever (x1, x2, . . . , xn), (x1F1, x2F2, . . . , xnFn) ∈ X \ ∂X.
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Theorem. Let R : X → R be a continuous mapping and assume that
conditions (A) and (B) are satisfied. Then there are positive constants {ri}n

i=0
such that ri(x) = ri for i = 1, 2, . . . , n and R(x) = r0

∏n
i=1 xri

i , x ∈ X. In
other words, R belongs to the function class defined by (2).

The proof of the Theorem is postponed to Section 3. The result itself has
already been announced in [2].

Remark 1. Discrete–time dynamical systems of the Kolmogorov type on
X are iterates of self–homeomorphisms F of X of the form

F(x) = (x1F1(x), x2F2(x), . . . , xnF2(x))

where Fi : X → R (i = 1, 2, . . . , n) is a continuous function with Fi(x) =
Fi(x1, x2, . . . , xn) > 0 whenever xi > 0. A continuous mapping R : X → R is
an average Liapunov function for the discrete–time dynamical system (F) [6]
if
(A)-(d) R(x) = 0 for all x ∈ ∂X, R(x) > 0 for all x ∈ X \ ∂X;
(B)-(d) There exists a continuous function r : X → R such that

r(x) = log
(

R(x1F1(x), x2F2(x), . . . , xnFn(x))
R(x1, x2, . . . , xn)

)
whenever x ∈ X \ ∂X; and
(C)-(d) For every x ∈ ∂X there is a positive integer Nx with

Nx∑
k=1

r(Fk−1(x)) · log(Fi(Fk−1(x))) > 0.

The existence of an average Liapunov function for the discrete–time dynamical
system F implies that ∂X is a repellor [6]. Robust and exponential repulsivity
is implied in the special case with R(x) = r0

∏n
i=1 xri

i , x ∈ X. For this and
other permanence results on continuous–time, discrete–time, and discretized
systems of the Kolmogorov type, see [2]. Nevertheless, we have to admit
that we are still unable to define — and this would be a better analogy to
the concept of good average Liapunov functions — a larger class of average
Liapunov functions implying robust and exponential repulsiveness for ∂X in
discrete–time dynamical systems of Kolmogorov type. Our theorem above is
a negative result in the search for such a larger class of average Liapunov
functions.

The next remark has already been announced at the end of the Introduc-
tion.

Remark 2. The Theorem remains valid if X and ∂X are replaced by Rn
+

and ∂Rn
+, respectively.
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3. The proof of the Theorem. In order to keep the technicalities lim-
ited, we restrict ourselves to a proof of the special case n = 4 and only indicate
that the general case follows from the very same considerations.

With a self–explanatory notation, we pass to the functional equation

(5) log
(

R(xF, yG, zH, 1− xF − yG− zH)
R(x, y, z, 1− x− y − z)

)
= ρ1(x, y, z) · log(F )

+ρ2(x, y, z)·log(G)+ρ3(x, y, z)·log(H)+ρ4(x, y, z)·log
(

1− xF − yG− zH

1− x− y − z

)
.

Taking G = H = 1 and F = a, (5) goes over into the simplified functional
equation

(6) log
(

R(xa, y, z, 1− xa− y − z)
R(x, y, z, 1− x− y − z)

)
= ρ1(x, y, z) · log(a) + ρ4(x, y, z) · log

(
1− xa− y − z

1− x− y − z

)
.

With y and z as parameters (satisfying y, z > 0, y + z < 1), (6) simplifies
further to a functional equation

(7) log
r(xa)
r(x)

= p(x) · log(a) + q(x) · log
(

1− xa− y − z

1− x− y − z

)
.

in two variables. Here of course 0 < x, xa < 1 − y − z, p(x) = py,z(x) =
ρ1(x, y, z), q(x) = qy,z(x) = ρ4(x, y, z), r(x) = ry,z(x) = R(x, y, z, 1−x−y−z).
Note that p, q, r : [0, 1 − y − z] → R are continuous functions and, in view of
assumption (A), r(0) = r(1− y − z) = 0 and r(x) > 0 for x ∈ (0, 1− y − z).

Claim 1: We claim that

(8) r(x) = κxα(1− x− y − z)δ with some positive constants κ, α, δ.

Indeed, rewrite equation (7) in the form

r(xa)− r(x)
xa− x

=
r(x)
x

·
ap(x) ·

(
1−xa−y−z
1−x−y−z

)q(x)
− 1

a− 1
.

By letting a → 1 in the respective difference quotients, the existence of the limit
on the right–hand side shows that, at least on the open interval (0, 1− y − z),
the function r is differentiable and

r′(x) =
r(x)
x

·
(

p(x) + q(x) · −x

1− x− y − z

)
or, equivalently,

(9) r(x) = r(
1− y − z

2
) · exp

(∫ x

1−y−z
2

(
p(s)
s

− q(s)
1− s− y − z

)
ds

)
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for x ∈ (0, 1 − y − z). Replacing x by xa in (9), a twofold substitution in (7)
yields∫ xa

x

(
p(s)
s

− q(s)
1− s− y − z

)
ds = p(x) · log(a) + q(x) · log

(
1− xa− y − z

1− x− y − z

)
and, a fortiori, via differentiation with respect to a,

x

(
p(xa)
xa

− q(xa)
1− xa− y − z

)
=

p(x)
a

+ q(x) · −x

1− xa− y − z

whenever x, xa ∈ (0, 1− y− z). By passing to the new pair of variables, x and
c = xa, we conclude that

p(c)
c

− q(c)
1− c− y − z

=
p(x)

c
− q(x)

1− c− y − z
.

By taking c = c1 and c = c2, the last identity goes over into a linear system
of equations for p(x) and q(x). It follows immediately via Cramer’s rule that
functions p and q are constants, say α and δ, respectively. In view of the sign
conditions on r, formula (9) simplifies to (8) and this ends the proof of Claim
1. Actually, applying Cramer’s rule and performing the integration in (9), we
conclude that our constants κ, α, δ depend continuously on parameters y, z.
The continuity assumption on r1 and r4 implies that functions α and δ extend
continuously to {(y, z) ∈ R2 | y ≥ 0, z ≥ 0, y + z ≤ 1}, the closure of their
previous domain of definition.

Thus we are justified in writing that

(10) R(x, y, z, 1− x− y − z) = κ(y, z)xα(y,z)(1− x− y − z)δ(y,z)

whenever x > 0, y > 0, z > 0, x + y + z < 1.
Claim 2: We claim that α(y, z) = α, a positive constant. Indeed, assume

to the contrary that α(y1, z1) 6= α(y2, z2) for some (y1, z1), (y2, z2) ∈ {(y, z) ∈
R2 | y ≥ 0, z ≥ 0, y + z ≤ 1}. By symmetry and continuity, we see there is no
loss of generality in assuming that z1 = z2 = z, α(y1, z) < α(y2, z) and y1 > 0,
y2 > 0, z > 0, y1 + z < 1, y2 + z < 1. Thus

κ(y1, z)xα(y1,z)(1− x− y1 − z)δ(y1,z) = R(x, y1, z, 1− x− y1 − z),

κ(y2, z)xα(y2,z)(1− x− y2 − z)δ(y2,z) = R(x, y2, z, 1− x− y2 − z)
whenever x > 0, x + y1 + z < 1, x + y2 + z < 1. On the other hand, the
derivation of formula (10) shows that

R(x, y1, z, 1− x− y1 − z) = λ(x, z)yβ(x,z)
1 (1− x− y1 − z)D(x,z),

R(x, y2, z, 1− x− y2 − z) = λ(x, z)yβ(x,z)
2 (1− x− y2 − z)D(x,z)

where λ, β, D : {(x, z) ∈ R2 | x > 0, z > 0, x + z < 1} → R+ \ {0} are suitably
chosen continuous functions. The continuity assumption on r2 and r4 implies
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that functions β and D extend to the closure of their previous domain of
definition. In particular, there is

(11)
xα(y1,z)

xα(y2,z)
=

κ(y2, z)
κ(y1, z)

· y
β(x,z)
1

y
β(x,z)
2

· (1− x− y1 − z)D(x,z)−δ(y1,z)

(1− x− y2 − z)D(x,z)−δ(y2,z)
.

By letting x → 0, we conclude that the right–hand side of (11) remains bounded
but the left–hand side approaches infinity, a contradiction. This ends the proof
of Claim 2 and, by symmetry, shows also that ρi(x, y, z) = ρi (i = 1, 2, 3, 4
with ρ1 = α), a positive constant.

Thus we are justified in writing that

R(x, y, z, 1− x− y − z) = κ(y, z)xα(1− x− y − z)δ

= λ(x, z)yβ(1− x− y − z)δ = µ(x, y)zγ(1− x− y − z)δ

where α, β, γ, δ are positive constants, and functions

κ : {(y, z) ∈ R2 | y > 0, z > 0, y + z < 1} → R+ \ {0},
λ : {(x, z) ∈ R2 | x > 0, z > 0, x + z < 1} → R+ \ {0},
µ : {(x, y) ∈ R2 | x > 0, y > 0, x + y < 1} → R+ \ {0}

are continuous. Thus κ(y, z)xα = λ(x, z)yβ = µ(x, y)zγ whenever x > 0,
y > 0, z > 0, x + y + z < 1. Since κ(y, z)/yβ = λ(x, z)/xα and λ(x, z)/zγ =
µ(x, y)/yβ , there exist continuous functions σ, τ : (0, 1) → R+ \ {0} such that
λ(x, z) = xασ(z) = τ(x)zγ . The desired result R(x, y, z, 1 − x − y − z) =
const · xαyβzγ(1− x− y − z)δ follows immediately.

Mutatis mutandis, the general case n ≥ 2 is easily settled by the very same
considerations.
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