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EXISTENCE OF SOLUTIONS OF THE CAUCHY PROBLEM

FOR SEMILINEAR INFINITE SYSTEMS OF PARABOLIC

DIFFERENTIAL–FUNCTIONAL EQUATIONS

by Anna Pude lko

Abstract. We consider the Cauchy problem for a countable system of
weakly coupled semilinear differential–functional equations of parabolic
type. The right-hand sides of the system are functionals of unknowns.
The object of this paper is to transform the system of parabolic differential
equations into the associated system of integral equation in order to prove
the existence of the solution of the latter problem with use of the Schauder
fixed point theorem.

1. Introduction. We consider a countable system of weakly coupled semi-
linear differential–functional equations of the form

(1) F i[ui](t, x) = f i(t, x, u), i ∈ S,

with the initial condition

(2) u(0, x) = ϕ(x) for x ∈ Rm.

Here

F i :=
∂

∂t
−Ai,Ai :=

m∑
j,k=1

ai
jk(t, x)

∂2

∂xj∂xk
+

m∑
j=1

bi
j(t, x)

∂

∂xj
+ ci(t, x)id,

where id is the identity operator, (t, x) ∈ Ω := {(t, x) : t ∈ (0, T ), x ∈ Rm},
T <∞, S is the set of positive integers, f i : Ω×CB∞

S (Ω)3(t, x, s) → f i(t, x, s)∈
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R, i ∈ S, u stands for the mapping

u : S × Ω 3 (i, t, x) → ui(t, x) ∈ R,

composed of unknowns ui and ϕ = (ϕ1, ϕ2, . . . ).
A function u is said to be a C–solution of differential problem (1), (2) in Ω

if u ∈ CB∞
S (Ω) and satisfies the system of integral equations associated with

the differential problem in Ω.

This paper can be considered as a continuation of the author’s study of
the certain infinite systems of parabolic differential–functional equations. Now
the author considers a more general form of operator with lower order of terms
with respect to the derivatives in x–variables. There have appeared papers
devoted to an analysis of the initial-boundary value problem, e.g. [2], [3]. The
infinite systems of parabolic type and properties of their solutions are treated,
e.g., in [7] and [14].

The goal of this paper is to prove the existence of a solution of Cauchy
problem (1), (2) for a countable systems using the Schauder fixed point theorem
under weaker assumptions than in [11]. In paper [11], to solve the above
problem the Banach fixed point theorem was used. This approach allowed us
to prove the existence and uniqueness of the solution under rather restrictive
assumptions which were previously imposed on the initial data (namely equi-
boundeness of all components) and the right-hand sides (among other things,
equi-boundeness of all components and the Lipschitz condition with respect to
functional argument).

Now, resigning from that and applying the Schauder fixed point theorem
(see [4], [10] or [15]), we will get the existence of the considered problem in a
layer [0, τ) × Rm, where τ is a sufficiently small number. Unfortunately, this
theorem does not help us to obtain the uniqueness of the problem (1), (2).
In order to apply the Schauder fixed point theorem, we have to check, among
other things, that certain operator is compact. We obtained it by using the
well-known Fréchet compactness theorem. It is in some way an extension of
the idea we have first come across in [10].

Let us stress that the result is obtained without using the weighted-spaces.
Instead, we assume that the truncated operator FN of the operator F (ge-
nerated by right-hand sides) uniformly smothers the functions at the infinity.

An infinite system of equations was first considered by M. Smoluchowski
as a model for coagulation of colloids moving according to a Brownian mo-
tion. A system of infinite number of reaction–diffusion equations related to
the system of ODE derived by Smoluchowski is investigated in [1]. A nonlocal
discrete model of cluster coagulation and fragmentation expressed in terms of
an infinite system of integro–differential bilinear equations was studied in [8].
The coagulation–fragmentation local model which add spatial diffusion to the
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classical coagulation equations is considered in [12]. For a treatment of infinite
systems of parabolic differential–functional equations with the initial-boundary
value problem, where Schauder’s method of fixed point is also applied, we refer
the reader to [2].

This paper is organized as follows. In the next section the necessary no-
tations and definitions are introduced. In section 3 we impose the necessary
assumptions and formulate the main result of this paper. In section 4 we state
and prove the auxiliary lemmas. The last section contains a proof of the main
theorem.

2. Notations and definitions. Throughout the paper, we use the fol-
lowing notation. By Ωτ we denote the set (0, τ)×Rm for each τ ∈ (0, T ]. The
set ΩT is denoted for short by Ω. The norm in RN we note by | · |N . B(x, δ)
denotes an open ball with center at x and radius δ > 0.

Here, by CB∞(Ω) we unusually denote the space of functions h ∈ C(Ω),
such that h vanishes uniformly at infinity, i.e.

∀ε > 0 ∃Rε > 0 ∀t ∈ [0, T ] ∀x ∈ Rm \B(0, Rε) : |h(t, x)| < ε.

The author hopes that it causes no misunderstanding.
The space CB∞

S (Ω) comprises all functions h = (h1, h2, . . . ) such that
hi ∈ CB∞(Ω), i ∈ S with the finite norm

‖h‖Σ
Ω =

∞∑
i=1

1
Qi
‖hi‖Ω, where ‖hi‖Ω = sup

(t,x)∈Ω

|hi(t, x)| for i ∈ S,

and Q is an arbitrary real number. Obviously, the space CB∞
S (Ω) endowed

with the norm ‖ · ‖Σ
Ω is a Banach space.

For fixed N ∈ N let CB∞
N (Ω) be the space of all functions h = (h1, . . . , hN )

such that hi ∈ CB∞(Ω) for i = 1, . . . , N. We endow this space with the
following norm: ‖h‖N

Ω = max
i=1,...,N

sup
(t,x)∈Ω

|hi(t, x)|.

We understand the spaces CB∞(Rm), CB∞
S (Rm), CB∞

N (Rm) analogously.
Now we introduce the following (?)–condition.

The set K ⊂ CB∞
N (Ω) is said to satisfy (?)–condition if and only if

∀ε > 0 ∃Rε,N > 0 ∀h ∈ K ∀t ∈ [0, T ] ∀x ∈ Rm \B(0, Rε,N )

|hi(t, x)| < ε for i = 1, . . . , N.

Let η ∈ CB∞
S (Ω). We define the following operator F = (F1,F2, ...)

F : η → F[η],

setting
Fi[η](t, x) := f i(t, x, η), i ∈ S.
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3. Assumptions and the main result. Now we formulate the assump-
tions necessary for obtaining the result which is given at the end of this section.
We will assume that:

(H) : the coefficients ai
jk(t, x), bi

j(t, x), ci(t, x), i ∈ S, j, k = 1, . . . ,m are
bounded continuous functions such that ai

jk(t, x) = ai
kj(t, x) and satisfy

the following Hölder continuous condition with exponent α (0 < α 6 1)
in Ω :

∃ H > 0 ∀ i ∈ S ∀ j, k = 1, . . . ,m ∀ t ∈ [0, T ] ∀ x, x′ ∈ Rm :

|ai
jk(t, x)− ai

jk(t, x
′)| 6 H|x− x′|α

|bi
j(t, x)− bi

j(t, x
′)| 6 H|x− x′|α

|ci(t, x)− ci(t, x′)| 6 H|x− x′|α.

We suppose as well that the operators F i, i ∈ S, are uniformly parabolic
in Ω (the operators Ai are uniformly elliptic in Ω), i.e.

∃ µ1, µ2 > 0 ∀ ξ = (ξ1, . . . , ξm) ∈ Rm ∀ (t, x) ∈ Ω ∀ i ∈ S :

µ1

m∑
j=1

ξ2
j

m∑
j,k=1

ai
jk(t, x)ξjξk 6 µ2

m∑
j=1

ξ2
j .

The crucial assumptions related to the initial data ϕ = (ϕ1, ϕ2, . . . ) are:

(ϕ1) : ϕi ∈ CB∞(Rm) for each i ∈ S (i.e. ϕ ∈ CB∞
S (Rm))

(ϕ2) : there exist Q′ ∈ (0, Q) and M̄ > 0 such that ‖ϕi‖Rm 6 M̄(Q′)i−1 for
each i ∈ S.

Our main requirements concerning the right-hand sides are as follows: Let
the function f = (f1, f2, . . . ) generating the operator F be such that for each
τ ∈ (0, T ]

(F1) : F : CB∞
S (Ωτ ) → CB∞

S (Ωτ ) is continuous;
(F2) : if K is a closed, bounded set in CB∞

S (Ωτ ) then there exist Q′ ∈ (0, Q)
and M̄ > 0 such that sup

w∈K
‖Fi[w]‖Ωτ 6 M̄(Q′)i−1 for each i ∈ S;

(F3) : for each N ∈ N , the mapping FN := (F1, . . . ,FN ), FN : CB∞
S (Ωτ ) →

CB∞
N (Ωτ ) transforms a bounded set in CB∞

S (Ωτ ) into a set which sat-
isfies (?)–condition;

(V ) : functions f i satisfy the Volterra condition, i.e. for arbitrary (t, x) ∈ Ω
and arbitrary η, η̃ ∈ CB∞

S (Ω) such that ηj(t̄, x) = η̃j(t̄, x), for
0 6 t̄ 6 t, j ∈ S there is f i(t, x, η) = f i(t, x, η̃), i ∈ S.
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The examples of the F operator which satisfy the imposed conditions in-
clude:

Fi[u](t, x) =

{ ∑i
n=1 bn(t, x)un(t, x) for (t, x) ∈ [0, T ]×B(0, 1)∑i
n=1 bn(t,x)un(t,x)

|x|1/i for (t, x) ∈ [0, T ]× (Rm \B(0, 1)),

where bn ∈ C(Ω) satisfy ‖bn‖Ω < M

(
Q′

Q

)i−1

for some M > 0, Q′ ∈ (1, Q) or

Fi[u](t, x) =
∫ t

0
bi(τ, x)ui(τ, x)ui−1(τ, x) dτ,

where bi ∈ C(Ω) satisfy ‖bi‖Ω < M

(
Q′

Q2

)i−1

for some M > 0, Q′ ∈ (1, Q).

Now, let us state the main result of the paper.

Theorem. Let all the above assumptions hold and τ∗ ∈ (0, T ] be a suf-
ficiently small number. Then the Cauchy problem (1), (2) has at least one
C–solution u ∈ CB∞

S (Ωτ ), where 0 < τ 6 τ∗ 6 T.

4. Auxiliary lemmas. To get the proof of the foregoing theorem, we first
formulate the following lemmas.

Lemma 1. ([5], Th. 2.1, p. 71 [6], Th. 10, p. 23)
If the operators F i (i ∈ S) are uniformly parabolic in Ω with the constants
µ1, µ2 and the coefficients ai

jk(t, x), bi
j(t, x), ci(t, x), i∈S, j, k = 1, . . . ,m sa-

tisfy the condition (H) in Ω then there exist the fundamental solutions
Γi(t, x; τ, ξ) of the equations

F i[ui](t, x) = 0, i ∈ S

and the following inequalities hold

|Γi(t, x; τ, ξ)| 6 C(t− τ)−
m
2 exp

(
− µ∗|x− ξ|2

4(t− τ)

)
, i ∈ S

for any µ∗ < µ, where µ depends on µ1, µ2,H and C depends on µ1, µ2, α, T
and the nature of continuity ai

jk(t, x) in t.

Owing to the fact that F i (i ∈ S) are uniformly parabolic in Ω and the
coefficients ai

jk(t, x) (i ∈ S, j, k = 1, . . . ,m), satisfy condition (Ha) in Ω, we
notice that

∫
Rm |Γi(t, x; τ, ξ)|dξ, i ∈ S are equi-bounded. By C we denote the

infimum of their upper bounds.
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Using the fundamental solutions Γi(t, x; τ, ξ), i ∈ S, for the equations
F i[ui](t, x) = 0, we consider the following system of integral equations as-
sociated with differential problem (1), (2)

(3) ui(t, x) =
∫

Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

∫
Rm

Γi(t, x; τ, ξ)Fi[u](τ, ξ)dξdτ

i ∈ S for t > 0, x ∈Rm.

Now, we define T : CB∞
S (Ω) −→ CB∞

S (Ω) in the following way

T[z] := (T1[z1],T2[z2], . . . ),
where

Ti[zi] =
∫

Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

∫
Rm

Γi(t, x; τ, ξ)zi(τ, ξ)dξdτ.

By TN we denote the operator TN = (T1, . . . ,TN ).

We will now prove the following lemmas.

Lemma 2. Let N ∈ N be fixed, ϕi ∈ CB∞(Rm), i = 1, . . . , N. If G ⊂
CB∞

N (Ω) is a bounded set which satisfies (?)–condition, then

TN (G) ⊂ CB∞
N (Ω)

is a family of equicontinuous functions.

Proof. To begin with, we notice that ϕi, i = 1, . . . , N, are uniformly
continuous. We denote M ′ := sup

z∈G
‖z‖N

Ω .

Fix η > 0. Let (t, x), (t′, x′) ∈ Ω. First of all, we consider the easiest case
t = t′ = 0. Since ϕi, i = 1, . . . N are uniformly continuous, there exists δ1 > 0
such that

(2.1)
∣∣∣∣Ti[zi](0, x)−Ti[zi](0, x′)

∣∣∣∣= |ϕi(x)− ϕi(x′)| < η

if only |x− x′|m < δ1. Now let t > t′ = 0. It is obvious that∣∣∣∣Ti[zi](t, x)−Ti[zi](0, x′)
∣∣∣∣

=
∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

∫
Rm

Γi(t, x; τ, ξ)zi(τ, ξ)dξdτ − ϕi(x′)
∣∣∣∣

6

t∫
0

∫
Rm

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ+
∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ − ϕi(x′)
∣∣∣∣.
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We estimate the first term in the following way
(2.2)

t∫
0

∫
Rm

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ 6 M ′
t∫

0

∫
Rm

|Γi(t, x; τ, ξ)|dξdτ = CM ′t <
η

2

if only t < δ2 := η
2CM ′ . In order to estimate the second one, we select R1

η > 0
such that for x ∈ Rm \B(0, R1

η)

(2.3) |ϕi(x)| < η

6C
for i = 1, . . . , N.

Now, we choose R
1
η > R1

η such that for all x ∈ Rm \ B(0, R
1
η), ξ ∈ B(0, R1

η),
t ∈ [0, T ]

(2.4) |Γi(t, x; 0, ξ)| < η

6‖ϕi‖Rmm(B(0, R1
η))

,

where m stands for the Lebesgue measure.
Let us remark that it is enough to consider x, x′ such that |x−x′|m < δ2. Thus,
if x ∈ B(0, R

1
η + δ2), then x, x′ ∈ B(0, R

1
η + 2δ2). According to the definition

of the fundamental solution,

lim
t↘0

∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ = ϕi(x)

follows for each x ∈ Rm. Since B(0, R
1
η + 2δ2) is a compact set and ϕi,

i = 1, . . . , N are continuous functions,
∫

Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ converges to

ϕi(x) uniformly on B(0, R
1
η + 2δ2), that is, there exists δ3 > 0 independent

of x such that for t ∈ (0, δ3), x ∈ B(0, R
1
η + 2δ2)

(2.5)
∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ − ϕi(x)
∣∣∣∣< η

4

follows. Next, we choose 0 < δ4 < δ3 such that for all |x− x′|m < δ4

(2.6)
∣∣∣∣ϕi(x)− ϕi(x′)

∣∣∣∣< η

4
for i = 1, . . . , N.
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Then, (2.5) and (2.6) yield the estimate

(2.7)

∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ − ϕi(x′)
∣∣∣∣

6

∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ − ϕi(x)
∣∣∣∣ + |ϕi(x)− ϕi(x′)| < η

2

for t ∈ (0, δ4), x, x′ ∈ B(0, R
1
η + 2δ2), |x− x′| < δ4.

If x /∈ B(0, R
1
η + δ2) then x, x′ /∈ B(0, R

1
η). Certainly,∣∣∣∣ ∫

Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ − ϕi(x′)
∣∣∣∣6 ∫

Rm

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ + |ϕi(x′)|.

We see from (2.3) that the second term is less than η
6 , (as it is less than η

6C )
and we present the first one as follows∫

Rm

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ

=
∫

Rm\B(0,R1
η)

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ +
∫

B(0,R1
η)

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ.

To estimate the first integral, we employ (2.3):

(2.8)
∫

Rm\B(0,R1
η)

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ <
η

6C

∫
Rm

|Γi(t, x; 0, ξ)|dξ <
η

6
,

and the second one is a directly estimated by (2.4) as follows
(2.9)∫

B(0,R1
η)

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ <

∫
B(0,R1

η)

η

6‖ϕi‖Rmm(B(0, R1
η))

‖ϕi‖Rmdξ =
η

6
.

Hence (2.2), (2.7), (2.8) and (2.9) lead to the assertion that
if max{t, |x− x′|m} < δ5 := min{δ1, δ2, δ4} then

(2.10)
∣∣∣∣Ti[zi](t, x)−Ti[zi](0, x′)

∣∣∣∣< η.
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In the next step of our proof we consider the case t, t′ > 0 the sake of
simplicity let us now assume that min{t, t′} = t′. We estimate∣∣∣∣Ti[zi](t, x)−Ti[zi](t′, x′)

∣∣∣∣
6

∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ −
∫

Rm

Γi(t′, x′; 0, ξ)ϕi(ξ)dξ

∣∣∣∣
+

∣∣∣∣
t∫

0

∫
Rm

Γi(t, x; τ, ξ)zi(τ, ξ)dξdτ −
t′∫

0

∫
Rm

Γi(t′, x′; τ, ξ)zi(τ, ξ)dξdτ

∣∣∣∣=: I1 + I2.

To estimate I1, we select R2
η > 0 such that, for each x ∈ Rm \B(0, R2

η)

(2.11) |ϕi(x)| < η

8C
for i = 1, . . . , N

takes place. Next, we choose R
2
η > R2

η such that, for all x ∈ Rm \ B(0, R
2
η),

ξ ∈ B(0, R2
η), t ∈ (0, T ]

(2.12) |Γi(t, x; 0, ξ)| < η

8‖ϕi‖Rmm(B(0, R2
η))

for i = 1, . . . , N

follows. As previously, let us remark that it is enough to consider x, x′ such
that |x− x′|m < δ5.

Obviously, if x ∈ B(0, R
2
η + δ5), then x, x′ ∈ B(0, R

2
η + 2δ5). By the same

argument as before, there exists 0 < δ6 < δ5 independent of x such that
for t ∈ (0, δ6), x ∈ B(0, R

2
η + 2δ5), the following inequality holds

(2.13)
∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ − ϕi(x)
∣∣∣∣< η

8
for i = 1, . . . , N.

If we select 0 < δ7 < δ6 such that

(2.14) |ϕi(x)− ϕi(x′)| < η

4
for i = 1, . . . , N,

takes place for all |x − x′|m < δ7 then for t < δ6, x, x′ ∈ B(0, R
2
η) such that

|x− x′|m < δ7, using (2.13) and (2.14) we immediately obtain

(2.15) I1 6

∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ − ϕi(x)
∣∣∣∣

+
∣∣∣∣ ∫
Rm

Γi(t′, x′; 0, ξ)ϕi(ξ)dξ − ϕi(x′)
∣∣∣∣+|ϕi(x)− ϕi(x′)| < η

2
.
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Now, let t ∈ [δ6, T ]. We remark that it is enough to consider t′ such that
|t − t′| < δ7. Then certainly t, t′ ∈ [δ6 − δ7, T ]. Since Γi(·, ·, 0, ξ), i = 1, . . . , N

are uniformly continuous on [δ6−δ7, T ]×B(0, R
2
η+2δ5) there exists 0 < δ8 < δ7

such that, if max{|t− t′|, |x− x′|m} < δ8, then

(2.16) |Γi(t, x; 0, ξ)− Γi(t′, x′; 0, ξ)| < η

4‖ϕi‖Rmm(B(0, R2
η))

.

We estimate the term I1 in the following way

(2.17)

I1 6
∫

Rm

|Γi(t, x; 0, ξ)− Γi(t′, x′; 0, ξ)||ϕi(ξ)|dξ

=
∫

B(0,R2
η)

|Γi(t, x; 0, ξ)− Γi(t′, x′; 0, ξ)||ϕi(ξ)|dξ

+
∫

Rm\B(0,R2
η)

|Γi(t, x; 0, ξ)− Γi(t′, x′; 0, ξ)||ϕi(ξ)|dξ =: I11 + I12.

Hence, applying (2.16) and (2.11), we easily see that for (t, x), (t′, x′) ∈ [δ6 −
δ7, T ]×B(0, R

2
η + 2δ5) such that max{|t− t′|, |x− x′|m} < δ8 there is

(2.18) I11 <

∫
B(0,R2

η)

η

4‖ϕi‖Rmm(B(0, R2
η))

‖ϕi‖Rmdξ =
η

4

as well as

(2.19) I12 <
η

8C

∫
Rm

|Γi(t, x; 0, ξ)|+ |Γi(t′, x′; 0, ξ)|dξ <
η

4
.

If, however, x /∈ B(0, R
2
η + δ5), then x, x′ /∈ B(0, R

2
η). Consequently, using

(2.17), (2.11) and (2.12) we estimate I1 as follows

(2.20)

I1 6 I11 + I12 < ‖ϕi‖Rm

∫
B(0,R2

η)

|Γi(t, x; 0, ξ)|+ |Γi(t′, x′; 0, ξ)|dξ

+
η

8C

∫
Rm\B(0,R2

η)

|Γi(t, x; 0, ξ)|+ |Γi(t′, x′; 0, ξ)|dξ 6
η

2
.
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Let us now recall (2.15), (2.18), (2.19) and (2.20) to state that for all
(t, x), (t′, x′) ∈ Ω such that max{|t − t′|, |x − x′|m} < δ8 the following es-
timate follows

(2.21) I1 =
∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ −
∫

Rm

Γi(t′, x′; 0, ξ)ϕi(ξ)dξ

∣∣∣∣< η

2
.

Next, let us demonstrate that I2 < η
2 as well. To confirm this assertion we

note that

I2 6

t′∫
0

∫
Rm

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)||zi(τ, ξ)|dξdτ

+

t∫
t′

∫
Rm

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ =: I21 + I22.

There exists δ9 := min{ η
4CM ′ , δ8}, where M ′ := sup

z∈G
‖z‖N

Ω , such that for all

x ∈ Rm and t, t′ such that t− t′ < δ9

(2.22) I22 6 CM ′(t− t′) < CM ′δ9 <
η

4
.

Since G satisfies (?)–condition, there exists R3
η > 0 such that for all t ∈ [0, T ],

x ∈ Rm \B(0, R3
η) the inequality

(2.23) |zi(t, x)| < η

16CT
for i = 1, . . . , N.

holds. We present I21 as follows

I21 =

t′∫
0

∫
Rm\B(0,R3

η)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)||zi(τ, ξ)|dξdτ

+

t′∫
0

∫
B(0,R3

η)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)||zi(τ, ξ)|dξdτ := I211 + I212.

Applying (2.23) we can establish the following estimate

(2.24) I211 <
η

16CT

t′∫
0

∫
Rm

|Γi(t, x; τ, ξ)|+ |Γi(t′, x′; τ, ξ)|dξdτ 6
η

8
.
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Obviously

(2.25) I212 6 M ′
t′∫

0

∫
B(0,R3

η)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)|dξdτ.

Let us notice that in view of the integrability of fundamental solution, there
exists 0 < δ10 < δ9 such that if (t, x), (t′, x′) ∈ Ω and t′ 6 t, τ ∈ (0, t′) then for
each x ∈ Rm

(2.26)

t′∫
0

∫
B(x,δ10)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)|dξ <
η

16M ′ for i = 1, . . . , N

follows. In order to estimate (2.25) we present it as follows

(2.27)

t′∫
0

∫
B(0,R3

η)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)|dξdτ

=

t′∫
0

∫
B(0,R3

η)∩B(x+x′
2

,δ10)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)|dξdτ

+

t′∫
0

∫
B(0,R3

η)\B(x+x′
2

,δ10)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)|dξdτ.

(2.26) yields that the first term of (2.27) is less than η
16M ′ . Now, we assume

that max{|t − t′|, |x − x′|m} < δ11 < δ10 for some δ11 > 0. By virtue of the
mean-value theorem there exists (t0, x0) belonging to the segment connecting
(t, x), (t′, x′), such that

(2.28)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)|

=
∣∣∣∣(t− t′)

∂Γi

∂t
(t0, x0, τ, ξ) +

m∑
k=1

(xk − x′k)
∂Γi

∂xk
(t0, x0, τ, ξ)

∣∣∣∣
< δ11

(∣∣∣∣∂Γi

∂t
(t0, x0, τ, ξ)

∣∣∣∣+ m∑
k=1

∣∣∣∣ ∂Γi

∂xk
(t0, x0, τ, ξ)

∣∣∣∣).
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If |x0−ξ| ≥ δ10
2 , then the derivatives appearing in (2.28) are esimated as below

(cf. [9], p. 427)

(2.29)

∣∣∣∣∂Γi

∂t
(t0, x0, τ, ξ)

∣∣∣∣< C ′(t0 − τ)−
m+2

2 exp
(
− C ′′ |x0 − ξ|2

t0 − τ

)
6 C ′(t0 − τ)−

m+2
2 exp

(
− C ′′ δ2

10

4(t0 − τ)

)
6 Mt,∣∣∣∣ ∂Γi

∂xk
(t0, x0, τ, ξ)

∣∣∣∣< C ′(t0 − τ)−
m+1

2 exp
(
− C ′′ |x0 − ξ|2

t0 − τ

)
6 C ′(t0 − τ)−

m+1
2 exp

(
− C ′′ δ2

10

4(t0 − τ)

)
6 Mx for k = 1, . . . ,m.

Owing to (2.29), we discover that for all (t, x), (t′, x′) ∈ Ω such that
max{|t− t′|, |x− x′|m} < δ11 we obtain

(2.30)

t′∫
0

∫
B(0,R3

η)\B(x+x′
2

,δ10)

|Γi(t, x; τ, ξ)− Γi(t′, x′; τ, ξ)|dξdτ

< δ11(Mt + kMx)m(B(0, R3
η))T <

η

16M ′

if only δ11 < η

16(Mt+kMx)m(B(0,R3
η))M ′T

.

Thus, combining (2.22), (2.24), (2.25), (2.26) and (2.30), we see that for all
(t, x), (t′, x′) ∈ Ω such that max{|t− t′|, |x− x′|m} < δ11,
(2.31)

I2 =
∣∣∣∣

t∫
0

∫
Rm

Γi(t, x; τ, ξ)zi(τ, ξ)dξdτ −
t′∫

0

∫
Rm

Γi(t′, x′; τ, ξ)zi(τ, ξ)dξdτ

∣∣∣∣< η

2
.

And finally, owing to (2.1), (2.10), (2.21) and (2.31) we conclude that for all
(t, x), (t′, x′) ∈ Ω, z ∈ G, if max{|t− t′|, |x− x′|m} < δ11, then∣∣∣∣Ti[zi](t, x)−Ti[zi](t′, x′)

∣∣∣∣< η,

which completes the proof of Lemma 2.

Next we will show a certain property of the operator TN . Roughly speaking,
we will check that the operator TN transfers the (?)–condition.

Lemma 3. Let N ∈ N be fixed. If ϕi ∈ CB∞(Rm), i = 1, . . . N, then the
operator TN transforms a bounded set in CB∞

N (Ω), satisfying (?)–condition
into a set satisfying (?)–condition in CB∞

N (Ω).
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Proof. Let K ⊂ CB∞
N (Ω) be a bounded set which satisfies the (?)–

condition. Fix ε > 0. There exists R1
ε > 0 such that for x ∈ Rm \B(0, R1

ε )

(3.1) |ϕi(x)| < ε

4C
for i = 1, . . . , N

follows. We select R
1
ε > R1

ε such that for x ∈ Rm \B(0, R
1
ε ), ξ ∈ B(0, R1

ε ), t ∈
[0, T ] we can obtain the inequality

(3.2) |Γi(t, x; 0, ξ)| < ε

4‖ϕi‖Rmm(B(0, R1
ε ))

for i = 1, . . . , N.

It is obvious that ∫
Rm

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ =

=
∫

B(0,R1
ε )

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ +
∫

Rm\B(0,R1
ε )

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ.

Therefore, by (3.1) and (3.2) for x ∈ Rm \ B(0, R
1
ε ), we easily obtain the

following estimates

(3.3)
∫

Rm\B(0,R1
ε )

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ <
ε

4C

∫
Rm\B(0,R1

ε )

|Γi(t, x; 0, ξ)|dξ 6
ε

4
,

(3.4)∫
B(0,R1

ε )

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ <

∫
B(0,R1

ε )

ε

4‖ϕi‖Rmm(B(0, R1
ε ))

‖ϕi‖Rmdξ =
ε

4
.

From the (?)–condition for K, it follows that there exists R2
ε > 0 such that for

each function z ∈ K for all t ∈ [0, T ], x ∈ Rm \B(0, R2
ε ), we can assert

(3.5) |zi(t, x)| < ε

4TC
for i = 1, . . . , N.

Now consider ∫ t

0

∫
Rm

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ

=
∫ t

0

∫
Rm\B(0,R2

ε )

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ+
∫ t

0

∫
B(0,R2

ε )

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ.
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Making use of (3.5) we estimate the first term as follows
(3.6)∫ t

0

∫
Rm\B(0,R2

ε )

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ <
ε

4TC

∫ t

0

∫
Rm

|Γi(t, x; τ, ξ)|dξdτ 6
ε

4
.

In order to estimate the second one, we choose R
2
ε > R2

ε such that for all
x ∈ Rm \B(0, R

2
ε ), ξ ∈ B(0, R2

ε ), t, τ ∈ [0, T ] : τ < t, we can get the estimate

(3.7) |Γi(t, x; τ, ξ)| < ε

4TM ′m(B(0, R2
ε ))

for i = 1, . . . , N,

where M ′ := sup
z∈K

‖z‖N
Ω . Then using (3.7) we readily assert

(3.8)
∫ t

0

∫
B(0,R2

ε )

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ <
ε

4
.

Thus, for Rε = max{R1
ε , R

2
ε}, z ∈ K, t ∈ [0, T ], x ∈ Rm \B(0, Rε) combining

(3.3), (3.4), (3.6) and (3.8), we find

|(Li)−1[zi](t, x)| 6
∫

Rm

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ +
∫ t

0

∫
Rm

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ

=
∫

B(0,R1
ε )

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ +
∫

Rm\B(0,R1
ε )

|Γi(t, x; 0, ξ)||ϕi(ξ)|dξ

+
∫ t

0

∫
B(0,R2

ε )

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ

+
∫ t

0

∫
Rm\B(0,R2

ε )

|Γi(t, x; τ, ξ)||zi(τ, ξ)|dξdτ < ε for i = 1, . . . , N.

The Lemma 3 is proved.

Let us now prove the next auxiliary lemma. We adopt the Arzela–Ascoli
compactness theorem, developing it for the case of functions defined on an
unbounded domain but satisfying (?)–condition. The diagonal method will be
our main tool in a proof of this lemma, like in the proof of the Arzela–Ascoli
compactness criterion.

Lemma 4. Let Y ⊂ CB∞
N (Ω). If Y is a closed set of equicontinuous,

uniformly bounded functions and Y satisfies (?)–condition, then Y is a compact
set in CB∞

N (Ω).
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Proof. Let {vn}n∈N be a sequence in Y . Let ε1 = 1.
From the (?)–condition it follows that there exists a constant Rε1 > 0 such
that |vn(t, x)|N < ε1

2 follows for each n ∈ N , t ∈ [0, T ], x ∈ Rm \B(0, Rε1).
Thus, for each t ∈ [0, T ], x ∈ Rm \B(0, Rε1), n, k ∈ N , there is

|vn(t, x)− vk(t, x)|N 6 |vn(t, x)|N + |vk(t, x)|N 6 ε.

Now, let us remark that [0, T ] × B(0, Rε1) =: B1 is separable. Let
Ξ1 := {(t1, x1), (t2, x2), . . . } be a countable and dense subset in B1.

In view of the boundness of Y, the sequence {vn(ti, xi)}n∈N is bounded in
RN for each (ti, xi) ∈ Ξ1.

In particular, {vn(t1, x1)}n∈N is a bounded sequence in RN . Therefore there
exists a convergent subsequence {vn,1(t1, x1)}n∈N . Obviously, {vn,1}n∈N is a
subsequence of the sequence {vn}n∈N .

Since {vn,1(t2, x2)}n∈N is a bounded sequence in RN , then there exists a
convergent subsequence {vn,2(t2, x2)}n∈N and {vn,2}n∈N is a subsequence of
the sequence {vn,1}n∈N .
Proceeding in this way, we will define an infinite matrix as follows:

v1,1(t1, x1) v2,1(t1, x1) v3,1(t1, x1) . . .
v1,2(t2, x2) v2,2(t2, x2) v3,2(t2, x2) . . .
v1,3(t3, x3) v2,3(t3, x3) v3,3(t3, x3) . . .

. . . . . . . . . . . . . . . . . . . . .

From the Cantor diagonal procedure it follows that the sequence {vk,k}k∈N
is characterized by the fact that the sequence {vk,k(ti, xi)}k∈N converges in
every point (ti, xi) ∈ Ξ1

Hereafter we denote v1
k := vk,k.

Now, we take ε2 = 1
2 . There exists a constant Rε2 > 0 ≥ Rε1 such that

|v1
k(t, x)|N < ε2

2 for each k ∈ N , t ∈ [0, T ], x ∈ Rm \ B(0, Rε2). In [0, T ] ×
B(0, Rε2) =: B2, we take a dense and countable subset Ξ2 such that Ξ2∩B1 =
Ξ1. Proceeding as above, we choose such a subsequence {v2

k}k∈N of the sequence
{v1

k}k∈N which converges in every point of Ξ2.

Repeating the previous procedure with respect to εi = 1
i for i = 3, 4, . . . ,

we obtain an infinite matrix of functions

v1
1 v1

2 v1
3 . . .

v2
1 v2

2 v2
3 . . .

v3
1 v3

2 v3
3 . . .

. . . . . . . . . . . . . . . . . . . . .

Using the Cantor procedure once again, we choose a subsequence {vk
k}k∈N

of the sequence {vn}n∈N at every point of
⋃

n∈N Ξn.
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Now, we prove that the sequence {vk
k}k∈N is a Cauchy sequence in C∞

N (Ω).
Let ε > 0 be arbitrary. By virtue of an assumption that {vn}n∈N are equicon-
tinuous, there exists δ > 0 such that for all k = 1, 2, . . .

|vk
k(t, x)− vk

k(s, y)|N <
ε

3
if only max{|t− s|, |x− y|m} < δ.

There exists j0 such that εj0 = 1
j0

< ε.

From the (?)–condition it follows that there exists a constant Rεj0
> 0 such

that |vn(t, x)|N < ε1
2 follows for each n ∈ N , t ∈ [0, T ], x ∈ Rm \Bεj0

.

Thus, for each t ∈ [0, T ], x ∈ Rm \Bεj0
, p, q > k0, there is

(4.1) |vp
p(t, x)− vq

q(t, x)|N 6 |vp
p(t, x)|N + |vq

q(t, x)|N 6 εj0 < ε.

By Bi we denote an open ball with center at (ti, xi) ∈ Ξj0 and radius δ > 0.
Then Bj0 ⊂

⋃∞
i=1 Bδ

i and, moreover

(4.2) |vk
k(t, x)− vk

k(ti, xi)|N 6
ε

3
for (t, x) ∈ Bδ

i .

By the Borel-Lebesque theorem there exists i0 ∈ N such that Bj0 ⊂
⋃i0

i=1 Bδ
i .

Since the sequence {vk
k(ti, xi)}k∈N converges for i = 1, 2, . . . , i0, it follows

that there exists a constant k0 such that

(4.3) |vp
p(ti, xi)− vq

q(ti, xi)|N 6
ε

3
for p, q > k0, i = 1, . . . , i0.

If x ∈ B(0, Rεj0
), then there exists i 6 i0, such that (t, x) ∈ Bδ

i . Hence,
applying (4.2) and (4.3), we get

(4.4) |vp
p(t, x)− vq

q(t, x)|N 6

|vp
p(t, x)− vp

p(ti, xi)|N + |vp
p(ti, xi)− vq

q(ti, xi)|N + |vq
q(ti, xi)− vq

q(t, x)|N < ε

for p, q > k0, where k0 is independent of (t, x).
Then owing to (4.1) and (4.4), we discover that {vk

k}k∈N is a Cauchy
sequence in C∞

N (Ω), which in view of the completeness of the space implies
the convergence of {vk

k}k∈N in CB∞
N (Ω). Thus, since Y is closed, the limit of

{vk
k}k∈N belongs to Y, which completes the proof of Lemma 4.

5. Proof of the theorem. In this section let us finally give a proof of
the main result of the paper.

To begin with, we remark that proving that there exists a C–solution of
problem (1), (2) is equivalent to showing that the operator TF : CB∞

S (Ωτ ) →
CB∞

S (Ωτ ) has a fixed point. We will prove it on the basis of the Schauder
fixed point theorem.
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For fixed M > 0 in CB∞
S (Ωτ ) we consider a closed ball B

τ (0,M) =: B
τ

with center at 0 and radius M. Obviously, B
τ is a closed and convex set

τ ∈ (0, T ].
Let us first demonstrate that TF(Bτ ) ⊂ B

τ for a sufficiently small τ. Let
w ∈ B

τ . It is easy to see that

|TiFi[w](t, x)| =
∣∣∣∣ ∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

∫
Rm

Γi(t, x; τ ′, ξ)Fi[w](τ ′, ξ)dξdτ ′
∣∣∣∣

6 ‖ϕi‖Rm

∫
Rm

|Γi(t, x; 0, ξ)|dξ + ‖Fi[w]‖Ωτ

t∫
0

∫
Rm

|Γi(t, x; τ ′, ξ)|dξdτ ′

6 C‖ϕi‖Rm + Cτ‖Fi[w]‖Ωτ .

This immediately implies

‖TiFi[w]‖Ωτ 6 C‖ϕi‖Rm + Cτ‖Fi[w]‖Ωτ .

Next, we note that ‖ϕ‖Σ
Rm < ∞ and ‖F[w]‖Σ

Ωτ < ∞ for each w ∈ B
τ
. This

is a direct consequence of assumptions (F1), (F2), (ϕ1) and (ϕ2). These facts
instantly lead to the following estimate

‖TF[w]‖Σ
Ωτ =

∞∑
i=1

1
Qi
‖TiFi[w]‖Ωτ

6 C
∞∑
i=1

1
Qi
‖ϕi‖Rm + Cτ

∞∑
i=1

1
Qi
‖Fi[w]‖Ωτ = C‖ϕ‖Σ

Rm + Cτ‖F[w]‖Σ
Ωτ .

If

0 < τ 6 min
{

M − C‖ϕ‖Σ
Rm

CM1
, T

}
:= τ∗,

where M1 := sup
w∈B

T

‖F[w]‖Σ
Ωτ (due to assumption (F2), we see that M1 < ∞),

then we readily obtain ‖TF[w]‖Σ
Ωτ 6 M.

Now, let us check that TF : B
τ → B

τ is the continuous operator. Since F
is a continuous operator in B

τ
, it is enough to prove that T is continuous on

F(Bτ ). To verify this assertion, fix ε > 0 and z = (z1, z2, . . . ) ∈ F(Bτ ). Let
z = (z1, z2, . . . ) ∈ F(Bτ ) be such that ‖z − z‖Σ

Ωτ < δ := ε
Cτ . Then

|Ti[zi](t, x)−Ti[zi](t, x)|

6

t∫
0

∫
Rm

|Γi(t, x; τ, ξ)||zi(τ, ξ)− zi(τ, ξ)|dξdτ 6 Cτ‖zi − zi‖Ωτ
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for (t, x) ∈ Ωτ
, that is

‖Ti[zi]−Ti[zi]‖Ωτ 6 Cτ‖zi − zi‖Ωτ .

Thus

‖T[z]−T[z]‖Σ
Ωτ =

∞∑
i=1

1
Qi
‖Ti[zi]−Ti[zi]‖Ωτ

6 Cτ

∞∑
i=1

1
Qi
‖zi − zi‖Ωτ = Cτ‖z − z‖Σ

Ωτ < ε.

In the next step of our proof, we show that TF(Bτ ) is a precompact set
in CB∞

S (Ωτ ). To confirm this, we apply Fréchet compacteness theorem. First
we denote Y := TF(Bτ ).

By the Fréchet theorem it follows that Y is a compact subset of CB∞
S (Ωτ ),

if and only if for each ε there exists a compact set Yε ⊂ CB∞
S (Ωτ ) such that

for each y ∈ Y there exists yε ∈ Yε such that ‖y − yε‖Σ
Ωτ < ε.

Fix ε and ε′ such that 0 < ε′ < ε. By virtue of the finiteness of the norm
‖ϕ‖Σ

Rm , on the basis of assumption (F2), there exists Nε ∈ N such that
∞∑

i=Nε+1

1
Qi
‖vi‖Ωτ < ε′ < ε

for each v ∈ Y.
Let v ∈ Y be arbitrary. There exists a sequence {vi

n}n∈N ⊂ Y which
converges to v in CB∞

S (Ωτ ).
Then
∞∑

i=Nε+1

1
Qi
‖vi‖Ωτ =

∞∑
i=Nε+1

1
Qi
‖ lim

n→∞
vi
n‖Ωτ = lim

n→∞

∞∑
i=Nε+1

1
Qi
‖vi

n‖Ωτ 6 ε′ < ε.

We define Yε as a set of functions vε = (v1, . . . , vNε , 0, . . . ) such that
v = (v1, v2, . . . ) ∈ Y . Therefore,

‖vε − v‖Σ
Ωτ =

∞∑
n=Nε+1

1
Qn

‖vn‖Ωτ < ε.

In order to show the compactness of Yε, we denote

Y
′
ε := { v

′
ε = (v1

ε , . . . , v
Nε
ε ) : vε = (v1

ε , . . . , v
Nε
ε , 0, . . . ) ∈ Yε }.

Obviously, the set Y ′
ε is bounded (i.e. functions from Y ′

ε are equi-bounded)
and closed in CB∞

Nε
(Ωτ ).

We claim that Y ′
ε is the set of equicontinuous functions and satisfies (?)–

condition.
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To verify this assertion, fix η and η′, such that 0 < η′ < η. Let v
′
ε ∈ Y ′

ε ,

v
′
ε = (v1

ε , . . . , v
Nε
ε ).

There exists v ∈ Y such that vi ≡ vi
ε for i = 1, . . . , Nε.

Let {vn}n∈N ⊂ Y be a sequence which converges to v in CB∞
S (Ωτ ).

There exists {zn}n∈N ⊂ F(Bτ ) such that vn = T[zn].
We already know from Lemma 2 that there exists δ > 0 such that, if

max{|t−t′|, |x−x′|m} < δ, then |vi
n(t, x)−vi

n(t′, x′)| < η′ < η for i = 1, . . . , Nε.
Thus we conclude

|vi
ε(t, x)− vi

ε(t
′, x′)| = | lim

n→∞
vi
n(t, x)− lim

n→∞
vi
n(t′, x′)|

= lim
n→∞

|vi
n(t, x)− vi

n(t′, x′)| 6 η′ < η for i = 1, . . . , Nε.

Let us remark that δ is independent of v′ε ∈ Y ′
ε , that is, Y ′

ε is a set of
equicontinuous functions, as asserted. Owing to Lemma 3, there exists Rη

such that for t ∈ [0, τ ], x ∈ Rm \B(0, Rη) the following estimate holds

|vi(t, x)| = | lim
n→∞

vi
n(t, x)| = lim

n→∞
|vi

n(t, x)| 6 η′ < η, i = 1, . . . , Nε.

We point out that Rη does not depend on v′ε ∈ Y ′
ε and we conclude that

Y ′
ε satisfies (?)–condition.

Thus, due to Lemma 4, the set Y
′
ε is compact in CB∞

Nε
(Ωτ ). It is easy to

see that the set Yε is compact, since it is the image of the compact set Y
′
ε by

the following continuous mapping

CB∞
Nε

(Ωτ ) 3 (v1, . . . , vNε) ↪→ (v1, . . . , vNε , 0, . . . ) ∈ C∞
S (Ωτ ).

Having obtained this, the Fréchet theorem yields the precompactness of the
set Y. Therefore, by the Schauder theorem, TF has a fixed point in B

τ
, 0 <

τ 6 τ∗ 6 T. Thus, there exists at least one C–solution of problem (1), (2) in
CB∞

S (Ωτ ) for 0 < τ 6 τ∗ 6 T. Theorem is proved.
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10. Pogorzelski W., Równania ca lkowe i ich zastosowania, tom II, PWN, Warszawa 1958.
11. Pude lko A., Existence and uniqueness of solutions Cauchy problem for nonlinear infinite

systems of parabolic differential-functional equations, Univ. Iagel. Acta Math., 40 (2002),
49–56.

12. Slemrod M., Coagulation–diffusion systems: derivation and existence of solutions for the
diffuse interface structure equations, Phys. D., 46 (1990), 351–366.

13. Smoluchowski M., Versuch einer mathematischen Theorie der kolloiden Lösungen, Z.
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