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GENERALIZED HÉNON DIFFERENCE EQUATIONS WITH

DELAY

by Judy A. Kennedy and James A. Yorke

Abstract. Charles Conley once said his goal was to reveal the discrete in
the continuous. The idea here of using discrete cohomology to elicit the
behavior of continuous dynamical systems was central to his program. We
combine this idea with our idea of “expanders” to investigate a difference
equation of the form xn = F (xn−1, . . . , xn−m) when F has a special form.
Recall that the equation xn = q(xn−1) is chaotic for continuous real-valued
q that satisfies q(0) < 0, q(1/2) > 1, and q(1) < 0. For such a q, it is also
easy to analyze xn = q(xn−k) where k > 1. But when a small perturbation
g(xn−1, . . . xn−m) is added, the equation

xn = q(xn−k) + g(xn−1, . . . , xn−m)

(where 1 < k < m) is far harder to analyze and appears to require degree
theory of some sort. We use k-dimensional cohomology to show that this
equation has a 2-shift in the dynamics when g is sufficiently small.

1. Introduction

Charles Conley once said his goal was to reveal the discrete in the con-
tinuous. The idea here of using discrete cohomology to elicit the behavior of
continuous dynamical systems was central to his program. We combine this
idea with our idea of “expanders” to investigate a difference equation.

For a continuous map f : Rm → Rm there is often a need to show there is
a trajectory following a particular “itinerary”. An itinerary is a sequence (Xi)
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of compact sets for i a positive or nonnegative integer (a forward itinerary) or
i an integer (a two-sided intinerary). A trajectory (xi+1 = f(xi)) follows the
sequence (Xi) of sets if xi ∈ Xi for all i.

In this introduction we write y in Rm as (x−1, x−2, . . . , x−m) with negative
subscripts to simplify the conversion of the maps in the abstract to maps in
Rm. Let the map in the abstract be of the form

F (x−1, x−2, . . . , x−m) = q(x−k) + g(x−1, . . . , x−m).

The difference equation can also be viewed as a map f : Rm → Rm given by

x =

 xn−1
...

xn−m

 f
→


F (x)
xn−1

...
xn−m−1

 .

Let J = [0, 1]. Given two disjoint intervals I1 and I2 in J , we define the sets
Ĩi = Jk−1 × Ii × Jm−k for i = 1, 2. For carefully chosen Ii, these sets Ĩi are
called symbol sets in [2] and play a pivotal role.

Our main conclusion is that for appropriately chosen Ĩ1 and Ĩ2, there is
a compact invariant set Q in Jm for the map f such that for every itinerary
π : Z → {1, 2} (where Z denotes the integers) there is at least one trajectory
(xn) such that

yn := (xn−1, . . . , xn−m) ∈ Q

for all n, and yn follows the specified itinerary, i.e., yn ∈ Ĩπ(n) for all n. Fur-
thermore, when the dynamics are restricted to Q, every trajectory in Q has
sensitive dependence on initial data (as defined in [2]). More generally the
existence of such trajectories can often be guaranteed if f(xi) “crosses” Xi+1

in some particular fashion that is uniform for all i.
To formalize and give a variety of examples of this idea we assume the

following:
(1) (Xi), (Yi) are sequences of compact sets in Rm; Bi := Xi ∩ Yi, Zi :=

Xi ∪ Yi; Zi and Xi are rectangles (products of intervals). (See Figures
1, 2 and 3.)

(2) For some k ≤ n, Bi is homeomorphic to Sk−1 × Ri (where Ri is a
rectangle) and is the union of some or all of the faces of Xi.

(3) f(Bi) ⊂ Yi+1, f(Xi) ⊂ Zi+1.

2. Background and notation

In the paper, Z denotes the set of integers, N denotes the positive integers,
Ñ denotes the nonnegative integers, and R denotes the real numbers. If A is
a subset of Rm, then Dε(A) = {x ∈ Rm : d(x, y) < ε for some y ∈ A}. We
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Figure 1. A case in which H1(Zi, Yi) would be appropriate.

Figure 2. A case where H2(Zi, Bi) would be used.

denote points in Rm as both row vectors and column vectors, and switch freely
between the two, as is convenient. In particular, we find understanding the
behavior of a map for high dimension m easier when the points are written as
column vectors.

2.1. Cohomology. In writing this paper, we assume the reader has stud-
ied some cohomology theory, though not necessarily recently. We could have
used homology theory but we prefer Čech–Alexander–Spanier cohomology the-
ory (as presented by Spanier [4] and Eilenberg and Steenrod [1]) because of
its stronger properties and have chosen to use it here.

We will say (A,B) is a pair if A and B are compact and B ⊂ A. If (C,D)
is a pair we write f : (A,B) → (C,D) to mean A is the domain of f and
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Figure 3. Here we would need H2(Zi, Yi) again.

f(A) ⊂ C and f(B) ⊂ D. Note that (3) above says that f maps (Xi, Bi) into
(Zi+1, Yi+1).

It is perhaps easiest to think about the cohomology of a pair (A,B) as the
cohomology of the pair that results if the set B is collapsed to a point. Hence,
if A = [0, 1] and B is {0, 1}, identifying 0 with 1 results topologically in a circle
or rather the pair (S1, {b}) where b ∈ S1.

If A,B are compact and B ⊃ A, the corresponding inclusion map (for A
and B) is denoted i : A → B, and is defined by i(a) = a for all a ∈ A. Similarly,
a (pair) inclusion i : (A,B) → (A′, B′) is defined if A ⊂ A′ and B ⊂ B′. We
use cohomology groups with coefficients in Z. We also use the symbol j to
denote inclusion maps, as is customary, and in case several inclusion maps are
being considered, we use subscripts (e.g., i1 or j2) to avoid confusion.

An upper sequence of groups is a sequence (Gi, φi) where for each i, Gi is
a group and φi : Gi → Gi+1 is a homomorphism. An upper sequence is exact
if for each integer i, φi(Gi) is the kernel of Gi+1. The sequence is of order 2 if
the composition of any two successive homomorphisms of the sequence yields
the trivial homomorphism.

If X is a space, define (A,B) × X := (A × X, B × X). Let I denote the
unit interval [0, 1]. Two maps f, g : (A,B) → (C,D) are said to be homotopic
if there is a map H : (A,B) × I → (C,D) such that f(x) = H(x, 0) and
g(x) = H(x, 1) for each x ∈ A. For t ∈ I, Ht denotes the map defined
by Ht(x) = H(x, t) for x ∈ A. A pair (A,B) contained in a pair (C,D)
is called a retract of (C,D) if there exists a map r : (C,D) → (A,B) such
that r(x) = x for each x in A. The map r is called a retraction. The pair
(A,B) is a deformation retract of (C,D) if there is a retraction r : (C,D) →
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(A,B) and the composition r ◦ i, where i : (A,B) → (C,D) is the inclusion, is
homotopic to the identity map (A,B) → (A,B). The pair (C,D) is a strong
deformation retract of (A,B) if the latter homotopy can be chosen to leave
each point of B fixed (i.e., H(x, t) = x for x ∈ B). The pairs (A,B) and
(C,D) are homotopically equivalent if there exist maps f : (A,B) → (C,D)
and g : (C,D) → (A,B) such that f ◦ g is homotopic to the identity on (C,D)
and g ◦ f is homotopic to the identity on (A,B).

For convenience, we list the axioms of cohomology and some other facts
that we use ([1] and [4]): Suppose (X, A), (Y, B), and (Z,C) are compact
pairs. If f : (X, A) → (Y, B) is continuous, then for each integer k, f induces
a homomorphism f∗k : Hk(Y, B) → Hk(X, A). As is customary, we depend
on context to tell which of the homomorphisms induced by f is intended, and
write only f∗ : Hk(Y, B) → Hk(X, A). For the pair (X, A), and integer k,
Hq(X, A) is the q–dimensional relative cohomology group of X mod A. Coho-
mology groups are abelian groups; our coefficient group is the group of integers
Z (thus this is also suppressed in the notation).

Axiom 1c. If f is the identity function on (X, A), then f∗ is the identity
isomorphism.

Axiom 2c. If f : (X, A) → (Y, B) and g : (Y, B) → (Z,C), then (g ◦ f)∗ =
f∗ ◦ g∗.

Axiom 3c. The boundary operator, denoted by δ, is a homomorphism
from Hk−1(A) to Hk(X, A) with the property that δ ◦ (f | A)∗ = f∗ ◦ δ.
(Again, the notation is ambiguous, and we rely on context to determine
which groups and which homomorphism is intended.)

Axiom 4c. (Partial exactness.) If i : A → X, j : X → (X, A) are inclusion
maps, then the upper sequence of groups and homomorphisms

· · · i∗→ Hk−1(A) δ→ Hk(X, A)
j∗→ Hk(X) i∗→ Hk(A) δ→ · · ·

is of order 2. If (X, A) is triangulable, the sequence is exact. This upper
sequence is called the cohomology sequence of the pair (X, A).

Axiom 5c. If the maps f, g are homotopic maps from (X, A) into (Y, B),
then f∗ = g∗.

Axiom 6c. (The excision axiom.) If U is open in X, and U is contained
in the interior of A, then the inclusion map i : (X\U,A\U) → (X, A)
induces isomorphisms, i.e., Hk(X, A) ∼= Hk(X\U,A\U) for all k.

Axiom 7c. If p is a point, then Hk({p}) = {0} for k 6= 0.
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Theorem [1] Suppose f : (X, A) → (Y, B) and g : (Y, B) → (X, A). If
f and g are homotopy equivalent, then f and g induce isomorphisms
f∗ : Hk(Y, B) → Hk(X, A) and g∗ : Hk(X, A) → Hk(Y, B) with
(f∗)−1 = g∗.

Theorem [1] If (X ′, A′) is a deformation retract of (X, A), then the inclu-
sion map i : (X ′, A′) → (X, A) induces isomorphisms i∗ : Hk(X, A) →
Hk(X ′A′). Furthermore, if r : (X, A) → (X ′, A′) is the associated re-
tract, then (i∗)−1 = r∗.

In addition to the usual cohomology axioms and theorems above, Čech–
Alexander–Spanier cohomology satisfies the following strong excision property
and weak continuity property :

Theorem [4] (Strong excision property.) Let (X, A) and (Y, B) be
pairs, with X and Y paracompact Hausdorff and A and B closed. Let
f : (X, A) → (Y, B) be a closed continuous map such that f induces a
one-to-one map of X\A onto Y \B. Then, for all k, f∗ : Hk(Y, B) →
Hk(X, A) is an isomorphism.

Theorem [4] (Weak continuity property.) Let {(Xα, Aα)}α be a fam-
ily of compact Hausdorff pairs in some space, directed downward by
inclusion, and let (X, A) = (∩α∈AXα,∩α∈AAα). The inclusion maps
iα : (X, A) ⊂ (Xα, Aα) induce an isomorphism

{i∗α} : lim
→

Hκ(Xα, Aα) → Hk(X, A).

Dynamical considerations often require us to consider pairs of pairs which
are rather similar. If P1 = (A,B) and P2 = (C,D) are pairs such that A ⊂ C
and B ⊂ D, A\B = C\D, and (A,B) is a deformation retract of (C,D), then
we say P2 is an expansion of P1. This could be the case in the above example
if C = [−1, 2] and D = [−1, 0] ∪ [1, 2]. Note that if D is identified to a point,
the fact that D is larger than B makes negligible difference.

When P2 is an expansion of P1, the pair inclusion map j : P1 → P2 induces
a map on the cohomology groups and that map is an isomorphism. Note that
P1 is a deformation retract of P2.

Proposition 1. [1] When P2 is a deformation retract of P1, j∗ : Hn(P1) →
Hn(P2) is an isomorphism for all n. Thus, when P2 is an expansion of P1,
j∗ : Hn(P2) → Hn(P1) is an isomorphism for all n.

Each Bi has the cohomology of a (k − 1)-sphere, and (Xi, Bi) has the
cohomology of (Dn, Sn−1), where Dn = {x ∈ Rn : d(x,0) ≤ 1} and Sn−1 =
{x ∈ Rn : d(x,0) = 1} (0 denotes the origin).
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For k a positive integer, the cohomology groups we need are

(a) H0(Sk) = Z, H0(S0) = Z ⊕ Z, Hk(Sk) = Z, and Hn(Sk) = {0} for
n 6= k;

(b) Hk(Dk, Sk−1) = Hk−1(Sk−1) = Z;
(c) H0(Dk) = Z, and Hn(Dk) = {0} for n 6= 0.

Some of the properties of cohomology are illustrated when soap bubbles are
created on a more or less circular frame Y . Some bubbles will exist independent
of the frame while other soap surfaces exist because of the frame. If E is
the latter type, it has a boundary E ∩ Y in Y , a boundary that contains a
topological circle that runs around Y . This may be stated in the language of
cohomology by saying that E has nonzero 2–dimensional cohomology stemming
from Y , and we write that the coboundary operator

δ : H1(E ∩ Y ) → H2(E,E ∩ Y )

has nonzero range. We will restrict attention to those E that lie in some
compact set X ∪ Y .

2.2. Chaos and the two-shift. Suppose that X is a metric space and Q
is a compact subset of X. A finite collection S = {S1, S2, . . . , Sp} of mutually
disjoint sets is a collection of symbol sets, and each Si is a symbol set. Recall
that a sequence S := (Si0 , Si1 , . . . , Sin , . . .), each member of which is a member
of S, is a forward itinerary. If f : Q → X is continuous, and x ∈ Q such
that for each nonnegative integer n, fn(x) ∈ Sin for all n = 0, 1, 2, . . ., where
fn(x) = f(fn−1(x)) for n ∈ N and f0(x) = x, we say the point x follows the
forward itinerary S. Next, when E is a nonempty family of nonempty closed
subsets of Q such that for each E ∈ E and each Si ∈ S, there is a compact
subset Di ⊂ E ∩ Si such that f(Di) ∈ E (that is, f(Di) expands Di to a
member of E), we call E a family of expanders for S, and each member E of E
an expander.

A closed subset Q∗ of Q is invariant under f if f(Q∗) = Q∗. If Q∗ is an
invariant set for f , and x ∈ Q∗, then fn(x) ∈ Q∗, and is thus defined, for
all n ∈ Ñ. In addition to “one-sided” sequences of points or sets (such as
S := (Si0 , Si1 , . . . , Sin , . . .) above), we may also discuss “two-sided” sequences
of points or sets. The former case means that subscripts are in Ñ, and the
latter that subscripts are in Z. Given a collection of sets S = {S1, S2, . . . , Sp},
we say sequence (one-sided or two-sided) is an itinerary (in S) if each Sin ∈ S.
A trajectory in a set Q∗ is a sequence (xn) for n either in Ñ (the one-sided
case) or Z (the two-sided case) such that xn+1 = f(xn) for all n. We say that
an itinerary (Sin) (either one-sided or two-sided) is followed in Q∗ if there is a
trajectory (xn) (one-sided or two-sided, respectively) in Q∗ such that xn ∈ Sin
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for each n. If x ∈ Q∗ and xi ∈ Q∗ for all i ∈ Ñ, then the sequence (xi)
separates from x (or, more precisely, the trajectories of xi separate from the
trajectory of x) if xi → x as i → ∞, and there is a δ > 0 such that for all
i > 0 there is an m = m(i) ∈ N such that d(fm(xi), fm(x)) ≥ δ for all i. A
point x having such a sequence (xi) with all xi in Q∗, is called sensitive to
initial data (in Q∗). We say a set Q∗ is chaotic if it is nonempty, invariant,
has a trajectory whose positive limit set is Q∗, and every x ∈ Q∗ is sensitive
to initial data in Q∗.

Lemma 2. (The Chaos Lemma [2].) Suppose that X is a metric space,
Q is a compact subset of X, f : Q → X is continuous, S = {S1, S2, . . . , Sp}
is a collection of symbol sets, with p ≥ 2, associated with the map f , and
E is an associated family of expanders for S. Then there is a closed, chaotic,
invariant subset Q∗ of Q such that for every two-sided itinerary S = (Sin)∞n=−∞
of members of S, there is a two-sided trajectory in Q∗ that follows it.

Suppose M is a positive integer greater than 1. Then
∑

M denotes the set
of all bi-infinite sequences s = (. . . s−1 • s0s1 . . .) such that si ∈ {1, 2, . . . ,M}.
If for s = (. . . s−1 • s0s1 . . .) and t = (. . . t−1 • t0t1 . . .) in

∑
M , we define

d(s, t) =
∞∑
i=0

|si−ti|
2i , then d is a distance function on

∑
M . The topological

space
∑

M generated by the metric function d is a Cantor set. A natural
homeomorphism on the space

∑
M is the shift homeomorphism σ defined by

σ(s) = σ(. . . s−1•s0s1 . . .) = (. . . s−1s0•s1 . . .) = s′ for s = (. . . s−1•s0s1 . . .) ∈∑
M , i.e., σ(s) = s′, where s′i = si+1. More specifically, the map σ is called the

shift on M symbols.

Proposition 3. Suppose that X is a metric space, Q is a compact subset
of X, f : Q → X is continuous, S = {S1, S2, . . . , Sp} is a collection of symbol
sets, with p ≥ 2, associated with the map f , and E is an associated family
of expanders for S. Then if Q∗ is the closed, chaotic, invariant subset of Q
guaranteed by the Chaos Lemma, there is a continuous map φ : Q∗ →

∑
2 such

that φ◦ (f | Q∗) = σ ◦φ. In other words, the dynamics of f on Q∗ factors over
the dynamics of the shift on 2 symbols.

2.3. Hénon-like maps and difference equations. For a, b ∈ R, pre-
sent day authors generally write maps Ha,b in the Hénon family as

Ha,b(x, y) = (a− by − x2, x)

with the corresponding difference equation being

xn+1 = a− bxn−1 − x2
n.

Usually, b is “small”, and the −bxn−1 term can be taken to represent the
presence of some noise in the system. The dynamics producing term in the
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difference equation is −x2
n. One could also consider the family H̃a,b of maps

defined by
H̃a,b(x, y) = (a− bx− y2, x)

with the corresponding difference equation being

xn+1 = a− bxn − x2
n−1.

Now the dynamics producing term is −x2
n−1, with −bxn contributing only

noise. Thus, a delay has been introduced.
We extend this idea to maps on arbitrarily high, but finite-dimensional

spaces Rm. We call a difference equation F : Rm → R Hénon-like with delay
k (where 1 ≤ k ≤ m) if there are m-dimensional cubes C, C1, and C2 in Rm

with C1 ∪ C2 ⊂ C, ε > 0, and maps Φ : Rm → R, and Ψ : R → R such that

(1) if Πk : Rm → R denotes the projection to the kth coordinate, and
Πk(Ci) = Ii for i = 1, 2, then Πk(C) ⊃ Ψ(Ii) ⊃ Dε(I1) ∪Dε(I2),

(2) |Φ(x)| < ε for x ∈ C,
(3) min{d(Ψ(x), y) : x ∈ I1 ∪ I2, y /∈ Πk(C)} > ε, and
(4) F (x) = Ψ(xk) + Φ(x) for x ∈ C.

The function F gives the form of the difference equation that interests
us, and we can write xn = F (xn−1, . . . , xn−m). However, we study F via its
m–dimensional dynamical system counterpart, namely,

f : Rm → Rm,

is defined by

f(u) = f


u1

u2
...

um

 =


F (u)
u1
...

um−1

 .

In our earlier paper [3], we considered low-dimensional Hénon-like maps (where
the tools of algebraic topology are not needed). Two examples from that paper
follow, and provide easy-to-understand examples of what we wish to achieve
in higher dimensions:

Example 4. (k = 1 example in the plane.) Let C = [−1, 1]× [−1, 1],
and −1 < a < b < c < d < 1. Let C1 = [a, b]× [−1, 1], C2 = [c, d]× [−1, 1]. If
F is a Hénon-like difference equation on R2 with delay k = 1 (with associated
ε > 0 and 2–cubes C, C1, and C2), and f is the associated dynamical system
on R2, then S = {C1, C2} is a collection of symbol sets for the associated map
f : R2 → R2, E = {E : E is a path in C that intersects both {a}× [−1, 1] and
{d} × [−1, 1]} is a family of expanders for S, and we can conclude that there
is a closed, invariant, chaotic subset C∗ of C such that f | C∗ factors over the
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shift on 2–symbols. Note that if E ∈ E , E contains subpaths E1 ⊂ C1 and
E2 ⊂ C2 such that f(Ei) ∈ E . (In fact, “f stretches Ci∩E across [a, d]× [−1, 1]
in the sense that f(Ci∩E) must contain a path that extends from {a}× [−1, 1]
to {d} × [−1, 1] in C”.) See Figure 4.

Figure 4. The set C and its image f(C) as they might look.

Example 5. (k = 2 example in the plane) Let C = [−1, 1] × [−1, 1],
and −1 < a < b < c < d < 1. Let C1 = [a, d] × [a, b], C2 = [a, d] × [c, d]. If
F is a Hénon-like difference equation on R2 with delay k = 2 (with associated
ε > 0 and 2–cubes C, C1, and C2), and f is the associated dynamical system
on R2, then S = {C1, C2} is a collection of symbol sets for the associated map
f : R2 → R2, E = {C1∪C2} is a family of expanders for S, and we can conclude
that there is a closed, invariant, chaotic subset C∗ of C such that f | C∗ factors
over the shift on 2–symbols. Note that for i = 1, 2, f(Ci) ⊃ C1 ∪ C2. (This
time,“f stretches Ci completely across [a, d]× [a, d]” in the sense that it covers
the entire rim of [a, d]× [a, d].)

In these two examples, each set Zi (from the introduction) is C, and C1

and C2 both correspond to Xi. It is this idea of f “stretching” each of two
smaller cubes C1 and C2 “across” the larger containing cube C that we must
make precise.
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3. Preliminary results

Recall that we have assumed the following:
(1) (Xi), (Yi) are sequences of compact sets in Rm; Bi := Xi ∩ Yi, Zi :=

Xi ∪ Yi; Zi and Xi are rectangles (products of intervals).
(2) For some k ≤ n, Bi is homeomorphic to Sk−1 × Ri (where Ri is a

rectangle) and is the union of some or all of the faces of Xi.
(3) f(Bi) ⊂ Yi+1, f(Xi) ⊂ Zi+1.
We now assume a stronger version of (3):
(3*) f is a continuous map from Rm to Rm, f | Xi : (Xi, Bi) → (Zi+1, Yi+1)

induces an isomorphism from Hk(Zi+1, Yi+1) onto Hk(Xi, Bi), and for
some ε > 0, f | (Dε(Xi) ∩ Zi) maps (Zi ∩ Dε(Xi), Yi ∩ Dε(Xi)) into
(Zi+1, Yi+1).

Definition. We say E k–crosses the pair (Z, Y ) if E is compact, E ⊂ Z,
and the inclusion map (E,E ∩ Y ) → (Z, Y ) induces an isomorphism from
Hk(Z, Y ) onto Hk(E,E ∩ Y ).

Lemma 6. Assume E k–crosses (Zi, Yi) and assume (1),(2), and (3*).
Then there is a compact set Ê ⊂ E such that f | Ê induces an isomorphism
from Hk(Zi+1, Yi+1) onto Hk(Ê, Ê ∩ Yi).

Proof. There is ε > 0 such that f | (Dε(Xi)∩Zi) maps (Zi∩Dε(Xi), Yi∩
Dε(Xi)) into (Zi+1, Yi+1). Let U = Zi\Dε(Xi). Then U ⊂ Yi, and, by ex-
cision, the inclusion i1 : (E\U, (E ∩ Yi)\U) → (E, (E ∩ Yi)) induces an iso-
morphism i∗1 : Hk(E, (E ∩ Yi)) → Hk(E\U, (E ∩ Yi)\U). Likewise, if i2 de-
notes the inclusion from (Zi\U, Yi\U) into (Zi, Yi), i∗2 is an isomorphism. By
assumption, the inclusion i4 : (E, (E ∩ Yi)) → (Zi, Yi), induces an isomor-
phism i∗4 : Hk(Zi, Yi) → Hk(E,E ∩ Yi). Let i3 denote the inclusion from
(E\U, (E∩Yi)\U) into (Zi\U, Yi\U). Since i4 ◦ i1 = i2 ◦ i3, and (i4 ◦ i1)∗ and i∗2
are isomorphisms, so is i3

∗. Thus, i∗3 is an isomorphism from Hk(Zi\U, Yi\U)
onto Hk(E\U, (E ∩ Yi)\U).

Suppose i5 denotes the inclusion map from (Xi, Bi) into (Zi\U, Yi\U).
Since (Zi\U, Yi\U) is an expansion of (Xi, Bi), i∗5 : Hk(Zi\U, Yi\U)→Hk(Xi, Bi)
is an isomorphism. Furthermore, f | Xi = (f | (Zi\U))◦ i5, and since (f | Xi)∗

and i∗5 are isomorphisms, so is (f | (Zi\U))∗. Then (f | (Zi\U))◦i3 : (E\U, (E∩
Yi)\U) → (Zi+1, Yi+1) induces an isomorphism, and (f | (Zi\U)) ◦ i3 = f |
(E\U). Let Ê = E\U . Then (f | Ê)∗ : Hk(Zi+1, Yi+1) → Hk(Ê, Ê ∩ Yi) is an
isomorphism.

Lemma 7. Suppose the pairs (Z, Y ) and (X, B) satisfy conditions (1) and
(2). Then if E k–crosses (Z, Y ), E ∩X k–crosses (X, B).
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Proof. Note that X∪Y = Z and X∩Y = B. For each positive integer n,
let Un = Z\D1/n(X). Then Un is open in Z, and Un ⊂ IntZY and Un∩X = ∅.
By assumption, the inclusion j : (E,E ∩ Y ) → (Z, Y ) induces an isomorphism
j∗ : Hk(Z, Y ) → Hk(E,E ∩ Y ). By excision, for each n, if jn : (E\Un, (E ∩
Y )\Un) → (Z\Un, Y \Un) denotes the inclusion, jn induces an isomorphism
j∗n : Hk(Z\Un, Y \Un) → Hk(E\Un, (E ∩ Y )\Un). Then applying the weak
continuity property to the associated intersection of pairs and associated direct
limit of cohomology groups, it follows that if jE : (E ∩X, E ∩B) → (X, B) is
the inclusion, j∗E : Hk(X, B) → Hk(E ∩X, E ∩B) is an isomorphism. Hence,
E ∩X k–crosses (X, B).

Lemma 8. Suppose (Z, Y ) and (Z, Y ′) are pairs that satisfy conditions (1)
and (2), and Y ′ ⊃ Y. Then the inclusion i : (Z, Y ) → (Z, Y ′) induces an
isomorphism i∗ : Hk(Z, Y ′) → Hk(Z, Y ).

Proof. There is a map β : (Z, Y ′) → (Z, Y ) such that β ◦ i is homotopic
to the identity on (Z, Y ), and if Λ = Z\Y ′, β|Λ is one to one. By the strong
excision property, β∗ is an isomorphism. Since β ◦ i is homotopic to id(Z,Y ),
(β ◦ i)∗ = i∗ ◦ β∗ is the identity isomorphism. Then i∗ is an isomorphism.

Lemma 9. Suppose (Z, Y ) and (Z, Y ′) are pairs that satisfy conditions (1)
and (2), and Y ′ ⊃ Y. Let X = Z\Y , X ′ = Z\Y ′, B = Z ∩ Y and B′ = Z ∩ Y ′.
Suppose E k–crosses (Z, Y ). Then E k–crosses (Z, Y ′) and E ∩X ′ k–crosses
(X ′, B′).

Proof. Let Λ = Z\Y ,Λ′ = Λ\(Z\Y ),Γ = Z\Y ′,Γ′ = Γ\(Z\Y ′). Since Λ
and Γ are m-dimensional rectangles, there is a homeomorphism β : (Λ,Λ′) →
(Γ,Γ′). Also, E ∩ Λ k–crosses (Λ,Λ′).

Let i : (Z, Y ) → (Z, Y ′), i1 : (E,E ∩ Y ) → (Z, Y ), i2 : (E,E ∩ Y ) →
(E,E∩Y ′), and i3 : (E,E∩Y ) → (E,E∩Y ′) denote the respective inclusions.
Then i1 and i induce isomorphisms, and i◦ i1 = i2 ◦ i3. Thus, (i2 ◦ i3)∗ = i∗3 ◦ i∗2
is an isomorphism.

Let j : (E ∩ Γ, E ∩ Γ′) → (Γ,Γ′), and j1 : (β−1(E ∩ Γ), β−1(E ∩ Γ′)) →
(Λ,Λ′) denote the inclusions. Note that β|β−1(E ∩ Γ) is a homeomorphism
from (β−1(E ∩ Γ), β−1(E ∩ Γ′)) to (E ∩ Γ, E ∩ Γ′). Furthermore, β ◦ j1 =
j ◦ β|β−1(E ∩ Γ), and β|β−1(E ∩ Γ), β, and j induce isomorphisms. Then j1

also induces an isomorphism. Then Hk(β−1(E ∩Γ), β−1(E ∩Γ′)) and Hk(E ∩
Γ, E∩Γ′) are isomorphic to the integers. Then Hk(E,E∩Y ′) is also isomorphic
to the integers, and it follows that i∗3 is an epimorphism from Hk(Z, Y ′) to
Hk(E,E ∩ Y ′), with both groups being isomorphic to the integers. Thus, i∗2
is an isomorphism, and E k–crosses (Z, Y ′). That E ∩ X ′ k–crosses (X ′, B′)
follows from Lemma 4.
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4. The Difference Equation as an m–dimensional map

We can rewrite our difference equation in a slightly different form corre-
sponding more closely to the properties we use.

The difference equation F: Suppose ε > 0, 0 < a11 < a12 < a21 < a22 < 1,
and k is an integer with 1 ≤ k ≤ m. Let J = [0, 1], I1 = [a11, a12], and
I2 = [a21, a22]. Suppose F : Rm → R, Φ : Rm → R, and Ψ : R → R such that

(1) for i = 1, 2, Ψ(Ii) = [ε, 1 − ε] with Ψ(a11) = Ψ(a22) = ε and Ψ(a21) =
Ψ(a12) = 1− ε,

(2) |Φ(x)| < ε for x ∈ Jm,

(3) min{a11, 1− a22} > 2ε, and

(4) F (x) = Ψ(xk) + Φ(x) for x ∈ Jm.

The function F gives the Hénon-like difference equation we are interested
in, and we can write xn = F (xn−1, . . . , xn−m). However, we study F via its
m–dimensional dynamical system counterpart, namely,

f : Rm → Rm,

is defined by

f(u) = f


u1

u2
...

um

 =


F (u)
u1
...

um−1


for u ∈ Rm. (We write the points of Rm as m-dimensional column vectors for
convenience.) We use several simplifications of f in order to prove that it has
the properties we claim, and for those we need to define several new maps:

(1) Define h : Rm → Rm by

u1
...

uk−1

uk

uk+1
...

um


h
→



uk

u1
...

uk−1

uk+1
...

um


.
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(2) Define g : Rm → Rm by

u1
...

uk−1

uk

uk+1
...

um


g
−→



u1
...

uk−1

F (u)
uk
...

um−1


.

(3) Define T : R → R by

T (x) =


0 if x ≤ a11

x−a11
a12−a11

if a11 ≤ x ≤ a12

1 if a12 ≤ x ≤ a21
a22−x

a22−a21
if a21 ≤ x ≤ a22

0 if x ≥ a22

.

(See Figure 5.)

Figure 5. Graph of the map T .
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(4) Define g0 : Rm → Rm by

g0(u) = g0


u1

u2
...

um

 =



u1
...

uk−1

F (u)
uk+1

...
um


.

(5) Note that a11 > F (u) > 0 if uk = a11 or uk = a22, and a22 < F (u) < 1
if uk = a12 or uk = a21. Define gaff : Rm → Rm by

gaff (u) = gaff


u1

u2
...

um

 =



u1
...

uk−1

T (uk)
uk+1

...
um


.

We are interested in the behavior of f on Jm only, so from now on, we
consider only the behavior of f , g, h, g0, and gaff restricted to Jm. In section
2 we discussed how (Xi, Bi) is cohomologically identical to (Zi, Yi), the latter
being an “expanded” version of the former. We need to consider a number of
such pairs.

For i, j = 1, 2, define

(a) Ĩi = Jk−1 × Ii × Jm−k,
(b) Îi = Jk−2 × Ii × Jm−k+1,
(c) Ĩi,j = Jk−2 × Ij × Ii × Jm−k,
(d) Ri,j = Ĩi\((a11, a22)k−2 × (aj1, aj2)× (ai1, ai2)× Jm−k),

(e) R̂i,j = Jm\((a11, a22)k−2 × (aj1, aj2)× (ai1, ai2)× Jm−k),
(f) Ki = Jm\((a11, a22)k−2 × (ai1, ai2)× (a11, a22)× Jm−k),
(g) K̃i = Jm\((a11, a22)k−2 × (ai1, ai2)× (0, 1)× Jm−k),
(i) Li = Jm\((a11, a22)k−1 × (ai1, ai2)× Jm−k),
(j) P̂i = (Jm, Li),
(k) Pi = (Jk−1 × Ii, ∂(Jk−1 × Ii))× Jm−k,
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(l) Qi = (Jm,Ki),
(m) Oi,j = (Ĩi, Ri,j), and

(n) P̂i,j = (Jm, R̂i,j).

In our paper [3] we considered the case m = k and in effect showed that
both Ĩ1 and Ĩ2 are subsets of each f(Ĩi) for both i = 1 and 2. That is a special
case of Ĩ1 and Ĩ2 being mapped by f across both Ĩ1 and Ĩ2. When m > k,
a more general example would be to picture intuitively the image of Ĩi as a
k-dimensional surface with boundary, with the surface stretching across the
boundary ∂(Jk−1 × Ii)× Jm−k.

Lemma 10. For each i, j = 1, 2, (f | Oij)∗ maps Hk(P̂j) isomorphically
onto Hk(Oij).

Proof. The proof requires a couple of steps. Fix i ∈ {1, 2} and j ∈ {1, 2}.
Note that gaff (Ĩi) = Jm, gaff (Ĩi,j) = Îj , gaff (Ri,j) = K̃j ⊂ Kj , so gaff | Oij :
Oij → Qj . Likewise, g0 | Oij : Oij → Qj and g | Oij : Oij → Qj .

Since gaff | Oi,j can be viewed as both a map from Oi,j to Qj and as a map
from Oi,j to (Jm, K̃j), and we need to distinguish between these two, denote
gaff | Oi,j : Oi,j → (Jm, K̃j) as g̃aff , while continuing to denote gaff | Oi,j :
Oi,j → Qj as gaff | Oi,j . The map g̃aff : Oij → (Jm, K̃j) is a homeomorphism,
so g̃aff

∗ : Hk(Jm, K̃j) → Hk(Oij) is an isomorphism. If i : (Jm, K̃j) → Qj

denotes the inclusion map, i∗ : Hk(Qj) → Hk(Jm, K̃j) is an isomorphism by
Lemma 5.

The map g0 | Oij is homotopic to gaff | Oij : Define H : Oij × [0, 1] → Qj

by
(H(x, t))k = t(g0(x))k + (1− t)(gaff (x))k,

(H(x, t))l = xl = (gaff (x))l = (g0(x))l for k 6= l.

Thus, (g0 | Oij)∗ : Hk(Qj) → Hk(Oij) is equal to (gaff | Oij)∗ : Hk(Qj) →
Hk(Oij).

The map g0 | Oij is homotopic to the map g | Oij : First define θ : Oij ×
[0, 1] → Oij by

θ(x, t)l = xl for l < k,
θ(x, t)k = xk for l = k,
θ(x, t)l = t(xl−1) + (1− t)(xl) for l > k.

Define Υ : Oij × [0, 1] → Qj by

(Υ(x, t))l = xl = (g(x))l = (g0(x))l for l < k,
(Υ(x, t))k = F (θt(x)) for l = k,

(Υ(x, t))l = t(xl−1) + (1− t)(xl) for l > k.
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Thus, (g0 | Oij)∗ : Hk(Qj) → Hk(Oij) is equal to (g | Oij)∗ : Hk(Qj) →
Hk(Oij).

We write f as a composition of maps: Note that f = h ◦ g. The map h
permutes the first k arguments, and is therefore a homeomorphism from Qj

to P̂j . Since h is a homeomorphism, h∗ is an isomorphism. Hence to show f∗

is an isomorphism, we need only show that g∗ is an isomorphism. But, by the
preceding arugument, it is.

Theorem 11. Let i, j ∈ {1, 2}. Let E denote a compact set in Rm that
k–crosses P̂i. Then E contains a closed subset Ê such that f(Ê) k–crosses P̂j.

Proof. Note that, by Lemma 6, E k–crosses P̂i means that E ∩ Ĩi k–
crosses Oi,j . A consequence of Lemma 3 is that there is a compact set Ê =
E ∩Dε(Ĩi,j)∩ Ĩi ⊂ E ∩ Ĩi such that f | Ê induces an isomorphism from Hk(P̂j)
onto Hk(Ê, Ê ∩ R̂i,j). We use the notation of the previous lemma.

Since gaff is homotopic to g0, and g0 is homotopic to g, g∗aff = g∗0 = g∗.
Further, gaff = i ◦ g̃aff , where g̃aff is a homeomorphism from (Ĩi, Rij) onto
(Jm, K̃j) and i : (Jm, K̃j) → (Jm,Kj) is the inclusion. Likewise, g0 = j ◦ g̃0,
where g̃0 : (Ĩi, Rij) → (g0(Ĩi), g0(Rij)) and j : (g0(Ĩi), g0(Rij)) → (Jm,Kj)
is the inclusion, and g = j1 ◦ g̃, where g̃ : (Ĩi, Rij) → (g(Ĩi), g(Rij)) and
j1 : (g(Ĩi), g(Rij)) → (Jm,Kj) is the inclusion.

From the previous lemma, g∗aff = g∗0 = g∗ is an isomorphism, g̃∗aff is
an isomorphism, and i∗ is an isomorphism. Then j∗ and j∗1 must be epi-
morphisms. Note that Jm\K̃j is homeomorphic to g0(Ĩi)\g0(Rij) (only the
kth coordinate of any point is changed, and it is not changed much and is
changed continuously). Then there is an isomorphism from Hk(Jm, K̃j) onto
Hk(g0(Ĩi), g0(Rij)), and Hk(g0(Ĩi), g0(Rij)) must be isomorphic to the integers,
as are Hk(Jm, K̃j), Hk(Jm,Kj), and Hk(Ĩi, Rij). Then j∗ : Hk(Jm,Kj) →
Hk(g0(Ĩi), g0(Rij)) is an epimorphism from between groups isomorphic to the
integers, so j∗ is an isomorphism. Thus, (g0(Ĩi), g0(Rij)) k–crosses (Jm,Kj).

Suppose

w =

 wk+2
...

wm

 ∈ Jm−k−1.
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Let

C =





x1
...

F (θ1(x))
xk

wk+2
...

wm


: g0(x) ∈ g0(Ĩi)


and

D =





x1
...

F (θ1(x))
xk

wk+2
...

wm


: g0(x) ∈ g0(Rij)


.

Then (C,D) is a deformation retract of (g0(Ĩi), g0(Rij)), so Hk(C,D) =
Hk(g0(Ĩi), g0(Rij)). Likewise, let

C ′ =





x1
...

F (θ1(x))
xk

wk+2
...

wm


: g(x) ∈ g(Ĩi)


and

D′ =





x1
...

F (θ1(x))
xk

wk+2
...

wm


: g(x) ∈ g(Rij)


.

Then (C ′, D′) is a deformation retract of (g(Ĩi), g(Rij)), so Hk(C ′, D′) =
Hk(g(Ĩi), g(Rij)). Furthermore, (C,D) = (C ′, D′). Then Hk(g(Ĩi), g(Rij)) =
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Hk(g0(Ĩi), g0(Rij)), so Hk(g(Ĩi), g(Rij)) is isomorphic to Z. Then j1 induces
an isomorphism, and g(Ĩi) k–crosses (Jm,Kj). Then, since h just permutes
factors and is a homeomorphism, and h◦g = f , f(Ĩi) k–crosses (Jm, Lj) = P̂j .

Now suppose E k–crosses P̂i. Then Ê = E ∩ Ĩi k–crosses (Ĩi, Rij). Thus,
if i3 : (Ê ∩ Ĩi, Ê ∩Rij) → (Ĩi, Rij) is the inclusion, i∗3 is an isomorphism. Since
f : (Ĩi, Rij) → (Jm, Lj) induces an isomorphism, α := f ◦ i3 induces an isomor-
phism from Hk(Jm, Lj) = Hk(P̂j) onto Hk(Ê∩ Ĩi, Ê∩Rij). Furthermore, each
of Hk(Ê ∩ Ĩi, Ê ∩Rij) and Hk(Jm, Lj) is isomorphic to Z. We can regard α as
both a map from (Ê ∩ Ĩi, Ê ∩Rij) into P̂j and as a map from (Ê ∩ Ĩi, Ê ∩Rij)
onto (f(Ê ∩ Ĩi), f(Ê ∩Rij)), so to distinguish, we call the latter α̃.

We need to backtrack:
(a) g̃aff ◦i3 can be regarded as a homeomorphism from (Ê∩Ĩi, Ê∩Rij) onto

(gaff (Ê∩ Ĩi), gaff (Ê∩Rij)), and it follows that Hk(gaff (Ê∩ Ĩi), gaff (Ê∩Rij))
is isomorphic to Z.

(b) Let Λ = Jm\Rij , Λ′ = Λ\Rij . Then E ∩ Λ = Ê ∩ Λ k–crosses (Λ,Λ′).
Since g0, j, and g̃0 induce isomorphisms, so does

g̃0|(E ∩ Λ) : (E ∩ Λ, E ∩ Λ′) → (g0(Ĩi), g0(Rij).

Let Γ = Jm\K̃j ,Γ′ = Γ\K̃j , Ω = g0(Λ)\g0(Λ′),Ω′ = Ω\(g0(Λ)\g0(Λ′)). Since
Jm\K̃j is homeomorphic to Ω = g0(Ĩi)\g0(Rij), there is a homeomorphism
λ : (Ω,Ω′) → (Γ,Γ′). Let ∆ = g−1

aff ◦λ◦g0(E∩Λ),∆′ = g−1
aff ◦λ◦g0(E∩Λ′). Note

that ∆ ⊂ Λ and ∆′ ⊂ Λ′. Define γ : (E∩Λ, E∩Λ′) → (∆,∆′) by γ(x) = g−1
aff ◦

λ◦g0(x). Then γ is continuous and onto, and γ = g̃−1
aff ◦λ◦ (g̃0|(E∩Λ)). Since

each of g̃−1
aff , λ, and g̃0|(E∩Λ) induces an isomorphism, so does γ. It also follows

that Hk(g0(E∩Λ), g0(E∩Λ′)) and Hk(g0(Ê∩Ĩi), g0(Ê∩Rij)) are isomorphic to
Z. Then j∗3 is an isomorphism, with j3 : (g0(Ê ∩ Ĩi), g0(Ê ∩Rij)) → (Jm,Kj),
and (g0(Ê ∩ Ĩi), g0(Ê ∩Rij)) k–crosses (Jm,Kj).

(c) That (g(Ê ∩ Ĩi), g(Ê ∩Rij)) k–crosses (Jm,Kj) follows from the argu-
ment that (g(Ĩi), g(Rij)) k–crosses (Jm,Kj).

(d) Finally, since h is a homeomorphism, (f(Ĩi), f(Rij)) k-crosses (Jm,Kj).

5. Conclusion

We are ready then for our main conclusion. We use the notation of the
previous section. Combining the results of the previous section with the Chaos
Lemma, we have the following:
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Theorem 12. Let S = {Ĩ1, Ĩ2} be our collection of symbol sets. Let E =
{E ⊂ Jm : E is closed and E contains closed subsets Ei such that Ei k–crosses
P̂i for i = 1, 2} denote the associated collection of expanders. Then the map f
is chaotic on a closed, invariant subset Q∗ of Jm such that for every two-sided
itinerary S = (Sin)∞n=−∞ of members of S, there is a two-sided trajectory in
Q∗ that follows it. Furthermore, (1) f is sensitive to intial data on Q∗, and
(2) there is a continuous map φ : Q∗ →

∑
2 such that φ ◦ (f | Q∗) = σ ◦φ, i.e.,

the dynamics of f on Q∗ factors over the dynamics of the shift on 2 symbols.
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