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Abstract. A local structure theorem for conformally flat manifolds of di-
mension n > 4 with condition of recurrent type imposed on Riemann cur-
vature tensor is proved. It appears that the condition describes almost
exactly the subprojective manifolds.

1. Introduction. Recently M. Prvanović ([6]) introduced a type of man-
ifold (M, g) whose (0, 4) curvature tensor R satisfies

(1)

∇ZR(X,Y, U, V )
= A(Z) [R(X,Y, U, V ) + (β − ψ)G(X,Y, U, V )]
+β

2 [A(X)G(Z, Y, U, V ) +A(Y )G(X,Z,U, V )
+A(U)G(X,Y, Z, V ) +A(V )G(X,Y, U, Z)] ,

where β, ψ are functions on M, A is a closed form satisfying βA( ∂
∂xr ) = ∂ψ

∂xr

and G(X,Y, U, V ) = g(Y, U)g(X,V ) − g(Y, V )g(X,U). She proved that in a
neighbourhood of a generic point the associated 1–form A is concircular, i. e.

(∇A) (X,Y ) = Fg(X,Y ) +HA(X)A(Y )

holds for some functions F, H, and found the local form of the metric ([6]). The
condition (1) can be considered as a generalisation of the well known notion of
a recurrent manifold (∇ZR = a(Z)R, ([8])) as well as of a generalised recurrent
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manifold introduced by Dubey ([2])

(2) ∇ZR(X,Y, U, V ) = K(Z)R(X,Y, U, V ) + L(Z)G(X,Y, U, V ).

On the other hand, M.C. Chaki ([1]) introduced and studied a type of manifolds
satisfying

∇ZR(X,Y, U, V )
= 2a(Z)R(X,Y, U, V ) + a(X)R(Z, Y, U, V )
+a(Y )R(X,Z,U, V ) + a(U)R(X,Y, Z, V ) + a(V )R(X,Y, U, Z)

known as pseudo-symmetric (in the sense of Chaki) or quasi-recurrent.
In the paper, we consider manifolds satisfying a condition including the

above ones. For such manifolds being simultaneously conformally flat and of
dimension n > 4 we prove the local structure theorem. It appears that the
condition describes almost exactly the subprojective manifolds.

All manifolds under consideration are connected, smooth, Hausdorff and
their metrics need not to be definite.

2. Preliminaries. Using the symmetries of the curvature tensor R as well
as the Bianchi’s identities the condition (1) yields

(3)

∇ZR(X,Y, U, V )
= 2a(Z)R(X,Y, U, V )
+2b(Z)G(X,Y, U, V ) + b(X)G(Z, Y, U, V )
+b(Y )G(X,Z,U, V ) + b(U)G(X,Y, Z, V ) + b(V )G(X,Y, U, Z)

for some covectors a and b (c.f. [4]). By the same method, one can prove even
a more general statement.

Lemma 1. If

∇X1R(X2, X3, X4, X5) =
∑
σ∈S5

σ
a (Xσ(1))R(Xσ(2), Xσ(3), Xσ(4), Xσ(5))

+
∑
σ∈S5

σ
b (Xσ(1))G(Xσ(2), Xσ(3), Xσ(4), Xσ(5))

for some covectors
σ
a and

σ
b, σ being a permutation, then there exist covectors

a and b such that

(4)

∇ZR(X,Y, U, V )
= 2a(Z)R(X,Y, U, V ) + a(X)R(Z, Y, U, V )
+a(Y )R(X,Z,U, V ) + a(U)R(X,Y, Z, V ) + a(V )R(X,Y, U, Z)
+2b(Z)G(X,Y, U, V ) + b(X)G(Z, Y, U, V )
+b(Y )G(X,Z,U, V ) + b(U)G(X,Y, Z, V ) + b(V )G(X,Y, U, Z)

holds.
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Moreover, applying the second Bianchi identity to (3) we get

a(X)R(Y, Z) + a(Y )R(Z,X) + a(Z)R(X,Y ) = 0.

Making use of the last equality we are in a position to transform (1) into (4).
A similar result holds for (2).

Any manifold satisfying (3) is conformally recurrent (∇ZC = a(Z)C). The
converse statement is not true in general: a conformally recurrent manifold
with recurrent Ricci tensor need not to satisfy (3).

For a given (0, 2) tensor A and a generalised curvature tensor R define the
tensor P (A,R) with components

P (A,R)hijklm =
2 (AlmRhijk +AhiRjklm +AjkRlmhi) +
AhmRlijk −AhlRmijk +AimRhljk −AilRhmjk +AjmRhilk −AjlRhimk+
AkmRhijl −AklRhijm +AjiRhklm −AjhRiklm +AkiRjhlm −AkhRjilm.

Lemma 2. ([3, p. 194–195]) If Alm = −Aml and P (A,R)hijklm = 0, then
either Alm = 0 for all l, m or Rhijk = 0 for all h, i, j, k.

Lemma 3. ([8]). The curvature tensor of an arbitrary manifold (M, g)
satisfies the equation

Rhijk,[lm] +Rjklm,[hi] +Rlmhi,[jk] = 0.

Lemma 4. ([7]) If cj , pj and Bhijk are numbers satisfying

clBhijk + phBlijk + piBhljk + pjBhilk + pkBhijl = 0,

Bhijk = −Bihjk = Bjkhi, Bhijk +Bhjki +Bhkij = 0,
then either cj + 2bj = 0 for all j or Bhijk = 0 for all h, i, j, k.

Differentiating covariantly (4) and making use of Lemma 3, we obtain

P (A,R) + P (B,G) = 0,

where A = da and B = db. In virtue of Lemma 2 it is clear that if (M, g) is not
of constant curvature, then the forms a and b either both are gradients or both
are not. On the other hand, if (4) holds on a manifold of constant curvature,
then a and b are proportional by virtue of Lemma 4.

A space of affine connection is said to be subprojective ([5, p. 164]) if both:
• under a mapping onto pseudo-euclidean space the image of each geodesic

is contained in two-dimensional plane;
• all such planes have either a common point or are parallel to each other.

Lemma 5. ([5, p. 184]) A Riemannian manifold (M, g), dimM ≥ 3, is
subprojective if and only if it is conformally flat and its (0, 2) Ricci tensor S
satisfies
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(5) S(X,Y )− TrS

2(n− 1)
g(X,Y ) = P (v)g(X,Y ) +Q(v)X(v)Y (v)

for some non-constant function v.

Lemma 6. ([5, p. 176]) If (M, g) is a subprojective Riemannian mani-
fold, then in a neighbourhood of each point there exists a coordinate system
x1, . . . , xn such that the metric takes the form either

(6) ds2 = (dx1)2 + p2(x1)ds21,

where ds21 = fabdx
adxb is a metric of an (n−1)–dimensional space of constant

curvature, or

(7) ds2 = 2dx1dx2 + p2(x1)ds22,

where ds22 is a metric of (n− 2)–dimensional pseudoeuclidean space.

3. Conformally flat manifolds. Let M , dimM ≥ 3, be a conformally
flat manifold. Then on M the following well-known relations hold:

(8)
Rhijk = 1

n−2 (gijRhk − gikRhj + ghkRij − ghjRik) +
r

(n−1)(n−2)(gijghk − gikghj),

(9) Rij,k −Rik,j −
1

2(n− 1)
(gijr,k − gikr,j) = 0,

where Rij = S (∂i, ∂j) , r = TrS.
Following the considerations made in the proof of [3, Theorem 2] we obtain

Theorem 7. Let M, dimM ≥ 3, be a conformally flat manifold whose cur-
vature tensor satisfies (4) and the fundamental forms a, b are locally gradients.
If al(x) 6= 0, x ∈M, then there exists a neighbourhood of x such that

(10) Rij = Fgij +Haiaj ,

F, H being functions and

(11)
Rij,l = 2F (aiglj + ajgil) + 4Haiajal

+ r
n−1(2gijal − gljai − gilaj) + 2ngijbl + (n− 2)(gljbi + gilbj).

Remark 1. Manifolds satisfying (10) are called quasi-Einstein.

We also have

Theorem 8. Let M be a manifold with vanishing Weyl conformal cur-
vature tensor and suppose that the Ricci tensor and its covariant derivative
satisfy (10) and (11). Then:
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(a)
Rhijk =

1
n− 2

[(
2F − r

n− 1

)
(gijghk − gikghj)

+ H (gijahak − gikahaj + ghkaiaj − ghjaiak)] ,

i.e. M is of almost constant curvature;
(b) relation (4) holds on M.

Proposition 9. Let M be a conformally flat manifold, dimM > 4, whose
curvature satisfy (4) and the fundamental form a is locally a gradient. If
a(x) 6= 0, R (x) 6= 0, x ∈M, then there exist a neighbourhood U and a function
a defined on U satisfying al = a,l, such that F = F (a), H = H(a), B = ara

r =
B(a), where F, H are defined by (10).

Proof. Differentiating covariantly (10) and substituting into (9) we get
(12)

0 = Fkgij +Hkaiaj +Hai,kaj − Fjgik −Hjaiak −Hai,jak−
1

2(n−1) [gij (nFk +HkB + 2Har,kar)− gik (nFj +HjB + 2Har,jar)] ,

where Fk = F,k, Hk = H,k. Contracting (12) with gij we obtain

(13)
n− 2

2
Fk =

−1
2
HkB +Hra

rak +Har,rak = 0,

whence, multiplying by ai and alternating in (i, k), we find

(14) (n− 2) (Fkai − Fiak) = −B (Hkai −Hiak) .

Moreover, transvecting (12) with ai and applying (13) we get

(15) B (Hkaj −Hjak) = −H (ajar,kar − akar,ja
r) .

On the other hand, substituting (10) into the left hand side of (11), we
have

(16)
Flghk +Hlahak +Hah,lak +Hahak,l
= 2F (ahglk + akghl) + 4Hahakal + r

n−1 (2ghkal − glkah − ghlak)
+2nghkbl + (n− 2) (glkbh + ghlbk) ,

whence, by contraction with ghk,

nFl +HlB + 2Har,lar = [(2n+ 4)F + 6HB] al + 2(n+ 2)(n− 1)bl.

Multiplying by ai and alternating in (i, l), in virtue of (15) and (14), we obtain

(17) aiFl − alFi = (n+ 2) (aibl − albi) .

Moreover, multiplying (16) by am alternating in (l,m) and applying (17), we
obtain

(n− 2) (blam − bmal) ghk = ahUklm + akUhlm − bhVklm − bkVhlm
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for some tensors Uklm and Vklm. Suppose that blam−bmal 6= 0 at a point x ∈M.
Then we can choose at x two vectors vl, wl such that (blam−bmal)vlwm(x) 6= 0.
Transvecting the last equation with vlwm we get

ghk = ahtk + akth − bhuk − bkuh,

whence rank [ghk] ≤ 4 results, a contradiction. Therefore blam−bmal = 0 and,
in virtue of (17),

aiFl − alFi = 0

holds. Hence F = F (a), b = b(a) follow, where a is a function such that
a,l = al.

Now we shall prove H = H(a). Multiplying (16) by am and alternating in
(h,m), by the use of Fl = F ′al and bl = b′al, we get

(18)

(
F ′ − 2r

n−1 − 2nb′
)
al(amghk − ahgmk) +Hak(ah,lam − am,lah)

=
(
2F − r

n−1 + (n− 2)b′
)
ak(amghl − ahgml).

Symmetrizing in (k, l), we find

(19)
H(ah,kam − am,kah)
=

(
2F − F ′ + r

n−1 + (3n− 2)b′
)

(amghk − ahgmk).

Substituting (19) into (18) we easily find

(20)
(
F ′ − 2r

n− 1
− 2nb′

)
al = 0

and, consequently,

(21) H(ah,kam − am,kah) =
(

2F − r

n− 1
+ (n− 2)b′

)
(amghk − ahgmk).

Now, multiplying (16) by am and alternating in (l,m) we obtain

ahak(Hlam −Hmal) +Hah(amak,l − alak,m) +Hak(amah,l − alah,m)
=

(
2F − r

n−1 + (n− 2)b′
)

(ahamglk + akamghl − ahalgmk − akalghm) ,

which, by substituting (21), yields ak(Hlam − Hmal) = 0. This proves H =
H(a).

Finally, since r = nF + HB, using (20), we obtain B = B(a). This com-
pletes the proof.

Theorem 10. (a) Let M , dimM > 4, be a conformally flat manifold whose
curvature satisfies (4) but is not recurrent and the fundamental form a is locally
a gradient. If a(x) 6= 0, R (x) 6= 0, x ∈ M, then there exists a coordinate
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neighbourhood (U, (xj)) such that the metric of M takes the form (6) where
p = p(x1) is a function in x1 variable only such that

(22) E + p′ (x)2 6= 0 or p′′ (x) 6= 0

and

(23) pp′′ 6= p′2 + E

(b) Let U be an open subset of Rn, n > 4, endowed with a metric g of the form
(6) such that (23) is satisfied. Then (U, g) is a non-recurrent conformally flat
manifold satisfying (4).

Proof. (a) In virtue of Theorem 7, Proposition 9 and Lemmas 5 and 6 we
state that in some neighbourhood of x the manifold must be subprojective and
the metric is of the form either (7) or (6). In the first case a straightforward
computations show us that the curvature tensor is recurrent.

On the other hand, for the metric (6) the only components of the Christoffel
symbols and the curvature tensor which may not vanish are

Γcab = Γcab, Γ1
ab = −pp′fab, Γc1b = p′

p fab,

Rabcd = p2
(
E + p′2

)
fabcd, R1bc1 = pp′′fbc,

where a, b, c, ... = 2, ..., n, E = [(n− 1) (n− 2)]−1 r, the dash denotes objects
in the metric ds21 = fabdx

adxb and fabcd = fbcfad − fbdfac.
Computing the components of the covariant derivative of R and making

use of (4) we obtain pairs of equations:

(24) Rabcd,1 = 2pp′
(
pp′′ − p′2 − E

)
fabcd,

Rabcd,1 = 2a1Rabcd + 2b1Gabcd;

(25)
Rabcd,e = 0,
Rabcd,e = 2aeRabcd + aaRebcd + abRaecd + acRabed + adRabce

+2beGabcd + baGebcd + bbGaecd + bcGabed + bdGabce;

(26)
R1bcd,1 = 0,
R1bcd,1 = acR1b1d + adR1bc1 + bcG1b1d + bdG1bc1;

(27) R1bcd,e = pp′
(
pp′′ − p′2 − E

)
febcd,

R1bcd,e = a1Rebcd + b1Gebcd;

(28)
R1bc1,1 = (pp′′′ − p′p′′) fbc,
R1bc1,1 = 4a1R1bc1 + 4b1G1bc1;

(29)
R1bc1,e = 0,
R1bc1,e = abR1ec1 + acR1be1 + bbG1ec1 + bcG1be1;
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Pair (24) is equivalent to (27) and (26) to (29). Then (25) and (26) yield
be = p′′

p ae and ae
(
pp′′ − p′2 − E

)
= 0. If pp′′ 6= p′2 + E, then ae = be = 0 and

the system (24)–(28) has a unique solution with respect to a1, b1. Otherwise
we get p′p′′

(
1− p′2

)
= 0.

(b) Straightforward calculation.

Corollary 11. It can be easily seen that a manifold M endowed with
metric (6) is locally symmetric and non-flat if and only if pp′′ = p′2 + E on
M. Thus, if M is a subprojective and non-recurren manifold then the condition
(4) holds on M and conversely.
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