NOTES ON EXTENDED RECURRENT AND EXTENDED QUASI-RECURRENT MANIFOLDS

by StanisŁaw Ewert-Krzemieniewski
Dedicated to Professor Dr. Witold Roter on his seventieth birthday.

Abstract

A local structure theorem for conformally flat manifolds of dimension $n>4$ with condition of recurrent type imposed on Riemann curvature tensor is proved. It appears that the condition describes almost exactly the subprojective manifolds.

1. Introduction. Recently M. Prvanović ([6) introduced a type of manifold (M, g) whose (0,4) curvature tensor R satisfies

$$
\begin{align*}
& \nabla_{Z} R(X, Y, U, V) \\
& =A(Z)[R(X, Y, U, V)+(\beta-\psi) G(X, Y, U, V)] \tag{1}\\
& +\frac{\beta}{2}[A(X) G(Z, Y, U, V)+A(Y) G(X, Z, U, V) \\
& +A(U) G(X, Y, Z, V)+A(V) G(X, Y, U, Z)]
\end{align*}
$$

where β, ψ are functions on M, A is a closed form satisfying $\beta A\left(\frac{\partial}{\partial x^{r}}\right)=\frac{\partial \psi}{\partial x^{r}}$ and $G(X, Y, U, V)=g(Y, U) g(X, V)-g(Y, V) g(X, U)$. She proved that in a neighbourhood of a generic point the associated 1-form A is concircular, i. e.

$$
(\nabla A)(X, Y)=F g(X, Y)+H A(X) A(Y)
$$

holds for some functions F, H, and found the local form of the metric ($\mathbf{6} \mathbf{6})$. The condition (1) can be considered as a generalisation of the well known notion of a recurrent manifold $\left(\nabla_{Z} R=a(Z) R,([\mathbf{8}))\right.$ as well as of a generalised recurrent

[^0]manifold introduced by Dubey ([2])
\[

$$
\begin{equation*}
\nabla_{Z} R(X, Y, U, V)=K(Z) R(X, Y, U, V)+L(Z) G(X, Y, U, V) . \tag{2}
\end{equation*}
$$

\]

On the other hand, M.C. Chaki ($\mathbf{1}$) introduced and studied a type of manifolds satisfying

$$
\begin{aligned}
& \nabla_{Z} R(X, Y, U, V) \\
& =2 a(Z) R(X, Y, U, V)+a(X) R(Z, Y, U, V) \\
& +a(Y) R(X, Z, U, V)+a(U) R(X, Y, Z, V)+a(V) R(X, Y, U, Z)
\end{aligned}
$$

known as pseudo-symmetric (in the sense of Chaki) or quasi-recurrent.
In the paper, we consider manifolds satisfying a condition including the above ones. For such manifolds being simultaneously conformally flat and of dimension $n>4$ we prove the local structure theorem. It appears that the condition describes almost exactly the subprojective manifolds.

All manifolds under consideration are connected, smooth, Hausdorff and their metrics need not to be definite.
2. Preliminaries. Using the symmetries of the curvature tensor R as well as the Bianchi's identities the condition (1) yields

$$
\begin{align*}
& \nabla_{Z} R(X, Y, U, V) \\
& =2 a(Z) R(X, Y, U, V) \tag{3}\\
& +2 b(Z) G(X, Y, U, V)+b(X) G(Z, Y, U, V) \\
& +b(Y) G(X, Z, U, V)+b(U) G(X, Y, Z, V)+b(V) G(X, Y, U, Z)
\end{align*}
$$

for some covectors a and b (c.f. [4]). By the same method, one can prove even a more general statement.

Lemma 1. If

$$
\begin{gathered}
\nabla_{X_{1}} R\left(X_{2}, X_{3}, X_{4}, X_{5}\right)=\sum_{\sigma \in S_{5}}{ }_{a}^{\sigma}\left(X_{\sigma(1)}\right) R\left(X_{\sigma(2)}, X_{\sigma(3)}, X_{\sigma(4)}, X_{\sigma(5)}\right) \\
+\sum_{\sigma \in S_{5}} b\left(X_{\sigma(1)}\right) G\left(X_{\sigma(2)}, X_{\sigma(3)}, X_{\sigma(4)}, X_{\sigma(5)}\right)
\end{gathered}
$$

for some covectors $\stackrel{\sigma}{a}$ and $\stackrel{\sigma}{b}$, σ being a permutation, then there exist covectors a and b such that

$$
\begin{align*}
& \nabla_{Z} R(X, Y, U, V) \\
& =2 a(Z) R(X, Y, U, V)+a(X) R(Z, Y, U, V) \\
& +a(Y) R(X, Z, U, V)+a(U) R(X, Y, Z, V)+a(V) R(X, Y, U, Z) \tag{4}\\
& +2 b(Z) G(X, Y, U, V)+b(X) G(Z, Y, U, V) \\
& +b(Y) G(X, Z, U, V)+b(U) G(X, Y, Z, V)+b(V) G(X, Y, U, Z)
\end{align*}
$$

holds.

Moreover, applying the second Bianchi identity to (3) we get

$$
a(X) R(Y, Z)+a(Y) R(Z, X)+a(Z) R(X, Y)=0
$$

Making use of the last equality we are in a position to transform (1) into (4). A similar result holds for (2).

Any manifold satisfying (3) is conformally recurrent $\left(\nabla_{Z} C=a(Z) C\right)$. The converse statement is not true in general: a conformally recurrent manifold with recurrent Ricci tensor need not to satisfy (3).

For a given $(0,2)$ tensor A and a generalised curvature tensor R define the tensor $P(A, R)$ with components

$$
\begin{aligned}
& P(A, R)_{h i j k l m}= \\
& 2\left(A_{l m} R_{h i j k}+A_{h i} R_{j k l m}+A_{j k} R_{l m h i}\right)+ \\
& A_{h m} R_{l i j k}-A_{h l} R_{m i j k}+A_{i m} R_{h l j k}-A_{i l} R_{h m j k}+A_{j m} R_{h i l k}-A_{j l} R_{h i m k}+ \\
& A_{k m} R_{h i j l}-A_{k l} R_{h i j m}+A_{j i} R_{h k l m}-A_{j h} R_{i k l m}+A_{k i} R_{j h l m}-A_{k h} R_{j i l m} .
\end{aligned}
$$

Lemma 2. ([3, p. 194-195]) If $A_{l m}=-A_{m l}$ and $P(A, R)_{\text {hijklm }}=0$, then either $A_{l m}=0$ for all l, m or $R_{h i j k}=0$ for all h, i, j, k.

Lemma 3. ([8]). The curvature tensor of an arbitrary manifold (M, g) satisfies the equation

$$
R_{h i j k,[l m]}+R_{j k l m,[h i]}+R_{l m h i,[j k]}=0
$$

Lemma 4. ([7]) If c_{j}, p_{j} and $B_{h i j k}$ are numbers satisfying

$$
\begin{gathered}
c_{l} B_{h i j k}+p_{h} B_{l i j k}+p_{i} B_{h l j k}+p_{j} B_{h i l k}+p_{k} B_{h i j l}=0, \\
B_{h i j k}=-B_{i h j k}=B_{j k h i}, \quad B_{h i j k}+B_{h j k i}+B_{h k i j}=0,
\end{gathered}
$$

then either $c_{j}+2 b_{j}=0$ for all j or $B_{h i j k}=0$ for all h, i, j, k.
Differentiating covariantly (4) and making use of Lemma 3, we obtain

$$
P(A, R)+P(B, G)=0,
$$

where $A=d a$ and $B=d b$. In virtue of Lemma2 2 it is clear that if (M, g) is not of constant curvature, then the forms a and b either both are gradients or both are not. On the other hand, if (4) holds on a manifold of constant curvature, then a and b are proportional by virtue of Lemma 4 .

A space of affine connection is said to be subprojective ([5, p. 164]) if both:

- under a mapping onto pseudo-euclidean space the image of each geodesic is contained in two-dimensional plane;
- all such planes have either a common point or are parallel to each other.

Lemma 5. ([5, p. 184]) A Riemannian manifold (M, g), dim $M \geq 3$, is subprojective if and only if it is conformally flat and its $(0,2)$ Ricci tensor S satisfies

$$
\begin{equation*}
S(X, Y)-\frac{\operatorname{Tr} S}{2(n-1)} g(X, Y)=P(v) g(X, Y)+Q(v) X(v) Y(v) \tag{5}
\end{equation*}
$$

for some non-constant function v.
Lemma 6. ([5, p. 176]) If (M, g) is a subprojective Riemannian manifold, then in a neighbourhood of each point there exists a coordinate system x^{1}, \ldots, x^{n} such that the metric takes the form either

$$
\begin{equation*}
d s^{2}=\left(d x^{1}\right)^{2}+p^{2}\left(x^{1}\right) d s_{1}^{2}, \tag{6}
\end{equation*}
$$

where $d s_{1}^{2}=f_{a b} d x^{a} d x^{b}$ is a metric of an $(n-1)$-dimensional space of constant curvature, or

$$
\begin{equation*}
d s^{2}=2 d x^{1} d x^{2}+p^{2}\left(x^{1}\right) d s_{2}^{2}, \tag{7}
\end{equation*}
$$

where $d s_{2}^{2}$ is a metric of $(n-2)$-dimensional pseudoeuclidean space.
3. Conformally flat manifolds. Let $M, \operatorname{dim} M \geq 3$, be a conformally flat manifold. Then on M the following well-known relations hold:

$$
\begin{align*}
R_{h i j k} & =\frac{1}{n-2}\left(g_{i j} R_{h k}-g_{i k} R_{h j}+g_{h k} R_{i j}-g_{h j} R_{i k}\right)+ \tag{8}\\
& \frac{r}{(n-1)(n-2)}\left(g_{i j} g_{h k}-g_{i k} g_{h j}\right),
\end{align*}
$$

$$
\begin{equation*}
R_{i j, k}-R_{i k, j}-\frac{1}{2(n-1)}\left(g_{i j} r_{, k}-g_{i k} r_{, j}\right)=0, \tag{9}
\end{equation*}
$$

where $R_{i j}=S\left(\partial_{i}, \partial_{j}\right), r=\operatorname{Tr} S$.
Following the considerations made in the proof of [3, Theorem 2] we obtain
Theorem 7. Let M, dimM ≥ 3, be a conformally flat manifold whose curvature tensor satisfies (4) and the fundamental forms a, b are locally gradients. If $a_{l}(x) \neq 0, x \in M$, then there exists a neighbourhood of x such that

$$
\begin{equation*}
R_{i j}=F g_{i j}+H a_{i} a_{j}, \tag{10}
\end{equation*}
$$

F, H being functions and

$$
\begin{gather*}
R_{i j, l}=2 F\left(a_{i} g_{l j}+a_{j} g_{i l}\right)+4 H a_{i} a_{j} a_{l} \\
+\frac{r}{n-1}\left(2 g_{i j} a_{l}-g_{l j} a_{i}-g_{i l} a_{j}\right)+2 n g_{i j} b_{l}+(n-2)\left(g_{l j} b_{i}+g_{i l} b_{j}\right) . \tag{11}
\end{gather*}
$$

Remark 1. Manifolds satisfying (10) are called quasi-Einstein.
We also have
Theorem 8. Let M be a manifold with vanishing Weyl conformal curvature tensor and suppose that the Ricci tensor and its covariant derivative satisfy (10) and (11). Then:
(a)

$$
\begin{aligned}
R_{h i j k} & =\frac{1}{n-2}\left[\left(2 F-\frac{r}{n-1}\right)\left(g_{i j} g_{h k}-g_{i k} g_{h j}\right)\right. \\
& \left.+H\left(g_{i j} a_{h} a_{k}-g_{i k} a_{h} a_{j}+g_{h k} a_{i} a_{j}-g_{h j} a_{i} a_{k}\right)\right]
\end{aligned}
$$

i.e. M is of almost constant curvature;
(b) relation (4) holds on M.

Proposition 9. Let M be a conformally flat manifold, $\operatorname{dimM}>4$, whose curvature satisfy (4) and the fundamental form a is locally a gradient. If $a(x) \neq 0, R(x) \neq 0, x \in M$, then there exist a neighbourhood U and a function a defined on U satisfying $a_{l}=a_{, l}$, such that $F=F(a), H=H(a), B=a_{r} a^{r}=$ $B(a)$, where F, H are defined by (10).

Proof. Differentiating covariantly (10) and substituting into (9) we get

$$
\begin{align*}
& 0=F_{k} g_{i j}+H_{k} a_{i} a_{j}+H a_{i, k} a_{j}-F_{j} g_{i k}-H_{j} a_{i} a_{k}-H a_{i, j} a_{k}- \tag{12}\\
& \frac{1}{2(n-1)}\left[g_{i j}\left(n F_{k}+H_{k} B+2 H a_{r, k} a^{r}\right)-g_{i k}\left(n F_{j}+H_{j} B+2 H a_{r, j} a^{r}\right)\right]
\end{align*}
$$

where $F_{k}=F_{, k}, H_{k}=H_{, k}$. Contracting with $g^{i j}$ we obtain

$$
\begin{equation*}
\frac{n-2}{2} F_{k}=\frac{-1}{2} H_{k} B+H_{r} a^{r} a_{k}+H a_{, r}^{r} a_{k}=0 \tag{13}
\end{equation*}
$$

whence, multiplying by a_{i} and alternating in (i, k), we find

$$
\begin{equation*}
(n-2)\left(F_{k} a_{i}-F_{i} a_{k}\right)=-B\left(H_{k} a_{i}-H_{i} a_{k}\right) \tag{14}
\end{equation*}
$$

Moreover, transvecting (12) with a^{i} and applying (13) we get

$$
\begin{equation*}
B\left(H_{k} a_{j}-H_{j} a_{k}\right)=-H\left(a_{j} a_{r, k} a^{r}-a_{k} a_{r, j} a^{r}\right) . \tag{15}
\end{equation*}
$$

On the other hand, substituting (10) into the left hand side of 11, we have

$$
\begin{align*}
& F_{l} g_{h k}+H_{l} a_{h} a_{k}+H a_{h, l} a_{k}+H a_{h} a_{k, l} \\
& =2 F\left(a_{h} g_{l k}+a_{k} g_{h l}\right)+4 H a_{h} a_{k} a_{l}+\frac{r}{n-1}\left(2 g_{h k} a_{l}-g_{l k} a_{h}-g_{h l} a_{k}\right) \tag{16}\\
& \quad+2 n g_{h k} b_{l}+(n-2)\left(g_{l k} b_{h}+g_{h l} b_{k}\right)
\end{align*}
$$

whence, by contraction with $g^{h k}$,

$$
n F_{l}+H_{l} B+2 H a_{r, l} a^{r}=[(2 n+4) F+6 H B] a_{l}+2(n+2)(n-1) b_{l}
$$

Multiplying by a_{i} and alternating in (i, l), in virtue of (15) and (14), we obtain

$$
\begin{equation*}
a_{i} F_{l}-a_{l} F_{i}=(n+2)\left(a_{i} b_{l}-a_{l} b_{i}\right) \tag{17}
\end{equation*}
$$

Moreover, multiplying (16) by a_{m} alternating in (l, m) and applying (17), we obtain

$$
(n-2)\left(b_{l} a_{m}-b_{m} a_{l}\right) g_{h k}=a_{h} U_{k l m}+a_{k} U_{h l m}-b_{h} V_{k l m}-b_{k} V_{h l m}
$$

for some tensors $U_{k l m}$ and $V_{k l m}$. Suppose that $b_{l} a_{m}-b_{m} a_{l} \neq 0$ at a point $x \in M$. Then we can choose at x two vectors v^{l}, w^{l} such that $\left(b_{l} a_{m}-b_{m} a_{l}\right) v^{l} w^{m}(x) \neq 0$. Transvecting the last equation with $v^{l} w^{m}$ we get

$$
g_{h k}=a_{h} t_{k}+a_{k} t_{h}-b_{h} u_{k}-b_{k} u_{h}
$$

whence $\operatorname{rank}\left[g_{h k}\right] \leq 4$ results, a contradiction. Therefore $b_{l} a_{m}-b_{m} a_{l}=0$ and, in virtue of (17),

$$
a_{i} F_{l}-a_{l} F_{i}=0
$$

holds. Hence $F=F(a), b=b(a)$ follow, where a is a function such that $a_{, l}=a_{l}$.

Now we shall prove $H=H(a)$. Multiplying (16) by a_{m} and alternating in (h, m), by the use of $F_{l}=F^{\prime} a_{l}$ and $b_{l}=b^{\prime} a_{l}$, we get

$$
\begin{gather*}
\left(F^{\prime}-\frac{2 r}{n-1}-2 n b^{\prime}\right) a_{l}\left(a_{m} g_{h k}-a_{h} g_{m k}\right)+H a_{k}\left(a_{h, l} a_{m}-a_{m, l} a_{h}\right) \tag{18}\\
=\left(2 F-\frac{r}{n-1}+(n-2) b^{\prime}\right) a_{k}\left(a_{m} g_{h l}-a_{h} g_{m l}\right)
\end{gather*}
$$

Symmetrizing in (k, l), we find

$$
\begin{align*}
& H\left(a_{h, k} a_{m}-a_{m, k} a_{h}\right) \\
& \quad=\left(2 F-F^{\prime}+\frac{r}{n-1}+(3 n-2) b^{\prime}\right)\left(a_{m} g_{h k}-a_{h} g_{m k}\right) \tag{19}
\end{align*}
$$

Substituting (19) into we easily find

$$
\begin{equation*}
\left(F^{\prime}-\frac{2 r}{n-1}-2 n b^{\prime}\right) a_{l}=0 \tag{20}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
H\left(a_{h, k} a_{m}-a_{m, k} a_{h}\right)=\left(2 F-\frac{r}{n-1}+(n-2) b^{\prime}\right)\left(a_{m} g_{h k}-a_{h} g_{m k}\right) \tag{21}
\end{equation*}
$$

Now, multiplying (16) by a_{m} and alternating in (l, m) we obtain

$$
\begin{aligned}
& a_{h} a_{k}\left(H_{l} a_{m}-H_{m} a_{l}\right)+H a_{h}\left(a_{m} a_{k, l}-a_{l} a_{k, m}\right)+H a_{k}\left(a_{m} a_{h, l}-a_{l} a_{h, m}\right) \\
& =\left(2 F-\frac{r}{n-1}+(n-2) b^{\prime}\right)\left(a_{h} a_{m} g_{l k}+a_{k} a_{m} g_{h l}-a_{h} a_{l} g_{m k}-a_{k} a_{l} g_{h m}\right)
\end{aligned}
$$

which, by substituting (21), yields $a_{k}\left(H_{l} a_{m}-H_{m} a_{l}\right)=0$. This proves $H=$ $H(a)$.

Finally, since $r=n F+H B$, using (20), we obtain $B=B(a)$. This completes the proof.

ThEOREM 10. (a) Let M, $\operatorname{dim} M>4$, be a conformally flat manifold whose curvature satisfies (4) but is not recurrent and the fundamental form a is locally a gradient. If $a(x) \neq 0, R(x) \neq 0, x \in M$, then there exists a coordinate
neighbourhood $\left(U,\left(x^{j}\right)\right)$ such that the metric of M takes the form (6) where $p=p\left(x^{1}\right)$ is a function in x^{1} variable only such that

$$
\begin{equation*}
E+p^{\prime}(x)^{2} \neq 0 \quad \text { or } \quad p^{\prime \prime}(x) \neq 0 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
p p^{\prime \prime} \neq p^{\prime 2}+E \tag{23}
\end{equation*}
$$

(b) Let U be an open subset of $R^{n}, n>4$, endowed with a metric g of the form
(6) such that (23) is satisfied. Then (U, g) is a non-recurrent conformally flat manifold satisfying (4).

Proof. (a) In virtue of Theorem 7, Proposition 9 and Lemmas 5 and 6 we state that in some neighbourhood of x the manifold must be subprojective and the metric is of the form either (7) or (6). In the first case a straightforward computations show us that the curvature tensor is recurrent.

On the other hand, for the metric (6) the only components of the Christoffel symbols and the curvature tensor which may not vanish are

$$
\begin{gathered}
\Gamma_{a b}^{c}=\bar{\Gamma}_{a b}^{c}, \quad \Gamma_{a b}^{1}=-p p^{\prime} f_{a b}, \quad \Gamma_{1 b}^{c}=\frac{p^{\prime}}{p} f_{a b}, \\
R_{a b c d}=p^{2}\left(E+p^{\prime 2}\right) f_{a b c d}, \quad R_{1 b c 1}=p p^{\prime \prime} f_{b c},
\end{gathered}
$$

where $a, b, c, \ldots=2, \ldots, n, E=[(n-1)(n-2)]^{-1} \bar{r}$, the dash denotes objects in the metric $d s_{1}^{2}=f_{a b} d x^{a} d x^{b}$ and $f_{a b c d}=f_{b c} f_{a d}-f_{b d} f_{a c}$.

Computing the components of the covariant derivative of R and making use of (4) we obtain pairs of equations:

$$
\begin{align*}
& R_{a b c d, 1}=2 p p^{\prime}\left(p p^{\prime \prime}-p^{\prime 2}-E\right) f_{a b c d}, \tag{24}\\
& R_{a b c d, 1}=2 a_{1} R_{a b c d}+2 b_{1} G_{a b c d} ;
\end{align*}
$$

$$
\begin{align*}
R_{a b c d, e} & =0, \\
R_{a b c d, e} & =2 a_{e} R_{a b c d}+a_{a} R_{e b c d}+a_{b} R_{a e c d}+a_{c} R_{a b e d}+a_{d} R_{a b c e} \tag{25}\\
& +2 b_{e} G_{a b c d}+b_{a} G_{e b c d}+b_{b} G_{a e c d}+b_{c} G_{a b e d}+b_{d} G_{a b c e} ;
\end{align*}
$$

$$
\begin{align*}
& R_{1 b c d, 1}=0, \\
& R_{1 b c d, 1}=a_{c} R_{1 b 1 d}+a_{d} R_{1 b c 1}+b_{c} G_{1 b 1 d}+b_{d} G_{1 b c 1} ; \tag{26}\\
& \quad R_{1 b c d, e}=p p^{\prime}\left(p p^{\prime \prime}-p^{\prime 2}-E\right) f_{e b c d}, \tag{27}\\
& R_{1 b c d, e}=a_{1} R_{e b c d}+b_{1} G_{e b c d} ; \\
& \quad R_{1 b c 1,1}=\left(p p^{\prime \prime \prime}-p^{\prime} p^{\prime \prime}\right) f_{b c}, \\
& \quad R_{1 b c c, 1}=4 a_{1} R_{1 b c 1}+4 b_{1} G_{1 b c 1} ; \tag{28}
\end{align*}
$$

$$
\begin{align*}
& R_{1 b c 1, e}=0 \\
& R_{1 b c 1, e}=a_{b} R_{1 e c 1}+a_{c} R_{1 b e 1}+b_{b} G_{1 e c 1}+b_{c} G_{1 b e 1} \tag{29}
\end{align*}
$$

Pair (24) is equivalent to (27) and (26) to (29). Then 25) and 26) yield $b_{e}=\frac{p^{\prime \prime}}{p} a_{e}$ and $a_{e}\left(p p^{\prime \prime}-p^{2}-E\right)=0$. If $p p^{\prime \prime} \neq p^{\prime 2}+E$, then $a_{e}=b_{e}=0$ and the system $24-(28)$ has a unique solution with respect to a_{1}, b_{1}. Otherwise we get $p^{\prime} p^{\prime \prime}\left(1-p^{\prime 2}\right)=0$.
(b) Straightforward calculation.

Corollary 11. It can be easily seen that a manifold M endowed with metric (6) is locally symmetric and non-flat if and only if $p p^{\prime \prime}=p^{\prime 2}+E$ on M. Thus, if M is a subprojective and non-recurren manifold then the condition (4) holds on M and conversely.

References

1. Chaki M.C., On pseudo symmetric spaces, Acta Math. Hungar., 54, (1989), No. 3-4, 185-190.
2. Dubey R.S.D., Generalized recurrent spaces, Indian J. Pure Appl. Math., 10, (1979), No. 12, 1508-1513.
3. Ewert-Krzemieniewski S., On some generalisation of recurrent manifolds, Math. Pannon., 4/2 (1993), 191-203.
4. Ewert-Krzemieniewski S., On manifolds with curvature condition of recurrent type of the second order, Period. Math. Hungar., 34 (1997), No. 3, 185-194.
5. Kruchkovich G.J., O prostranstvah V. F. Kagana. In: V.F. Kagan, Subproektivnye prostranstva, Gosudarstvennoe Izdatelstvo Fiziko-Matematicheskoi Literatury, Moskva, 1961 (in Russian).
6. Prvanovć M., Extended recurrent manifolds, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat., 1999, No. 1, 41-50; translation in Russian Math. (Iz. VUZ), 43 (1999), No. 1, 38-47.
7. Roter W., On conformally related conformally recurrent metrics I. Some general results, Colloq. Math., 47 (1982), 39-46.
8. Walker A.G., On Ruse's spaces of recurrent curvature, Proc. Lond. Math. Soc., 52 (1950), 36-64.
Received September 15, 2003
Technical University of Szczecin
Institute of Mathematics
Piastów 17
70-310 Szczecin, Poland
e-mail: ewert@arcadia.tuniv.szczecin.pl

[^0]: 1991 Mathematics Subject Classification. 53B20, 53B30.
 Key words and phrases. Recurrent manifold, conformally flat, subprojective space, quasi-Einstein space, almost constant curvature.

