2003

THE NATURAL OPERATORS LIFTING *k*-PROJECTABLE VECTOR FIELDS TO PRODUCT-PRESERVING BUNDLE FUNCTORS ON *k*-FIBERED MANIFOLDS

by Włodzimierz M. Mikulski and Jiři M. Tomáš

Abstract. For any product-preserving bundle functor F defined on the category $k - \mathcal{FM}$ of k-fibered manifolds, we determine all natural operators transforming k-projectable vector fields on $Y \in Ob(k - \mathcal{FM})$ to vector fields on FY. We also determine all natural affinors on FY. We prove a composition property analogous to that concerning Weil bundles.

0. Preliminaries. The classical results by Kainz and Michor [6], Luciano [11] and Eck [3] read that the product-preserving bundle functors on the category $\mathcal{M}f$ of manifolds are just Weil bundles, [17]. Let us remind Kolář's result [7].

For a bundle functor F on $\mathcal{M}f$, denote by \mathcal{F} the flow operator lifting vector fields to F. Further, consider an element c of a Weil algebra A and let $L(c)_M : TT^AM \to TT^AM$ denote the natural affinor by Koszul ([7], [8]). Then we have a natural operator $L(c)_M \circ \mathcal{T}^A : TM \rightsquigarrow TT^AM$ lifting vector fields on a manifold M to a Weil bundle T^AM .

The Lie algebra associated to the Lie group Aut(A) of all algebra automorphisms of A is identified with the algebra of derivations Der(A) of A. For any $D \in Der(A)$ consider its one-parameter subgroup $\delta(t) \in Aut(A)$. It determines the vector field $D_M = \frac{d}{dt_0} \delta(t)_M$ on $T^A M$, where we identify Weil algebra homomorphisms with the corresponding natural transformations. Finally, we

²⁰⁰⁰ Mathematics Subject Classification. 58A20.

 $Key\ words\ and\ phrases.$ (product-preserving) bundle functors, natural transformations, natural operators.

This paper is the final form, which will not be published elsewhere.

obtain a natural operator $\Lambda_{D,M} : TM \rightsquigarrow TT^AM$ defined by $\Lambda_{D,M}(X) = D_M$ for any vector field X on M. Then Kolář's result reads as follows.

All natural operators $TM \rightsquigarrow TT^AM$ are of the form $L(c)_M \circ T^A + \Lambda_{D,M}$ for some $c \in A$ and $D \in Der(A)$.

Let us remind some results concerning product-preserving bundle functors on the category \mathcal{FM} of fibered manifolds, [12], [2], [16]. They are just of the form T^{μ} for a homomorphism $\mu : A \to B$ of Weil algebras. Bundle functors T^{μ} are defined as follows. Let $i, j : \mathcal{M}f \to \mathcal{FM}$ be functors defined by i(M) = $id_M : M \to M$ and $j(M) = (M \to pt)$ for a manifold M and the single-point manifold pt. If $F : \mathcal{FM} \to \mathcal{FM}$ preserves the product then so do $G^F = F \circ i$ and $H^F = F \circ j$ and so there are Weil algebras A and B such that $G^F = T^A$ and $H^F = T^B$. Further, there is an obvious natural identity transformation $\tau_M : i(M) \to j(M)$ and thus we have a natural transformation $\mu_M = F\tau_M :$ Then the functor T^{μ} can be defined as the pull-back $T^AM \times_{T^BM} T^BY$ with respect to μ and $T^B p$ for a fibered manifold $p : Y \to M$. Then $F = T^{\mu}$ modulo a natural equivalence.

Let \overline{F} be another product-preserving bundle functor on \mathcal{FM} . Then the result of [12] also yields natural transformations $\eta: F \to \overline{F}$ in the form of couples of $(\mu, \overline{\mu})$ -related natural transformations $\nu = \eta \circ i: T^A \to T^{\overline{A}}$ and $\rho: \eta \circ j: T^B \to T^{\overline{B}}$ for a Weil algebra homomorphisms $\nu: A \to \overline{A}$ and $\sigma: B \to \overline{B}$.

For a bundle functor F on \mathcal{FM} , denote by \mathcal{F} the flow operator lifting projectable vector fields to F. Further, consider an element c of A and let $L(c)_Y: TT^{\mu}Y \to TT^{\mu}Y, L(c)_Y(y_1, y_2) = (L(c)_M(y_1), L(\mu(c))_Y(y_2)), (y_1, y_2) \in$ $TT^{\mu}Y = TT^A M \times_{TT^B M} TT^B Y$ be the modification of the Koszul affinor. Then we have a natural operator $L(c)_Y \circ \mathcal{T}^{\mu}: T_{proj}Y \rightsquigarrow TT^{\mu}Y$ lifting projectable vector fields on a fibered manifold Y to $T^{\mu}Y$ for a Weil algebra homomorphism $\mu: A \to B$.

The Lie algebra associated to the Lie group $Aut(\mu) = \{(\nu, \rho) \in Aut(A) \times Aut(B) \mid \rho \circ \mu = \mu \circ \nu\}$ of all automorphisms of μ is identified with the algebra of derivations $Der(\mu) = \{D = (D_1, D_2) \in Der(A) \times Der(B) \mid D_2 \circ \mu = \mu \circ D_1\}$ of μ . For any $D \in Der(\mu)$ consider its one-parameter subgroup $\delta(t) \in Aut(\mu)$. It determines the vector field $D_Y = \frac{d}{dt_0}\delta(t)_Y$ on $T^{\mu}Y$, where we identify homomorphisms of μ with the corresponding natural transformations. Finally, we obtain a natural operator $\Lambda_{D,Y} : T_{proj}Y \rightsquigarrow TT^{\mu}Y$ defined by $\Lambda_{D,Y}(X) = D_Y$ for any projectable vector field X on Y. Then a result of Tomáš [16] reads

All natural operators $T_{proj}Y \rightsquigarrow TT^{\mu}Y$ are of the form $L(c)_Y \circ T^{\mu} + \Lambda_{D,Y}$ for some $c \in A$ and $D \in Der(\mu)$.

Let us recall the concept of k-fibered manifolds. It is a sequence of surjective submersions

(1)
$$Y = Y_k \xrightarrow{p_k} Y_{k-1} \xrightarrow{p_{k-1}} \dots \xrightarrow{p_1} Y_0$$

between manifolds. Given another k-fibered manifold $\overline{Y} = \overline{Y}_k \xrightarrow{\overline{p}_k} \overline{Y}_{k-1} \xrightarrow{\overline{p}_{k-1}} \cdots \xrightarrow{\overline{p}_{1-1}} \overline{Y}_0$, a map $f: Y \to \overline{Y}$ is called a morphism of k-fibered manifolds if there are the so-called underline maps $f_j: X_j \to \overline{X}_j$ for $j = 0, \ldots, k-1$ such that $f_{j-1} \circ p_j = \overline{p}_j \circ f_j$ for $j = 1, \ldots, k$, where $f_k = f$. Thus we have the category $k - \mathcal{FM}$ of k-fibered manifolds which is local and admissible in the sense of [8]. Clearly, the category $1 - \mathcal{FM}$ of 1-fibered manifolds coincides with the category \mathcal{FM} of fibered manifolds.

Let us remind some results concerning product-preserving bundle functors on the category $k - \mathcal{FM}$ of k-fibered manifolds, [13]. They are just of the form T^{μ} for a sequence

(2)
$$\mu = (A_k \xrightarrow{\mu^k} A_{k-1} \xrightarrow{\mu^{k-1}} \dots \xrightarrow{\mu^1} A_0)$$

of k Weil algebra homomorphisms. Bundle functors T^{μ} are defined as follows. Let $i^{[l]}: \mathcal{M}f \to k - \mathcal{F}\mathcal{M}$ for $l = 0, \ldots, k$ be a sequence of functors defined by $i^{[l]}(\mathcal{M}) = pt_{\mathcal{M}}^{[l+1]} = (\mathcal{M} \xrightarrow{id_{\mathcal{M}}} \mathcal{M} \xrightarrow{id_{\mathcal{M}}} \mathcal{M} \to pt \to \cdots \to pt), k - l$ times of the single-point manifold pt, and $i^{[l]}(f) = f$. If $F: k - \mathcal{F}\mathcal{M} \to \mathcal{F}\mathcal{M}$ preserves the product then so do $G^{l,F} = F \circ i^{[l]}$ and so there are Weil algebras A_l such that $G^{l,F} = T^{A_l}$ for $l = 0, \ldots, k$. Further, there are obvious identity natural transformations $\tau_M^l: i^{[l]}(\mathcal{M}) \to i^{[l-1]}(\mathcal{M})$ and thus we have a sequence of natural transformations $\mu_M^l = F\tau_M^l$ corresponding to a sequence $\mu = (A_k \xrightarrow{\mu^k} A_{k-1} \xrightarrow{\mu^{k-1}} \ldots \xrightarrow{\mu^1} A_0)$ of Weil algebra homomorphisms. For any k-fibered manifold Y of the form (1) we have

(3)
$$T^{\mu}Y = \{ y = (y_k, y_{k-1}, \dots, y_0) \in T^{A_k}Y_0 \times T^{A_{k-1}}Y_1 \times \dots \times T^{A_0}Y_k \mid \mu_{Y_l}^{k-l}(y_{k-l}) = T^{A_{k-l-1}}p_{l+1}(y_{k-l-1}), \ l = 0, \dots, k-1 \}.$$

For a $k - \mathcal{F}\mathcal{M}$ -map $f: Y \to \overline{Y}, T^{\mu}f: T^{\mu}Y \to T^{\mu}\overline{Y}$ is the restriction and correstriction of $T^{A_k}f_0 \times T^{A_{k-1}}f_1 \times \cdots \times T^{A_0}f_k$. Then $F = T^{\mu}$ modulo a natural equivalence.

Let \overline{F} be another product-preserving bundle functor on $k - \mathcal{FM}$. Then the results of [13] also yield natural transformations $\eta: F \to \overline{F}$ in the form of sequences $\nu = (\nu^k, \dots, \nu^0)$ of $(\mu, \overline{\mu})$ -related natural transformations $\nu^l = \eta \circ i^{[l]} : T^{A_l} \to T^{\overline{A}_l}$ for Weil algebra homomorphisms $\nu^l : A_l \to \overline{A}_l$.

We shall investigate k-projectable vector fields. A vector field X on a kfibered manifold Y of the form (1) is called k-projectable if there are vector
fields X_l on Y_l for $l = 0, \ldots, k - 1$ which are related to X by the respective
compositions of projections of Y. The flow of X is formed by local $k - \mathcal{FM}$ isomorphisms. The space of all k-projectable vector fields on Y will be denoted
by $\mathcal{X}_{k-proj}(Y)$.

Natural operators lifting vector fields are used in practically each paper in which the problem of prolongations of geometric structures was studied. For example A. Morimoto [15] used liftings of functions and vector fields has been to define the complete lifting of connections. That is why such natural operators are classified in [4], [7], [16] and other papers (over 100 references). For example, in the case of the tangent bundle TM of a manifold M (in our notation, k = 0), any natural operator lifting vector fields from M to TM is a linear combination of the complete lifting, the vertical lifting and the Liouville (dilatation) vector field.

A torsion of a connection Γ on TM is the Nijenhuis bracket $[\Gamma, J]$ of Γ with the almost tangent structure J on TM. This fact has been generalized in [9] in such a way that a torsion of a connection Γ with respect to a natural affinor A is $[\Gamma, A]$. Thus natural affinors can be used to study torsions of connections. That is why they have been classified in [1], [5], [10] and other papers (over 20 references). For example, any natural affinor on TM is a linear combination of the identity affinor and the almost tangent structure on TM.

1. Some properties of product preserving bundle functors on $k - \mathcal{FM}$. According to the Weil theory [6], for Weil algebras A and B there is the canonical identification $T^A \circ T^B M = T^{B \otimes A} M$. We generalize this fact on $k - \mathcal{FM}$. This extends the respective result of Tomáš's [16].

Consider $T^{\mu}Y$ in the form (3), where μ is of the form (2) and Y is of the form (1). It is easy to see that $T^{\mu}Y$ is a k-fibered manifold if we consider it in the form

(4)
$$T^{\mu}Y = T^{\mu^{[k]}}Y_{[k]} \to T^{\mu^{[k-1]}}Y_{[k-1]} \to \dots \to T^{\mu^{[0]}}Y_{[0]} ,$$

where $\mu^{[l]} = (A_k \xrightarrow{\mu^k} A_{k-1} \xrightarrow{\mu^{k-1}} \dots \xrightarrow{\mu^{k-l+1}} A_{k-l})$ is the truncation of μ (it is a sequence of l Weil algebra homomorphisms) and $Y_{[l]} = Y_l \xrightarrow{p_l} Y_{l-1} \xrightarrow{p_{l-1}} \dots \xrightarrow{p_1} Y_0$ is the truncation of Y (it is an $l - \mathcal{FM}$ -object) and where $T^{\mu^{[l]}}Y_{[l]}$ is defined as in (3) (in particular, $T^{\mu^{[0]}}Y_{[0]} = T^{A_0}Y_0$). Here the arrows in (4) are the restrictions and correstrictions of the obvious projections $T^{A_k}Y_0 \times \dots \times$

276

 $T^{A_{k-l}}Y_l \to T^{A_k}Y_0 \times \cdots \times T^{A_{k-l+1}}Y_{l-1}$. Then $T^{\mu}: k - \mathcal{FM} \to \mathcal{FM}$ is a functor $k - \mathcal{FM} \to k - \mathcal{FM}$. Thus we can compose product-preserving bundle functors on $k - \mathcal{FM}$.

PROPOSITION 1. Let $T^{\mu}, T^{\overline{\mu}} : k - \mathcal{FM} \to \mathcal{FM}$ be product-preserving bundle functors corresponding to sequences μ and $\overline{\mu}$ of the form (2). Then $T^{\mu} \circ T^{\overline{\mu}} =$ $T^{\overline{\mu} \otimes \mu}$, where (of course) $\overline{\mu} \otimes \mu = (\overline{A}_k \otimes A_k \xrightarrow{\overline{\mu}^k \otimes \mu^k} \overline{A}_{k-1} \otimes A_{k-1} \xrightarrow{\overline{\mu}^{k-1} \otimes \mu^{k-1}} \longrightarrow$ $\dots \xrightarrow{\overline{\mu}^1 \otimes \mu^1} \overline{A}_0 \otimes A_0).$

PROOF. Let $\tilde{\mu} = (\tilde{A}_k \xrightarrow{\tilde{\mu}^k} \tilde{A}_{k-1} \xrightarrow{\tilde{\mu}^{k-1}} \dots \xrightarrow{\tilde{\mu}^1} \tilde{A}_0)$ be the sequence of the form (2) corresponding to the composition $T^{\mu} \circ T^{\overline{\mu}}$. It can be computed as described in Section 0. Thus by the mentioned Weil theory [**6**], there is $\tilde{A}_l = \overline{A}_l \otimes A_l$ (as there is the identification $\tilde{A}_l = T^{A_l} \circ T^{\overline{A}_l}(\mathbf{R}) = T^{\overline{A}_l \otimes A_l}(\mathbf{R}) = \overline{A}_l \otimes A_l$). This identification is $(\tilde{\mu}, \overline{\mu} \otimes \mu)$ -related. \Box

We describe some special case of T^{μ} . Let μ be of the form (2), where $A_k = A_{k-1} = \ldots = A_0 = A$ and $\mu^l = id_A$ for $l = 1, \ldots, k$. We will write id^A for such μ . Then $T^{id^A}Y = T^AY$. In particular, $T^{id}Y = TY$, where $id = id^{\mathbf{D}}$ and \mathbf{D} is the Weil algebra of dual numbers.

2. Natural vector fields on bundle functors T^{μ} . Consider a sequence μ of the form (2). The group

$$Aut(\mu) = \{ \nu = (\nu^k, \nu^{k-1}, \dots, \nu^0) \in Aut(A_k) \times Aut(A_{k-1}) \times \dots \times Aut(A_0) \mid \nu^{l-1} \circ \mu^l = \mu^l \circ \nu^l, l = 1, \dots, k \}$$

of all automorphisms of μ is a closed subgroup in $Aut(A_k) \times Aut(A_{k-1}) \times \cdots \times Aut(A_0)$. Thus $Aut(\mu)$ is a Lie group. Let

$$Der(\mu) = \{ D = (D^{k}, D^{k-1}, \dots, D^{0}) \in Der(A_{k}) \times Der(A_{k-1}) \times \dots \times Der(A_{0}) \mid D^{l-1} \circ \mu^{l} = \mu^{l} \circ D^{l}, l = 1, \dots, k \}$$

be the Lie algebra of all derivations of μ .

PROPOSITION 2. Let $Lie(Aut(\mu))$ be the Lie algebra of the Lie group $Aut(\mu)$ of all automorphisms of μ of the form (2). Then $Lie(Aut(\mu)) = Der(\mu)$.

PROOF. We know that Lie(Aut(A)) = Der(A) for any Weil algebra A ([7]). Consequently, the proposition follows directly from the application of exponential mapping concept.

Let us recall that a natural operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TT^{\mu}Y$ is a system of regular $k - \mathcal{FM}$ -invariant operators

$$\Lambda_Y: \mathcal{X}_{k-proj}(Y) \to \mathcal{X}(T^{\mu}Y)$$

for any $k - \mathcal{FM}$ -object Y. The $k - \mathcal{FM}$ -invariance means that for any $k - \mathcal{FM}$ -objects Y, \overline{Y} , any k-projectable vector fields $X \in \mathcal{X}_{k-proj}(Y)$ and $\overline{X} \in \mathcal{X}_{k-proj}(\overline{Y})$ and any $k - \mathcal{FM}$ -map $f: Y \to \overline{Y}$, if X and \overline{X} are f-related (i.e. $Tf \circ X = \overline{X} \circ f$) then $\Lambda_Y(X)$ and $\Lambda_{\overline{Y}}(\overline{X})$ are $T^{\mu}f$ -related. The regularity means that Λ_Y transforms smoothly parametrized families of k-projectable vector fields into smoothly parametrized families of vector fields.

A natural operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TT^{\mu}Y$ is called absolute (or a natural vector field on T^{μ}) if Λ_Y is a constant function for any $Y \in Obj(k - \mathcal{FM})$.

Proposition 2 enables us to modify the definition of an absolute operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TT^{\mu}Y$ as follows. Let $D \in Der(\mu) = Lie(Aut(\mu))$ and let $\delta(t) \in Aut(\mu)$ be a one-parameter subgroup corresponding to D. It determines the vector field $D_Y = \frac{d}{dt_0}\delta(t)_Y$ on $T^{\mu}Y$, where we identify homomorphisms of μ with the corresponding natural transformations. Finally, we obtain a natural operator $\Lambda_{D,Y} : T_{k-proj}Y \rightsquigarrow TT^{\mu}Y$ defined by $\Lambda_{D,Y}(X) = D_Y$ for any k-projectable vector field X on $Y \in Ob(k - \mathcal{FM})$.

PROPOSITION 3. Let F be a product-preserving bundle functor on $k - \mathcal{FM}$. Then every absolute operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TFY$ is of the form $\Lambda_{D,Y}$ for some $D \in Der(\mu)$, where μ is the sequence of the form (2) corresponding to F.

PROOF. The flow $Fl_t^{\Lambda_Y}$ of $\Lambda_Y \in \mathcal{X}(FY)$ is $k - \mathcal{FM}$ -invariant and (thus) global, because FY is a $k - \mathcal{FM}$ -orbit of any open neighbourhood of $0 \in A_k^{m_k} \times \cdots \times A_0^{m_0} = F((i^{[k]}(\mathbf{R})^{m_k} \times \cdots \times (i^{[0]}(\mathbf{R}))^{m_0})$ for some m_k, \ldots, m_0 . Thus $Fl_t^{\Lambda_Y} : FY \to FY$ is a natural transformation. Let $\eta_t \in Aut(\mu)$ correspond to $Fl_t^{\Lambda_Y}$. Then $D = \frac{d}{dt_0}\eta_t \in Der(\mu)$ and $\Lambda_{D,Y} = \Lambda_Y$.

3. Natural affinors on T^{μ} and natural operators $T_{k-proj}Y \rightsquigarrow TT^{\mu}$. Let μ be a sequence of the form (2) and let Y be a k-fibered manifold of the form (1).

Let us recall that a natural affinor on $T^{\mu}Y$ is a system of $k - \mathcal{FM}$ -invariant affinors (i.e., tensor fields of type (1,1))

$$L_Y: TT^{\mu}Y \to TT^{\mu}Y$$

on $T^{\mu}Y$ for any $k - \mathcal{FM}$ -object Y. The $k - \mathcal{FM}$ -invariance means that for any $k - \mathcal{FM}$ -map $f: Y \to \overline{Y}$, there is $L_{\overline{Y}} \circ TT^{\mu}f = TT^{\mu}f \circ L_{Y}$.

For $(y_k, y_{k-1}, \ldots, y_0) \in T(T^{A_k}Y_0 \times T^{A_{k-1}}Y_1 \times \cdots \times T^{A_0}Y_k) \cap TT^{\mu}Y$ and $c \in A_k$ we put

(5)
$$\begin{array}{l} L(c)_Y(y_k, y_{k-1}, \dots, y_0) = \\ (L(c)_{Y_k}(y_k), L(\mu^k(c))_{Y_{k-1}}(y_{k-1}), \dots, L(\mu^1 \circ \dots \circ \mu^{k-1} \circ \mu^k(c))_{Y_0}(y_0)), \end{array}$$

278

where $L(a)_M : TT^A M \to TT^A M$ is the Koszul affinor, [7]. We call $L(c)_Y$ the modified Koszul affinor on $T^{\mu}Y$.

The following theorem characterizes all natural affinors on $T^{\mu}Y$.

THEOREM 1. Let μ be a sequence of the form (2) and $Y \in Ob(k - \mathcal{FM})$ be of the form (1). Then every natural affinor on $T^{\mu}Y$ is of the form $L(c)_Y$ for some $c \in A_k$.

Theorem 1 generalizes the result of [1] for Weil functors on $\mathcal{M}f$ and the result of Tomáš's [16] for product-preserving bundle functors on \mathcal{FM} to all product-preserving bundle functors on $k - \mathcal{FM}$. A proof of Theorem 1 will follow a proof of Theorem 2.

For a k-projectable vector field $X \in \mathcal{X}_{k-proj}(Y)$, one can define its flow prolongation $\mathcal{F}X = \frac{d}{dt_0}F(Fl_t^X) \in \mathcal{X}(FY)$ to a product-preserving bundle functor $F = T^{\mu}$ on $k - \mathcal{FM}$. (We know that the flow of X is formed by local $k - \mathcal{FM}$ isomorphisms, and then we can apply $F = T^{\mu}$ and obtain a flow on FY.) One can verify the Kolář formula

(6)
$$\mathcal{F}X = \eta_Y \circ FX ,$$

where $\eta_Y : FTY = T^{id \otimes \mu}Y = T^{\mu \otimes id}Y = TFY$ is the exchange isomorphism and X is considered as $k - \mathcal{FM}$ -map $X : Y \to TY = T^{id}Y$. We will not use this formula.

The following theorem modifies Kolář's result [7] for Weil functors on $\mathcal{M}f$ and Tomáš's result [16] for product-preserving bundle functors on \mathcal{FM} to all product-preserving bundle functors on $k - \mathcal{FM}$.

THEOREM 2. Let F be a product-preserving bundle functor on $k - \mathcal{FM}$. Further, let X be a k-projectable vector field on a k-fibered manifold Y of the form (1). Then any natural operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TFY$ is of the form

$$L(c)_Y \circ \mathcal{F}X + \Lambda_{D,Y}$$

for some $c \in A_k$ and $D \in Der(\mu)$, where μ is the sequence of the form (2) associated to F.

PROOF OF THEOREM 2. $\Lambda_Y(0)$ is an absolute operator. Thus replacing Λ_Y by $\Lambda_Y - \Lambda_Y(0)$ and appling Proposition 3 we can assume that $\Lambda_Y(0) = 0$.

Since any k-projectable vector field X on $Y \in Ob(k - \mathcal{FM})$ covering non-vanishing vector field on Y_0 is $\frac{\partial}{\partial x}$ on $i^{[k]}(\mathbf{R}) \subset i^{[k]}(\mathbf{R}) \times \ldots$ in some $k - \mathcal{FM}$ -cordinates (where the dots denote the respective multiproduct of $i^{[l]}(\mathbf{R})$'s), Λ_Y is uniquely determined by $\Lambda_{i^{[k]}(\mathbf{R}) \times \ldots}(\rho \frac{\partial}{\partial x}) : A_k \times \cdots \to A_k \times \ldots$, $\rho \in \mathbf{R}$. Using the invariance with respect to the homotheties being $k - \mathcal{FM}$ morphisms $i^{[k]}(\mathbf{R}) \times \cdots \to i^{[k]}(\mathbf{R}) \times \ldots$ and the homogeneous function theorem and $\Lambda_{i^{[k]}(\mathbf{R}) \times \ldots}(0) = 0$ we deduce that for any ρ the map $\Lambda_{i^{[k]}(\mathbf{R}) \times \ldots}(\rho \frac{\partial}{\partial x})$: $A_k \times \ldots \to A_k \times \ldots$ is constant and linearly dependent on ρ . Then using the invariance with respect to $tid_{i^{[k]}(\mathbf{R})} \times id$ we deduce that the map $\Lambda_{i^{[k]}(\mathbf{R}) \times \ldots}(\rho \frac{\partial}{\partial x}) : A_k \times \cdots \to A_k \times \{0\}$ is constant and linearly dependent on ρ . Then the vector space of all natural operators Λ_Y as above with $\Lambda_Y(0) = 0$ is at most $dim_{\mathbf{R}}A_k$ -dimensional. But all natural operators $L(c)_Y \circ \mathcal{F}$ form a $dim_{\mathbf{R}}A_k$ -dimensional vector space. Thus the proof is complete.

PROOF OF THEOREM 1. The vectors $\mathcal{T}^{\mu}X_{v}$ for $X \in \mathcal{X}_{k-proj}(Y)$ and $v \in T^{\mu}Y$ form a dense subset in $TT^{\mu}Y$ for sufficiently high fiber-dimensional Y_{k}, \ldots, Y_{0} . (It is a simple consequence the rank theorem imlying that for any Weil algebra A with width(A) = k the vector $\mathcal{T}^{A}\frac{\partial}{\partial x^{1}}_{j^{A}(t^{1},\ldots,t^{k},0,\ldots,0)} = j^{A\otimes \mathbf{D}}(t^{1},\ldots,t^{k},0,\ldots,0,t)$ has dense $\mathcal{M}f_{m}$ -orbit in $TT^{A}\mathbf{R}^{m} = T^{A\otimes \mathbf{D}}\mathbf{R}^{m}$ if $m \geq k+1$.) Thus a natural affinor L_{Y} on $T^{\mu}Y$ is determined by $L_{Y} \circ \mathcal{T}^{\mu}X$ for X as above. But $\Lambda_{Y}: X \to L_{Y} \circ \mathcal{T}^{\mu}X$ is a natural operator with $\Lambda_{Y}(0) = 0$. Thus by the proof of Theorem 2 there is $\Lambda_{Y}(X) = L(c)_{Y} \circ \mathcal{T}^{\mu}X$ for some $c \in A_{k}$. Then $L_{Y} = L(c)_{Y}$. For arbitrary Y, we locally decompose id_{Y} by $p \circ j$ for $k - \mathcal{F}\mathcal{M}$ -maps, where $j: Y \to \overline{Y}$ with sufficiently high fiber-dimensional \overline{Y} . Next, we use the equality $L_{\overline{Y}} = L(c)_{\overline{Y}}$ and the invariance of natural affinors with respect to j.

According to formula (6), it is sufficient to verify it for $X = \frac{\partial}{\partial x}$; see proof of Theorem 2. But then this is simple to verify.

4. Final remarks. Let $m = (m_k, m_{k-1}, \ldots, m_0) \in (\mathbf{N} \cup \{0\})^{k+1}$. A k-fibered manifold Y of the form (1) is m-dimensional if $\dim(Y_0) = m_0$, $\dim(Y_1) = m_0 + m_1, \ldots, \dim(Y_k) = m_0 + m_1 + \cdots + m_k$. All k-fibered manifolds of dimension $m = (m_k, \ldots, m_0)$ and their local $k - \mathcal{FM}$ -isomorphisms form a category which we will denote by $k - \mathcal{FM}_m$. It is local and admissible in the sense of [8].

Let $F = T^{\mu} : k - \mathcal{FM} \to \mathcal{FM}$ be a product preserving bundle functor and let $\eta : F_{|k-\mathcal{FM}_m} \to F_{|k-\mathcal{FM}_m}$ be a $k - \mathcal{FM}_m$ -natural transformation. Assume that $m_k, m_{k-1}, \ldots, m_0$ are positive integers. Then by a similar method as for Weil bundles on $\mathcal{M}f$ one can show that there exists one and only one natural transformation $\tilde{\eta} : F \to F$ extending η . Thus by Theorem 1, one can obtain the $k - \mathcal{FM}_m$ -version of Theorem 1.

THEOREM 1'. Let μ be a sequence of the form (2) and $Y \in Ob(k - \mathcal{FM}_m)$ be of the form (1), $m = (m_k, \ldots, m_0)$, m_k, \ldots, m_0 positive integers. Then every $k - \mathcal{FM}_m$ -natural affinor on $T^{\mu}Y$ is of the form $L(c)_Y$ for some $c \in A_k$.

280

By a simple modification of the proof of Theorem 2 one can obtain the $k - \mathcal{FM}_m$ -version of Theorem 2.

THEOREM 2'. Let μ, Y, m be as in Theorem 1'. Further, let X be a k-projectable vector field on a k-fibered manifold Y of the form (1) and dimension m. Then any $k - \mathcal{FM}_m$ -natural operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TT^{\mu}Y$ is of the form $L(c)_Y \circ T^{\mu}X + \Lambda_{D,Y}$ for some $c \in A_k$ and $D \in Der(\mu)$.

The authors would now like to announce that in [14] they describe all product preserving bundle functors on the category $\mathcal{F}^2\mathcal{M}$ of fibered-fibered manifolds (i.e. fibered surjective submersions between fibered manifolds) and in a paper being in preparation they extend Kolář's result [7] to product-preserving bundle functors on $\mathcal{F}^2\mathcal{M}$.

References

- Doupovec M., Kolář I., Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno), 27 (1991), 205–209.
- Doupovec M., Kolář I., On the jets of fibered manifold morphisms, Cahiers Topologie Géom. Différentielle Catégoriques, XL (1999), 21–30.
- Eck D., Product preserving functors on smooth manifolds, J. Pure Appl. Algebra, 42 (1986), 133–140.
- Gancarzewicz J., Liftings of functions and vector fields to natural bundles, Dissertationes Math., CCXII, Warsaw, 1983.
- Gancarzewicz J., Kolář I., Natural affinors on the extended r-th order tangent bundles, Suppl. Rend. Circ. Mat. Palermo, **30** (1993), 95–100.
- Kainz G., Michor P.W., Natural transformations in differential geometry, Czechoslovak Math. J., 37 (1987), 584–607.
- Kolář I., On the natural operators on vector fields, Ann. Global Anal. Geometry, 6 (1988), 109–117.
- Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
- Kolář I., Modugno M., Torsions of connections on some natural bundles, Differential Geom. Appl., 2 (1992), 1–16.
- Kurek J., Natural affinors on higher order cotangent bundles, Arch. Math. Brno, (28) (1992), 175–180.
- Luciano O., Categories of multiplicative functors and Weil's infinitely near points, Nagoya Math. J., 109 (1988), 69–89.
- Mikulski W.M., Product preserving bundle functors on fibered manifolds, Arch. Math. (Brno), 32 (1996), 307–316.
- Mikulski W.M., On the product preserving bundle functors on k-fibered manifolds, Demonstratio Math., 34 (2001), 693–700.
- Mikulski, W.M., Tomáš J., Product preserving bundle functors on fibered-fibered manifolds, Colloq. Math., 96(1) (2003), 17–26.
- Morimoto, A., Prolongations of connections to bundles of infinitely near points, J. Differential Geom., 11 (1976), 476–498.

- 16. Tomáš J., Natural operators transforming projectable vector fields to product preserving bundles, Suppl. Rend. Circ. Mat. Palermo, **59(II)** (1999), 181–187.
- 17. Weil A., *Théorie des points proches sur les variétés différientiables*, in: Géométrie Différentielle (Strasbourg, 1953), Colloq. Internat. CNRS 52, Paris, 1953, 111–117.

Received December 3, 2002

Jagiellonian University Institute of Mathematics Reymonta 4 30-059 Kraków, Poland *e-mail*: mikulski@im.uj.edu.pl

Technical University Brno Faculty of Chemical Engineering Department of Mathematics Purkyňova 118 602 00 Brno, The Czech Republic *e-mail*: Tomas.J@fce.vutbr.cz