HARMONIC BERGMAN KERNEL FOR SOME BALLS

by Keiko Fujita

Abstract

We treat the complex harmonic function on the N_{p}-ball which is defined by the N_{p}-norm related to the Lie norm. As a subspace, we treat Hardy spaces and consider the Bergman kernel on those spaces. Then, we try to construct the Bergman kernel in a concrete form in 2-dimensional Euclidean space.

Introduction. In [2], [4, [6] and [7], we studied holomorphic functions and analytic functionals on the N_{p}-ball in the complex Euclidean space \mathbf{C}^{n+1}, $n \geq 2$, and in [2], we expressed the Bergman kernel for a Hardy space on the N_{p}-ball by a double series by using of homogeneous harmonic extended Legendre polynomials. The closed form is known only for $p=2$ and ∞. In the 2 -dimensional case, we can calculate the coefficients of the double series expansion ([3). However, even if we restrict our consideration to the 2 -dimensional case, it is hard to express the Bergman kernel in a closed form.

In this paper, we mainly treat complex harmonic functions on the N_{p}-balls and determine the "harmonic" Bergman kernel by an infinite sum (Theorem 3.1). Then we represent the harmonic Bergman kernel more explicitly for the 2 -dimensional N_{p}-ball (Theorem 3.2) and represent it in a concrete form for $p=1,2$ and ∞.

The author would like to express her thanks to Professor Józef Siciak for his useful advice.

1. N_{p}-ball.
1.1. N_{p}-norm.

First we review the definition of the N_{p}-balls in $\mathbf{C}^{n+1}, n=0,1,2, \cdots$.
For $z=\left(z_{1}, z_{2}, \cdots, z_{n+1}\right)$, let

$$
L(z)=\sqrt{\|z\|^{2}+\sqrt{\|z\|^{4}-\left|z^{2}\right|^{2}}}
$$

be the Lie norm on \mathbf{C}^{n+1}, where $z \cdot w=z_{1} w_{1}+z_{2} w_{2}+\cdots+z_{n+1} w_{n+1}, z^{2}=z \cdot z$ and $\|z\|^{2}=z \cdot \bar{z}$. For $p \in \mathbf{R}$, consider the function

$$
N_{p}(z)=\left(\frac{1}{2}\left(L(z)^{p}+\left(\left|z^{2}\right| / L(z)\right)^{p}\right)\right)^{1 / p}
$$

If $p \geq 1$, then $N_{p}(z)$ is a norm on \mathbf{C}^{n+1} (see [1] or [8]). Note that $N_{2}(z)=\|z\|$ is the complex Euclidean norm, $N_{1}(z)=\sqrt{\left(\|z\|^{2}+\left|z^{2}\right|\right) / 2}=L^{*}(z)$ is the dual Lie norm and $L(z)=\lim _{p \rightarrow \infty} N_{p}(z)$.

In $\mathbf{C}, N_{p}(z)=|z|$ for all $p \in \mathbf{R}$. In $\mathbf{C}^{2}, L(z)$ and $M(z)=\left|z^{2}\right| / L(z)$ are reduced to

$$
\begin{equation*}
L(z)=\max \left\{\left|z_{1} \pm i z_{2}\right|\right\}, \quad M(z)=\min \left\{\left|z_{1} \pm i z_{2}\right|\right\}, \tag{1}
\end{equation*}
$$

and we have

$$
N_{p}(z)=\left(\frac{\left|z_{1}+i z_{2}\right|^{p}+\left|z_{1}-i z_{2}\right|^{p}}{2}\right)^{1 / p}
$$

Thus the N_{p}-norm is equivalent to the L_{p}-norm $\|\cdot\|_{p}$, and the Lie norm $L(z)$ to the supremum norm $\|\cdot\|_{\infty}$ in \mathbf{C}^{2} : Noting that

$$
\begin{aligned}
& \|w\|_{p}=\left(\left|w_{1}\right|^{p}+\left|w_{2}\right|^{p}+\cdots+\left|w_{n+1}\right|^{p}\right)^{1 / p}, \quad p \geq 1, \\
& \|w\|_{\infty}=\sup \left\{\left|w_{j}\right| ; j=1, \cdots, n+1\right\}
\end{aligned}
$$

the N_{p}-norm (resp., the Lie norm) is another generalization of the 2-dimensional L_{p}-norm (resp., the supremum norm).
1.2. A relation between the N_{p}-norms and the Tchebycheff polynomials. The Tchebycheff polynomial $T_{k}(x)$ of degree k is defined by

$$
T_{k}(x)=\frac{\left(x+i \sqrt{1-x^{2}}\right)^{k}+\left(x-i \sqrt{1-x^{2}}\right)^{k}}{2}
$$

We define the homogeneous extended Tchebycheff polynomial of degree $2 k$ in \mathbf{C}^{n+1} by

$$
\begin{aligned}
\tilde{T}_{k, n}(z, w) & =\left(\sqrt{z^{2}}\right)^{k}\left(\sqrt{w^{2}}\right)^{k} T_{k}\left(\frac{z}{\sqrt{z^{2}}} \cdot \frac{w}{\sqrt{w^{2}}}\right) \\
& =\frac{\left(z \cdot w+i \sqrt{z^{2} w^{2}-(z \cdot w)^{2}}\right)^{k}+\left(z \cdot w-i \sqrt{z^{2} w^{2}-(z \cdot w)^{2}}\right)^{k}}{2}
\end{aligned}
$$

Further extend the parameter k to $\alpha \in \mathbf{R}$ and consider the function

$$
\tilde{T}_{\alpha, n}(z, w)=\frac{\left(z \cdot w+i \sqrt{z^{2} w^{2}-(z \cdot w)^{2}}\right)^{\alpha}+\left(z \cdot w-i \sqrt{z^{2} w^{2}-(z \cdot w)^{2}}\right)^{\alpha}}{2}
$$

Then $\tilde{T}_{\alpha, n}(z, z)=\left(z^{2}\right)^{\alpha}, \quad \tilde{T}_{\alpha, n}(z, w)=(z \cdot w)^{\alpha}$ if $z^{2}=0$ or $w^{2}=0$,

$$
\tilde{T}_{\alpha, n}(z, \bar{z})=\frac{1}{2}\left(L(z)^{2 \alpha}+\left(\frac{\left|z^{2}\right|}{L(z)}\right)^{2 \alpha}\right) .
$$

Thus the function $N_{p}(z)$ is represented by

$$
N_{p}(z)=\left(\tilde{T}_{p / 2, n}(z, \bar{z})\right)^{\frac{1}{p}}, \quad z \in \mathbf{C}^{n+1}
$$

Therefore, if $p=2 k$ is a positive even natural number, the last formula expresses the norm N_{p} in terms of the Tchebycheff polynomial T_{p} of degree p. Hence $N_{2 k}^{2 k}$ is a homogenous polynomial of $2(n+1)$ real variables of degree $2 k$.
1.3. Hardy space on the N_{p}-ball.

We define the N_{p}-ball $\tilde{B}_{p}^{n+1}(r)$ by

$$
\begin{gathered}
\tilde{B}_{p}^{n+1}(r)=\left\{z \in \mathbf{C}^{n+1} ; N_{p}(z)<r\right\}, \quad p \geq 1, \\
\tilde{B}^{n+1}(r)=\bigcap_{p \geq 1} \tilde{B}_{p}^{n+1}(r)=\left\{z \in \mathbf{C}^{n+1} ; L(z)<r\right\} .
\end{gathered}
$$

Note that $\tilde{B}_{1}^{n+1}(r)$ is the dual Lie ball, $\tilde{B}_{2}^{n+1}(r)$ is the complex Euclidean ball, and $\tilde{B}^{n+1}(r)$ is the Lie ball of radius r in \mathbf{C}^{n+1}.

We denote by $\mathcal{O}\left(\tilde{B}_{p}^{n+1}(r)\right)$ the space of holomorphic functions on $\tilde{B}_{p}^{n+1}(r)$ equipped with the topology of uniform convergence on compact sets. Put

$$
H \mathcal{O}\left(\tilde{B}_{p}^{n+1}(r)\right)=\left\{f \in \mathcal{O}\left(\tilde{B}_{p}^{n+1}(r)\right) ; \int_{\tilde{B}_{p}^{n+1}[r]}|f(w)|^{2} d V_{p, r}(w)<\infty\right\},
$$

where $d V_{p, r}(w)$ is the normalized Lebesgue measure on $\tilde{B}_{p}^{n+1}(r)$.
Let Δ be the complex Laplacian:

$$
\Delta_{z} \equiv \partial^{2} / \partial z_{1}^{2}+\partial^{2} / \partial z_{2}^{2}+\cdots+\partial^{2} / \partial z_{n+1}^{2}
$$

Put

$$
H \mathcal{O}_{\Delta}\left(\tilde{B}_{p}^{n+1}(r)\right)=\left\{f \in H \mathcal{O}\left(\tilde{B}_{p}^{n+1}(r)\right) ; \Delta_{z} f(z)=0\right\}
$$

When a function f satisfies $\Delta_{z} f(z)=0, f$ is called a complex harmonic function. In the following, we call the Bergman kernel on $\mathrm{HO}_{\Delta}\left(\tilde{B}_{p}^{n+1}(r)\right)$ the "harmonic" Bergman kernel.

Note that for the complex plane, every N_{p}-ball of radius r is equal to the disk $D(r)=\{z ;|z|<r\}$, and the Bergman kernel $B_{r}^{1}(z, w)$ for $H \mathcal{O}(D(r))$ is given by

$$
B_{r}^{1}(z, w)=\sum_{k=0}^{\infty}(k+1)\left(\frac{z}{r}\right)^{k}\left(\frac{\bar{w}}{r}\right)^{k}=\frac{r^{4}}{\left(r^{2}-z \bar{w}\right)^{2}} .
$$

Since $H \mathcal{O}_{\Delta}(D(r))=\{a+b z\}$, the Bergman kernel $B_{r, \Delta}^{1}(z, w)$ for $H \mathcal{O}_{\Delta}(D(r))$ is given by

$$
B_{r, \Delta}^{1}(z, w)=1+2 \frac{z}{r} \frac{\bar{w}}{r} .
$$

For $n \geq 1$, in general, the exsistance of the Bergman kernel $B_{p, r}^{n+1}(z, w)$ on $H \mathcal{O}\left(\tilde{B}_{p}^{n+1}(r)\right)$ is known, but it is difficult to express it in a concrete form. However for $H \mathcal{O}\left(\tilde{B}_{2}^{n+1}(r)\right)$ and for $H \mathcal{O}\left(\tilde{B}^{n+1}(r)\right)$, the following are known:

$$
B_{2, r}^{n+1}(z, \bar{w})=\frac{r^{2 n+4}}{\left(r^{2}-z \cdot w\right)^{n+2}}, n \geq 0
$$

$$
\begin{equation*}
B_{r}^{n+1}(z, \bar{w}) \equiv B_{\infty, r}^{n+1}(z, \bar{w})=\frac{r^{4 n+4}}{\left(r^{4}-2 r^{2} z \cdot w+z^{2} w^{2}\right)^{n+1}}, n \geq 0 \tag{2}
\end{equation*}
$$

For a proof of (2) for $n \geq 2$, see e.g. (5).
Put

$$
Z_{1}=z_{1}+i z_{2}, Z_{2}=z_{1}-i z_{2}, \quad D_{2}(r)=\left\{\left(Z_{1}, Z_{2}\right) ;\left|Z_{1}\right|<r,\left|Z_{2}\right|<r\right\} .
$$

Since $\tilde{B}^{2}(r) \cong D_{2}(r)$, we can find the Bergman kernels $B_{r}^{2}(z, w)$ and $B_{r, \Delta}^{2}(z, w)$ by using the results in 1 -dimensional case. Let us check them here.

Since the volume of $D_{2}(r)$ is $V\left(D_{2}(r)\right)=\pi^{2} r^{4}$, the Bergman kernel for $H \mathcal{O}\left(D_{2}(r)\right)$ is as follows:

$$
\begin{aligned}
B_{r}^{2}(Z, W) & =\sum_{k_{1}, k_{2}}\left(k_{1}+1\right)\left(\frac{Z_{1}}{r} \frac{\overline{W_{1}}}{r}\right)^{k_{1}}\left(k_{2}+1\right)\left(\frac{Z_{2}}{r} \frac{\overline{W_{2}}}{r}\right)^{k_{2}} \\
& =\frac{r^{4}}{\left(r^{2}-Z_{1} \overline{W_{1}}\right)^{2}} \frac{r^{4}}{\left(r^{2}-Z_{2} \overline{W_{2}}\right)^{2}} .
\end{aligned}
$$

Note that this is equivalent to

$$
\begin{equation*}
B_{r}^{2}(z, w)=\frac{r^{8}}{\left(r^{4}-2 r^{2} z \cdot \bar{w}+z^{2} \bar{w}^{2}\right)^{2}} . \tag{3}
\end{equation*}
$$

Therefore, since we have (1) and $\tilde{B}^{2}(r) \cong D_{2}(r)$, (3) is the Bergman kernel for $H \mathcal{O}\left(\tilde{B}^{2}(r)\right)$.

Since $\Delta_{z}=4 \frac{\partial^{2}}{\partial Z_{1} \partial Z_{2}}$, we have $H \mathcal{O}_{\Delta}\left(D_{2}(r)\right)=\left\{a+\sum b_{1} Z_{1}^{k}+\sum c_{k} Z_{2}^{k}\right\}$. Thus the Bergman kernel $B_{r, \Delta}^{2}(Z, W)$ for $H \mathcal{O}_{\Delta}\left(D_{2}(r)\right)$ is as follows:

$$
\begin{aligned}
B_{r, \Delta}^{2}(Z, W) & =1+\sum_{k_{1}=1}^{\infty}\left(k_{1}+1\right)\left(\frac{Z_{1} \overline{W_{1}}}{r^{2}}\right)^{k_{1}}+\sum_{k_{2}=1}^{\infty}\left(k_{2}+1\right)\left(\frac{Z_{2} \overline{W_{2}}}{r^{2}}\right)^{k_{2}} \\
& =\left(1-\frac{Z_{1} \overline{W_{1}} Z_{2} \overline{W_{2}}}{r^{4}}\left(2-\frac{Z_{1} \overline{W_{1}}}{r^{2}}\right)\left(2-\frac{Z_{2} \overline{W_{2}}}{r^{2}}\right)\right) B_{r}^{2}(Z, W)
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
B_{r, \Delta}^{2}(z, w) & =\left(1-\frac{z^{2} \bar{w}^{2}}{r^{4}}\left(4-4 \frac{z \cdot \bar{w}}{r^{2}}+\frac{z^{2} \bar{w}^{2}}{r^{4}}\right)\right) B_{r}^{2}(z, w), \quad z, w \in \mathbf{C}^{2} \\
& =\frac{r^{8}-z^{2} \bar{w}^{2}\left(4 r^{4}-4 r^{2} z \cdot \bar{w}+z^{2} \bar{w}^{2}\right)}{\left(r^{4}-2 r^{2} z \cdot \bar{w}+z^{2} \bar{w}^{2}\right)^{2}}, \quad z, w \in \mathbf{C}^{2} . \tag{4}
\end{align*}
$$

Since $\tilde{B}^{2}(r) \cong D_{2}(r),(4)$ is the harmonic Bergman kernel for $H \mathcal{O}_{\Delta}\left(\tilde{B}^{2}(r)\right)$. After we review some results on spherical harmonic functions, we treat harmonic Bergman kernel again in the last section.

2. Spherical harmonic functions.

From now on, we consider $n \geq 1$.
Let $P_{k, n}(t)$ be the orthogonal polynomial of degree k whose highest coefficient is positive and determined by

$$
\int_{-1}^{1} P_{k, n}(t) P_{l, n}(t)\left(1-t^{2}\right)^{(n-2) / 2} d t=\frac{\sqrt{\pi} \Gamma(n / 2)}{\Gamma((n+1) / 2) N(k, n)} \delta_{k l},
$$

where $N(k, n)$ is the dimension of the space of homogeneous harmonic polynomials of degree k in \mathbf{C}^{n+1} :

$$
N(0, n)=1, \quad N(k, n)=\frac{(2 k+n-1)(k+n-2)!}{k!(n-1)!}, k=1,2, \cdots .
$$

We call $P_{k, n}(t)$ the Legendre polynomial of degree k and of dimension $n+1$. We define the homogeneous harmonic extended Legendre polynomial $\tilde{P}_{k, n}(z, w)$ of degree k and of dimension $n+1$ by

$$
\tilde{P}_{k, n}(z, w)=\left(\sqrt{z^{2}}\right)^{k}\left(\sqrt{w^{2}}\right)^{k} P_{k, n}\left(\frac{z}{\sqrt{z^{2}}} \cdot \frac{w}{\sqrt{w^{2}}}\right) .
$$

Note that $\tilde{P}_{k, n}(z, w)=\tilde{P}_{k, n}(w, z)$ and $\Delta_{z} \tilde{P}_{k, n}(z, w)=0$.
When $n=1, \tilde{P}_{k, 1}(z, w)=\tilde{T}_{k, 1}(z, w)$ and we denote it by $\tilde{T}_{k}(z, w)$.
For the Bergman kernel for $H \mathcal{O}\left(\tilde{B}_{p}^{n+1}(r)\right)$, we proved the following theorem for $n \geq 2$ in [2] and for $n=1$ in [3]:

Theorem 2.1. The Bergman kernel $B_{p, r}^{n+1}(z, w)$ for $H \mathcal{O}\left(\tilde{B}_{p}^{n+1}(r)\right)$ is given as follows:

$$
B_{p, r}^{n+1}(z, w)=\sum_{k=0}^{\infty} \sum_{l=0}^{[k / 2]}\left(\beta_{k, l, r}^{n+1, p}\right)^{-1}\left(z^{2}\right)^{l}\left(\bar{w}^{2}\right)^{l} \tilde{P}_{k-2 l, n}(z, \bar{w}), \quad z, w \in \tilde{B}_{p}^{n+1}(r)
$$

where

$$
\beta_{k, l, r}^{n+1, p}=\int_{\tilde{B}_{p}^{n+1}[r]}\left|\left(\zeta^{2}\right)^{l} \tilde{P}_{k-2 l, n}(\zeta, \omega)\right|^{2} d V_{p, r}(\zeta), \quad \omega \in S^{n},
$$

and $d V_{p, r}(\zeta)$ denotes the normalized Lebesgue measure on $\tilde{B}_{p}^{n+1}(r)$ and S^{n} is the real unit sphere in \mathbf{R}^{n+1}.

For the Bergman kernel $B_{r}^{n+1}(z, w)$, the following formula is known:
Formula 2.2. We have

$$
\frac{r^{4 n+4}}{\left(r^{4}-2 r^{2} z \cdot w+z^{2} w^{2}\right)^{n+1}}=\sum_{k=0}^{\infty} \sum_{l=0}^{[k / 2]} a_{k, k-2 l}^{n}\left(z^{2} / r^{2}\right)^{l}\left(w^{2} / r^{2}\right)^{l} \tilde{P}_{k-2 l, n}(z / r, w / r)
$$

where

$$
a_{k, k-2 l}^{n}=\frac{2 \Gamma\left(l+\frac{n+3}{2}\right) \Gamma(k+n-l+1) N(k-2 l, n)}{(n+1)!l!\Gamma\left(k+\frac{n+1}{2}-l\right)}
$$

Further in the 2-dimensional case, we calculated the coefficients $\beta_{k, l, r}^{2, p}$ in [3], and Theorem 2.1 is restated as follows:

Theorem 2.3. The Bergman kernel $B_{p, r}^{2}(z, w)$ for $H \mathcal{O}\left(\tilde{B}_{p}^{2}(r)\right)$ is as follows:

$$
\begin{aligned}
B_{p, r}^{2}(z, w) & =\sum_{k=0}^{\infty} \sum_{l=0}^{[k / 2]} \frac{N(k-2 l, 1) \Gamma\left(\frac{2}{p}\right)^{2} \Gamma\left(\frac{2 k+4}{p}+1\right)}{\Gamma\left(\frac{4}{p}+1\right) \Gamma\left(\frac{2 k-2 l+2}{p}\right) \Gamma\left(\frac{2 l+2}{p}\right) 2^{\frac{2 k}{p}} r^{2 k}}\left(z^{2}\right)^{l}\left(\bar{w}^{2}\right)^{l} \tilde{T}_{k-2 l}(z, \bar{w}), \\
& =\sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{\Gamma\left(\frac{2}{p}\right)^{2} \Gamma\left(\frac{2 k+4}{p}+1\right)}{\Gamma\left(\frac{4}{p}+1\right) \Gamma\left(\frac{2 k-2 l+2}{p}\right) \Gamma\left(\frac{2 l+2}{p}\right) 2^{\frac{2 k}{p}} r^{2 k}}\left(X_{1}\right)^{k-l}\left(X_{2}\right)^{l}
\end{aligned}
$$

where

$$
X_{1}=z \cdot \bar{w}+i \sqrt{z^{2} \bar{w}^{2}-(z \cdot \bar{w})^{2}}, X_{2}=z \cdot \bar{w}-i \sqrt{z^{2} \bar{w}^{2}-(z \cdot \bar{w})^{2}}
$$

Note that

$$
\begin{aligned}
\lim _{p \rightarrow \infty} \beta_{k, l, r}^{2, p} & =\lim _{p \rightarrow \infty} \frac{\Gamma\left(\frac{4}{p}+1\right)}{N(k-2 l, 1) \Gamma\left(\frac{2}{p}\right)^{2}} \frac{\Gamma\left(\frac{2 k-2 l+2}{p}\right) \Gamma\left(\frac{2 l+2}{p}\right)}{\Gamma\left(\frac{2 k+4}{p}+1\right)} 2^{\frac{2 k}{p}} r^{2 k} \\
& =\frac{r^{2 k}}{N(k-2 l, 1)(k-l+1)(l+1)} .
\end{aligned}
$$

For convenience, we introduce the following notation:
(5) $\quad X_{1}=z \cdot \bar{w}+i \sqrt{z^{2} \bar{w}^{2}-(z \cdot \bar{w})^{2}}, X_{2}=z \cdot \bar{w}-i \sqrt{z^{2} \bar{w}^{2}-(z \cdot \bar{w})^{2}}$.

Then we have
(6) $X_{1}+X_{2}=2 z \cdot \bar{w}, \quad X_{1} X_{2}=z^{2} \bar{w}^{2}, \quad\left(1-X_{1}\right)\left(1-X_{2}\right)=1-2 z \cdot \bar{w}+z^{2} \bar{w}^{2}$,

$$
\tilde{T}_{k, n}(z, \bar{w})=\frac{1}{2}\left(X_{1}^{k}+X_{2}^{k}\right)
$$

3. Harmonic Bergman kernel.

Any harmonic function f in a neighborhood of 0 can be expanded into the homogenoeus harmonic polynomials:

$$
f(z)=\sum_{k=0}^{\infty} f_{k}(z)
$$

for a sufficiently small z, where f_{k} is the homonenoeous harmonic polynomial of degree k defined by

$$
f_{k}(z)=N(k, n) \int_{S^{n}} f(\rho \omega) \tilde{P}_{k, n}(z, \omega / \rho) d \omega
$$

for a sufficiently small ρ and $d \omega$ is the normalized invariant measure on S^{n}. By Proposition 2.1 in [2], for $f \in H \mathcal{O}_{\Delta}\left(\tilde{B}_{p}^{n+1}(r)\right)$, we have

$$
\begin{aligned}
& \int_{\tilde{B}_{p}^{n+1}[r]} \sum_{k=0}^{\infty} f_{k}(w) \sum_{k=0}^{\infty} \sum_{l=0}^{[k / 2]}\left(\zeta^{2}\right)^{l}\left(\bar{w}^{2}\right)^{l} \tilde{P}_{k-2 l, n}(\zeta, \bar{w}) d V_{p, r}(w), \quad \zeta \in \tilde{B}_{p}^{n+1}(r) \\
& =\sum_{k=0}^{\infty} \int_{\tilde{B}_{p}^{n+1}[r]} f_{k}(w) \tilde{P}_{k, n}(\zeta, \bar{w}) d V_{p, r}(w)
\end{aligned}
$$

Thus by Theorem 2.1, we have the following theorem:
Theorem 3.1. Let $n=1,2, \ldots$. The harmonic Bergman kernel $B_{p, r, \Delta}^{n+1}(z, w)$ on $H \mathcal{O}_{\Delta}\left(\tilde{B}_{p}^{n+1}(r)\right)$ is given as follows :

$$
B_{p, r, \Delta}^{n+1}(z, w)=\sum_{k=0}^{\infty}\left(\beta_{k, 0, r}^{n+1, p}\right)^{-1} \tilde{P}_{k, n}(z, \bar{w}), \quad z, w \in \tilde{B}_{p}^{n+1}(r)
$$

Similary, by Theorem 2.3, we have the following theorem:
Theorem 3.2. The harmonic Bergman kernel $B_{p, r, \Delta}^{2}(z, w)$ on $H \mathcal{O}_{\Delta}\left(\tilde{B}_{p}^{2}(r)\right)$ is given as follows:

$$
\begin{aligned}
B_{p, r, \Delta}^{2}(z, w) & =\sum_{k=0}^{\infty} \frac{N(k, 1) \Gamma\left(\frac{2}{p}\right) \Gamma\left(\frac{2 k+4}{p}+1\right)}{\Gamma\left(\frac{4}{p}+1\right) \Gamma\left(\frac{2 k+2}{p}\right) 2^{\frac{2 k}{p}} r^{2 k}} \tilde{T}_{k}(z, \bar{w}) \\
& =1+\sum_{k=1}^{\infty} \frac{\Gamma\left(\frac{2}{p}\right) \Gamma\left(\frac{2 k+4}{p}+1\right)}{\Gamma\left(\frac{4}{p}+1\right) \Gamma\left(\frac{2 k+2}{p}\right) 2^{\frac{2 k}{p}} r^{2 k}}\left(\left(X_{1}\right)^{k}+\left(X_{2}\right)^{k}\right) \\
& =F_{p}\left(X_{1} /\left(2^{2 / p} r^{2}\right)\right)+F_{p}\left(X_{2} /\left(2^{2 / p} r^{2}\right)\right)-1,
\end{aligned}
$$

where X_{1} and X_{2} are given by (5) and $F_{p}(X)$ is the function defined by

$$
\begin{equation*}
F_{p}(X)=\sum_{k=0}^{\infty} \frac{\Gamma\left(\frac{2}{p}\right) \Gamma\left(\frac{2 k+4}{p}+1\right)}{\Gamma\left(\frac{4}{p}+1\right) \Gamma\left(\frac{2 k+2}{p}\right)} X^{k} \tag{7}
\end{equation*}
$$

In order to find a closed form of $B_{p, r, \Delta}^{2}(z, w)$ it is sufficient to find a closed form of $F_{p}(X)$.

In the following, we set

$$
\begin{aligned}
& a_{p}=\frac{X_{1}}{2^{2 / p}}=\frac{z \cdot \bar{w}+i \sqrt{z^{2} \bar{w}^{2}-(z \cdot \bar{w})^{2}}}{2^{2 / p}} \\
& b_{p}=\frac{X_{2}}{2^{2 / p}}=\frac{z \cdot \bar{w}-i \sqrt{z^{2} \bar{w}^{2}-(z \cdot \bar{w})^{2}}}{2^{2 / p}}
\end{aligned}
$$

3.1. In case of the Lie ball.

In Section 1, we have already shown $B_{r, \Delta}^{2}(z, w)$ is given by (4). Here we derive it as a corollary of Theorem 3.2 .

Since

$$
F_{p}(X)=\sum_{k=0}^{\infty} \frac{(k+1) \Gamma\left(\frac{2}{p}+1\right) \Gamma\left(\frac{2 k+4}{p}+1\right)}{\Gamma\left(\frac{4}{p}+1\right) \Gamma\left(\frac{2 k+2}{p}+1\right)} X^{k}
$$

by (7), we have

$$
F_{\infty}(X)=\sum_{k=0}^{\infty}(k+1) X^{k}=\frac{1}{(1-X)^{2}}
$$

Therefore, we have

$$
\begin{aligned}
B_{r, \Delta}^{2}(z, w) & =\sum_{k=0}^{\infty} \frac{(k+1) N(k, 1)}{r^{2 k}} \tilde{T}_{k}(z, \bar{w}) \\
& =F_{\infty}\left(a_{\infty} / r^{2}\right)+F_{\infty}\left(b_{\infty} / r^{2}\right)-1 \\
& =\frac{1-\frac{z^{2}}{r^{2}} \bar{w}^{2}\left(4-4\left(\frac{z}{r} \cdot \frac{\bar{w}}{r}\right)+\frac{z^{2}}{r^{2}} \frac{\bar{w}^{2}}{r^{2}}\right)}{\left(1-2 \frac{z}{r} \cdot \frac{\bar{w}}{r}+\frac{z^{2}}{r^{2}} \frac{\bar{w}^{2}}{r^{2}}\right)^{2}}
\end{aligned}
$$

3.2. In case of the Euclidean ball.

By Theorem 3.2, we have

$$
B_{2, r, \Delta}^{2}(z, w)=\sum_{k=0}^{\infty} \frac{(k+2)!N(k, 1)}{2^{k} k!2 r^{2 k}} \tilde{T}_{k}(z, \bar{w})=F_{2}\left(a_{2} / r^{2}\right)+F_{2}\left(b_{2} / r^{2}\right)-1
$$

Since

$$
\begin{aligned}
\sum_{k=0}^{\infty}(k+2)(k+1) x^{k} & =\frac{d^{2}}{d x^{2}}\left(\frac{x^{2}}{1-x}\right)=\frac{2}{(1-x)^{3}} \\
F_{2}(X) & =\frac{1}{(1-X)^{3}}
\end{aligned}
$$

Thus the Bergman kernel $B_{2, r, \Delta}^{2}(z, w)$ for $H \mathcal{O}_{\Delta}\left(\tilde{B}_{2}^{2}(r)\right)$ is given by

$$
B_{2, r, \Delta}^{2}(z, w)=F_{2}\left(a_{2} / r^{2}\right)+F_{2}\left(b_{2} / r^{2}\right)-1=\frac{1}{\left(1-a_{2} / r^{2}\right)^{3}}+\frac{1}{\left(1-b_{2} / r^{2}\right)^{3}}-1
$$

Then by (6), we have

$$
B_{2, r, \Delta}^{2}(z, w)=\frac{Q_{2, r}\left(\frac{z}{\sqrt{2} r} \cdot \frac{\bar{w}}{\sqrt{2} r}, \frac{z^{2}}{2 r^{2}} \frac{\bar{w}^{2}}{2 r^{2}}\right)}{\left(1-2 \frac{z}{\sqrt{2} r} \cdot \frac{\bar{w}}{\sqrt{2} r}+\frac{z^{2}}{2 r^{2}} \frac{\bar{w}^{2}}{2 r^{2}}\right)^{3}},
$$

where $Q_{2, r}\left(\frac{z}{\sqrt{2} r} \cdot \frac{\bar{w}}{\sqrt{2} r}, \frac{z^{2}}{2 r^{2}} \frac{\bar{w}^{2}}{2 r^{2}}\right)$ is the polynomial in $s=\frac{z}{\sqrt{2} r} \cdot \frac{\bar{w}}{\sqrt{2} r}=\frac{a_{2}+b_{2}}{2 r^{2}} \in \mathbf{C}$ and $t=\frac{z^{2}}{2 r^{2}} \frac{\bar{w}^{2}}{2 r^{2}}=\frac{a_{2} b_{2}}{r^{4}} \in \mathbf{C}$ of degree 3 given by

$$
\begin{aligned}
Q_{2, r}(s, t) & =\left(1-b_{2} / r^{2}\right)^{3}+\left(1-a_{2} / r^{2}\right)^{3}-\left(1-a_{2} / r^{2}\right)^{3}\left(1-b_{2} / r^{2}\right)^{3} \\
& =1-9 t+18 t s-3 t^{2}-12 t s^{2}+6 t^{2} s-t^{3} .
\end{aligned}
$$

3.3. In case of the dual Lie ball.

By Theorem 3.2, we have

$$
\begin{aligned}
B_{1, r, \Delta}^{2}(z, w) & =\sum_{k=0}^{\infty} \frac{N(k, 1)(2 k+4)(2 k+3)(2 k+2)}{24 \cdot 2^{2 k} r^{2 k}} \tilde{T}_{k}(z, \bar{w}) \\
& =F_{1}\left(a_{1} / r^{2}\right)+F_{1}\left(b_{1} / r^{2}\right)-1
\end{aligned}
$$

Since

$$
\begin{aligned}
& \begin{array}{l}
\sum_{k=0}^{\infty}(2 k+4)(2 k+3)(2 k+2) x^{2 k+1}=\left(\frac{x^{4}}{1-x^{2}}\right)^{(3)} \\
\quad=24 x\left(1-x^{2}\right)^{-1}+96 x^{3}\left(1-x^{2}\right)^{-2}+120 x^{5}\left(1-x^{2}\right)^{-3}+48 x^{7}\left(1-x^{2}\right)^{-4} \\
\quad=24 x \frac{1+x^{2}}{\left(1-x^{2}\right)^{4}}, \\
F_{1}(X)=\sum_{k=0}^{\infty}(2 k+4)(2 k+3)(2 k+2) X^{k} / 24 \\
\quad=\frac{1+X}{(1-X)^{4}}
\end{array} .
\end{aligned}
$$

Thus we have

$$
B_{1, r, \Delta}^{2}(z, w)=F_{1}\left(a_{1} / r^{2}\right)+F_{1}\left(b_{1} / r^{2}\right)-1=\frac{1+a_{1} / r^{2}}{\left(1-a_{1} / r^{2}\right)^{4}}+\frac{1+b_{1} / r^{2}}{\left(1-b_{1} / r^{2}\right)^{4}}-1 .
$$

By (6)

$$
B_{1, r, \Delta}^{2}(z, w)=\frac{Q_{1, r}\left(\frac{z}{2 r} \cdot \frac{\bar{w}}{2 r}, \frac{z^{2}}{4 r^{2}} \frac{\bar{w}^{2}}{4 r^{2}}\right)}{\left(1-2 \frac{z}{2 r} \cdot \frac{\bar{w}}{2 r}+\frac{z^{2}}{4 r^{2}} \frac{\bar{w}^{2}}{4 r^{2}}\right)^{4}},
$$

where $Q_{1, r}(s, t)$ is a polynomial in two complex variables s, t given by

$$
\begin{aligned}
Q_{1, r}(s, t)=1+ & 2 s-24 t+60 s t+4 t^{2} \\
& +18 s t^{2}-80 s^{2} t-4 t^{3}+48 s t^{3}-24 s^{2} t^{2}+40 s^{3} t-t^{4}
\end{aligned}
$$

References

1. Baran M., Conjugate norms in C^{n} and related geometrical problems, Dissertationes Mathematicae, CCCLXXVII (1998), 1-67.
2. Fujita K., Bergman transformation for analytic functionals on some balls, Microlocal Analysis and Complex Fourier Analysis, World Scientific publisher, 2002, 81-98.
3. \qquad Bergman kernel for the 2-dimensional balls, to appear in Complex Var. Theory Appl.
4. Fujita K., Morimoto M., On the double series expansion of holomorphic functions, J. Math. Anal. Appl., 272 (2002), 335-348.
5. Hua L.K., Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, Moscow 1959, (in Russian); Translations of Math. Monographs, Vol. 6, Amer. Math. Soc., Providence, Rhode Island, 1979.
6. Morimoto M., Fujita K., Analytic functions and analytic functionals on some balls, Proceedings of the Third ISAAC Congress, Kluwer Academic Publishers, 2003, 150-159.
7. \qquad , Holomorphic functions on the Lie ball and related topics, to appear in Proceedings of the ninth Finite or Infinite Dimensional Complex Analysis and Applications, Kluwer Academic Publisher, 2002, 33-44.
8. \qquad , Between Lie norm and dual Lie norm, Tokyo J. Math., 24 (2001), 499-507.

Received October 3, 2003
Saga University
Faculty of Culture and Education
Saga 840-8502, Japan
e-mail: keiko@cc.saga-u.ac.jp

