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HARMONIC BERGMAN KERNEL FOR SOME BALLS

by Keiko Fujita

Abstract. We treat the complex harmonic function on the Np–ball which
is defined by the Np–norm related to the Lie norm. As a subspace, we treat
Hardy spaces and consider the Bergman kernel on those spaces. Then, we
try to construct the Bergman kernel in a concrete form in 2–dimensional
Euclidean space.

Introduction. In [2], [4], [6] and [7], we studied holomorphic functions
and analytic functionals on the Np–ball in the complex Euclidean space Cn+1,
n ≥ 2, and in [2], we expressed the Bergman kernel for a Hardy space on
the Np–ball by a double series by using of homogeneous harmonic extended
Legendre polynomials. The closed form is known only for p = 2 and ∞. In the
2–dimensional case, we can calculate the coefficients of the double series expan-
sion ([3]). However, even if we restrict our consideration to the 2–dimensional
case, it is hard to express the Bergman kernel in a closed form.

In this paper, we mainly treat complex harmonic functions on the Np–balls
and determine the “harmonic” Bergman kernel by an infinite sum (Theorem
3.1). Then we represent the harmonic Bergman kernel more explicitly for the
2–dimensional Np–ball (Theorem 3.2) and represent it in a concrete form for
p = 1, 2 and ∞.

The author would like to express her thanks to Professor Józef Siciak for
his useful advice.

1. Np–ball.
1.1. Np–norm.

First we review the definition of the Np–balls in Cn+1, n = 0, 1, 2, · · · .
For z = (z1, z2, · · · , zn+1), let

L(z) =
√
‖z‖2 +

√
‖z‖4 − |z2|2
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be the Lie norm on Cn+1, where z ·w = z1w1+z2w2+ · · ·+zn+1wn+1, z2 = z ·z
and ‖z‖2 = z · z. For p ∈ R, consider the function

Np(z) =
(

1
2
(
L(z)p + (|z2|/L(z))p

))1/p

.

If p ≥ 1, then Np(z) is a norm on Cn+1 (see [1] or [8]). Note that N2(z) = ‖z‖
is the complex Euclidean norm, N1(z) =

√
(‖z‖2 + |z2|)/2 = L∗(z) is the dual

Lie norm and L(z) = limp→∞Np(z).
In C, Np(z) = |z| for all p ∈ R. In C2, L(z) and M(z) = |z2|/L(z) are

reduced to

(1) L(z) = max{|z1 ± iz2|}, M(z) = min{|z1 ± iz2|},
and we have

Np(z) =
(
|z1 + iz2|p + |z1 − iz2|p

2

)1/p

.

Thus the Np–norm is equivalent to the Lp–norm ‖ · ‖p, and the Lie norm L(z)
to the supremum norm ‖ · ‖∞ in C2: Noting that

‖w‖p = (|w1|p + |w2|p + · · ·+ |wn+1|p)1/p , p ≥ 1,

‖w‖∞ = sup{|wj |; j = 1, · · · , n + 1},
the Np–norm (resp., the Lie norm) is another generalization of the 2–dimen-
sional Lp–norm (resp., the supremum norm).

1.2. A relation between the Np–norms and the Tchebycheff polynomials.
The Tchebycheff polynomial Tk(x) of degree k is defined by

Tk(x) =
(x + i

√
1− x2)k + (x− i

√
1− x2)k

2
.

We define the homogeneous extended Tchebycheff polynomial of degree 2k in
Cn+1 by

T̃k,n(z, w) = (
√

z2)k(
√

w2)kTk

(
z√
z2
· w√

w2

)
=

(z · w + i
√

z2w2 − (z · w)2)k + (z · w − i
√

z2w2 − (z · w)2)k

2
.

Further extend the parameter k to α ∈ R and consider the function

T̃α,n(z, w) =
(z · w + i

√
z2w2 − (z · w)2)α + (z · w − i

√
z2w2 − (z · w)2)α

2
.

Then T̃α,n(z, z) = (z2)α, T̃α,n(z, w) = (z · w)α if z2 = 0 or w2 = 0 ,

T̃α,n(z, z) =
1
2

(
L(z)2α +

(
|z2|
L(z)

)2α
)

.
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Thus the function Np(z) is represented by

Np(z) =
(
T̃p/2,n(z, z)

) 1
p

, z ∈ Cn+1.

Therefore, if p = 2k is a positive even natural number, the last formula ex-
presses the norm Np in terms of the Tchebycheff polynomial Tp of degree p.
Hence N2k

2k is a homogenous polynomial of 2(n+1) real variables of degree 2k.
1.3. Hardy space on the Np–ball.

We define the Np–ball B̃n+1
p (r) by

B̃n+1
p (r) =

{
z ∈ Cn+1;Np(z) < r

}
, p ≥ 1,

B̃n+1(r) =
⋂
p≥1

B̃n+1
p (r) =

{
z ∈ Cn+1;L(z) < r

}
.

Note that B̃n+1
1 (r) is the dual Lie ball, B̃n+1

2 (r) is the complex Euclidean ball,
and B̃n+1(r) is the Lie ball of radius r in Cn+1.

We denote by O(B̃n+1
p (r)) the space of holomorphic functions on B̃n+1

p (r)
equipped with the topology of uniform convergence on compact sets. Put

HO(B̃n+1
p (r)) =

{
f ∈ O(B̃n+1

p (r));
∫

B̃n+1
p [r]

|f(w)|2dVp,r(w) < ∞

}
,

where dVp,r(w) is the normalized Lebesgue measure on B̃n+1
p (r).

Let ∆ be the complex Laplacian:

∆z ≡ ∂2/∂z2
1 + ∂2/∂z2

2 + · · ·+ ∂2/∂z2
n+1.

Put
HO∆(B̃n+1

p (r)) =
{

f ∈ HO(B̃n+1
p (r)) ; ∆zf(z) = 0

}
.

When a function f satisfies ∆zf(z) = 0, f is called a complex harmonic func-
tion. In the following, we call the Bergman kernel on HO∆(B̃n+1

p (r)) the
“harmonic” Bergman kernel.

Note that for the complex plane, every Np–ball of radius r is equal to the
disk D(r) = {z; |z| < r}, and the Bergman kernel B1

r (z, w) for HO(D(r)) is
given by

B1
r (z, w) =

∞∑
k=0

(k + 1)
(z

r

)k
(

w

r

)k

=
r4

(r2 − zw)2
.

Since HO∆(D(r))={a+bz}, the Bergman kernel B1
r,∆(z, w) for HO∆(D(r))

is given by

B1
r,∆(z, w) = 1 + 2

z

r

w

r
.
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For n ≥ 1, in general, the exsistance of the Bergman kernel Bn+1
p,r (z, w)

on HO(B̃n+1
p (r)) is known, but it is difficult to express it in a concrete form.

However for HO(B̃n+1
2 (r)) and for HO(B̃n+1(r)), the following are known:

Bn+1
2,r (z, w) =

r2n+4

(r2 − z · w)n+2
, n ≥ 0,

(2) Bn+1
r (z, w) ≡ Bn+1

∞,r (z, w) =
r4n+4

(r4 − 2r2z · w + z2w2)n+1
, n ≥ 0.

For a proof of (2) for n ≥ 2, see e.g. [5].
Put

Z1 = z1 + iz2, Z2 = z1 − iz2, D2(r) = {(Z1, Z2); |Z1| < r, |Z2| < r}.

Since B̃2(r) ∼= D2(r), we can find the Bergman kernels B2
r (z, w) and B2

r,∆(z, w)
by using the results in 1–dimensional case. Let us check them here.

Since the volume of D2(r) is V (D2(r)) = π2r4, the Bergman kernel for
HO(D2(r)) is as follows:

B2
r (Z,W ) =

∑
k1,k2

(k1 + 1)(
Z1

r

W1

r
)k1(k2 + 1)(

Z2

r

W2

r
)k2

=
r4

(r2 − Z1W1)2
r4

(r2 − Z2W2)2
.

Note that this is equivalent to

(3) B2
r (z, w) =

r8

(r4 − 2r2z · w + z2w2)2
.

Therefore, since we have (1) and B̃2(r) ∼= D2(r), (3) is the Bergman kernel for
HO(B̃2(r)).

Since ∆z = 4 ∂2

∂Z1∂Z2
, we have HO∆(D2(r)) = {a +

∑
b1Z

k
1 +

∑
ckZ

k
2 }.

Thus the Bergman kernel B2
r,∆(Z,W ) for HO∆(D2(r)) is as follows:

B2
r,∆(Z,W ) = 1 +

∞∑
k1=1

(k1 + 1)(
Z1W1

r2
)k1 +

∞∑
k2=1

(k2 + 1)(
Z2W2

r2
)k2

=
(

1− Z1W1Z2W2

r4
(2− Z1W1

r2
)(2− Z2W2

r2
)
)

B2
r (Z,W )
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Therefore, we have

B2
r,∆(z, w) =

(
1− z2w2

r4
(4− 4

z · w
r2

+
z2w2

r4
)
)

B2
r (z, w), z, w ∈ C2

=
r8 − z2w2(4r4 − 4r2z · w + z2w2)

(r4 − 2r2z · w + z2w2)2
, z, w ∈ C2.(4)

Since B̃2(r) ∼= D2(r), (4) is the harmonic Bergman kernel for HO∆(B̃2(r)). Af-
ter we review some results on spherical harmonic functions, we treat harmonic
Bergman kernel again in the last section.

2. Spherical harmonic functions.
From now on, we consider n ≥ 1.
Let Pk,n(t) be the orthogonal polynomial of degree k whose highest coeffi-

cient is positive and determined by∫ 1

−1
Pk,n(t)Pl,n(t)(1− t2)(n−2)/2dt =

√
πΓ(n/2)

Γ((n + 1)/2)N(k, n)
δkl,

where N(k, n) is the dimension of the space of homogeneous harmonic poly-
nomials of degree k in Cn+1 :

N(0, n) = 1, N(k, n) =
(2k + n− 1)(k + n− 2)!

k!(n− 1)!
, k = 1, 2, · · · .

We call Pk,n(t) the Legendre polynomial of degree k and of dimension n+1. We
define the homogeneous harmonic extended Legendre polynomial P̃k,n(z, w) of
degree k and of dimension n + 1 by

P̃k,n(z, w) = (
√

z2)k(
√

w2)kPk,n(
z√
z2
· w√

w2
).

Note that P̃k,n(z, w) = P̃k,n(w, z) and ∆zP̃k,n(z, w) = 0.
When n = 1, P̃k,1(z, w) = T̃k,1(z, w) and we denote it by T̃k(z, w).
For the Bergman kernel for HO(B̃n+1

p (r)), we proved the following theorem
for n ≥ 2 in [2] and for n = 1 in [3]:

Theorem 2.1. The Bergman kernel Bn+1
p,r (z, w) for HO(B̃n+1

p (r)) is given
as follows :

Bn+1
p,r (z, w) =

∞∑
k=0

[k/2]∑
l=0

(βn+1,p
k,l,r )−1(z2)l(w2)lP̃k−2l,n(z, w), z, w ∈ B̃n+1

p (r)

where

βn+1,p
k,l,r =

∫
B̃n+1

p [r]
|(ζ2)lP̃k−2l,n(ζ, ω)|2dVp,r(ζ), ω ∈ Sn,
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and dVp,r(ζ) denotes the normalized Lebesgue measure on B̃n+1
p (r) and Sn is

the real unit sphere in Rn+1.

For the Bergman kernel Bn+1
r (z, w), the following formula is known:

Formula 2.2. We have

r4n+4

(r4 − 2r2z · w + z2w2)n+1
=

∞∑
k=0

[k/2]∑
l=0

an
k,k−2l(z

2/r2)l(w2/r2)lP̃k−2l,n(z/r, w/r)

where

an
k,k−2l =

2Γ(l + n+3
2 )Γ(k + n− l + 1)N(k − 2l, n)
(n + 1)!l!Γ(k + n+1

2 − l)
.

Further in the 2–dimensional case, we calculated the coefficients β2,p
k,l,r in

[3], and Theorem 2.1 is restated as follows:

Theorem 2.3. The Bergman kernel B2
p,r(z, w) for HO(B̃2

p(r)) is as fol-
lows :

B2
p,r(z, w) =

∞∑
k=0

[k/2]∑
l=0

N(k − 2l, 1)Γ(2
p)2Γ(2k+4

p + 1)

Γ(4
p + 1)Γ(2k−2l+2

p )Γ(2l+2
p )2

2k
p r2k

(z2)l(w2)lT̃k−2l(z, w),

=
∞∑

k=0

k∑
l=0

Γ(2
p)2Γ(2k+4

p + 1)

Γ(4
p + 1)Γ(2k−2l+2

p )Γ(2l+2
p )2

2k
p r2k

(X1)k−l(X2)l,

where

X1 = z · w + i
√

z2w2 − (z · w)2, X2 = z · w − i
√

z2w2 − (z · w)2.

Note that

lim
p→∞

β2,p
k,l,r = lim

p→∞

Γ(4
p + 1)

N(k − 2l, 1)Γ(2
p)2

Γ(2k−2l+2
p )Γ(2l+2

p )

Γ(2k+4
p + 1)

2
2k
p r2k

=
r2k

N(k − 2l, 1)(k − l + 1)(l + 1)
.

For convenience, we introduce the following notation:

(5) X1 = z · w + i
√

z2w2 − (z · w)2, X2 = z · w − i
√

z2w2 − (z · w)2.

Then we have

(6) X1 + X2 = 2z ·w, X1X2 = z2w2, (1−X1)(1−X2) = 1− 2z ·w + z2w2,

T̃k,n(z, w) =
1
2

(
Xk

1 + Xk
2

)
.
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3. Harmonic Bergman kernel.
Any harmonic function f in a neighborhood of 0 can be expanded into the

homogenoeus harmonic polynomials:

f(z) =
∞∑

k=0

fk(z),

for a sufficiently small z, where fk is the homonenoeous harmonic polynomial
of degree k defined by

fk(z) = N(k, n)
∫

Sn

f(ρω)P̃k,n(z, ω/ρ)dω,

for a sufficiently small ρ and dω is the normalized invariant measure on Sn.
By Proposition 2.1 in [2], for f ∈ HO∆(B̃n+1

p (r)), we have∫
B̃n+1

p [r]

∞∑
k=0

fk(w)
∞∑

k=0

[k/2]∑
l=0

(ζ2)l(w2)lP̃k−2l,n(ζ, w)dVp,r(w), ζ ∈ B̃n+1
p (r)

=
∞∑

k=0

∫
B̃n+1

p [r]
fk(w)P̃k,n(ζ, w)dVp,r(w).

Thus by Theorem 2.1, we have the following theorem:

Theorem 3.1. Let n=1, 2, . . . . The harmonic Bergman kernel Bn+1
p,r,∆(z, w)

on HO∆(B̃n+1
p (r)) is given as follows :

Bn+1
p,r,∆(z, w) =

∞∑
k=0

(βn+1,p
k,0,r )−1P̃k,n(z, w), z, w ∈ B̃n+1

p (r).

Similary, by Theorem 2.3, we have the following theorem:

Theorem 3.2. The harmonic Bergman kernel B2
p,r,∆(z, w) on HO∆(B̃2

p(r))
is given as follows :

B2
p,r,∆(z, w) =

∞∑
k=0

N(k, 1)Γ(2
p)Γ(2k+4

p + 1)

Γ(4
p + 1)Γ(2k+2

p )2
2k
p r2k

T̃k(z, w),

= 1 +
∞∑

k=1

Γ(2
p)Γ(2k+4

p + 1)

Γ(4
p + 1)Γ(2k+2

p )2
2k
p r2k

(
(X1)k + (X2)k

)
= Fp(X1/(22/pr2)) + Fp(X2/(22/pr2))− 1,

where X1 and X2 are given by (5) and Fp(X) is the function defined by

(7) Fp(X) =
∞∑

k=0

Γ(2
p)Γ(2k+4

p + 1)

Γ(4
p + 1)Γ(2k+2

p )
Xk.
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In order to find a closed form of B2
p,r,∆(z, w) it is sufficient to find a closed

form of Fp(X).

In the following, we set

ap =
X1

22/p
=

z · w + i
√

z2w2 − (z · w)2

22/p
,

bp =
X2

22/p
=

z · w − i
√

z2w2 − (z · w)2

22/p
.

3.1. In case of the Lie ball.
In Section 1, we have already shown B2

r,∆(z, w) is given by (4). Here we derive
it as a corollary of Theorem 3.2.

Since

Fp(X) =
∞∑

k=0

(k + 1)Γ(2
p + 1)Γ(2k+4

p + 1)

Γ(4
p + 1)Γ(2k+2

p + 1)
Xk,

by (7), we have

F∞(X) =
∞∑

k=0

(k + 1)Xk =
1

(1−X)2
.

Therefore, we have

B2
r,∆(z, w) =

∞∑
k=0

(k + 1)N(k, 1)
r2k

T̃k(z, w)

= F∞(a∞/r2) + F∞(b∞/r2)− 1

=
1− z2

r2
w2

r2 (4− 4( z
r ·

w
r ) + z2

r2
w2

r2 )(
1− 2 z

r ·
w
r + z2

r2
w2

r2

)2 .

3.2. In case of the Euclidean ball.
By Theorem 3.2, we have

B2
2,r,∆(z, w) =

∞∑
k=0

(k + 2)!N(k, 1)
2kk!2r2k

T̃k(z, w) = F2(a2/r2) + F2(b2/r2)− 1.

Since
∞∑

k=0

(k + 2)(k + 1)xk =
d2

dx2

(
x2

1− x

)
=

2
(1− x)3

,

F2(X) =
1

(1−X)3
.

Thus the Bergman kernel B2
2,r,∆(z, w) for HO∆(B̃2

2(r)) is given by

B2
2,r,∆(z, w) = F2(a2/r2) + F2(b2/r2)− 1 =

1
(1− a2/r2)3

+
1

(1− b2/r2)3
− 1.
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Then by (6), we have

B2
2,r,∆(z, w) =

Q2,r

(
z√
2r
· w√

2r
, z2

2r2
w2

2r2

)
(
1− 2 z√

2r
· w√

2r
+ z2

2r2
w2

2r2

)3 ,

where Q2,r( z√
2r
· w√

2r
, z2

2r2
w2

2r2 ) is the polynomial in s = z√
2r
· w√

2r
= a2+b2

2r2 ∈ C

and t = z2

2r2
w2

2r2 = a2b2
r4 ∈ C of degree 3 given by

Q2,r(s, t) = (1− b2/r2)3 + (1− a2/r2)3 − (1− a2/r2)3(1− b2/r2)3

= 1− 9t + 18ts− 3t2 − 12ts2 + 6t2s− t3.
3.3. In case of the dual Lie ball.

By Theorem 3.2, we have

B2
1,r,∆(z, w) =

∞∑
k=0

N(k, 1)(2k + 4)(2k + 3)(2k + 2)
24 · 22kr2k

T̃k(z, w)

= F1(a1/r2) + F1(b1/r2)− 1.

Since
∞∑

k=0

(2k + 4)(2k + 3)(2k + 2)x2k+1 =
(

x4

1− x2

)(3)

= 24x(1− x2)−1 + 96x3(1− x2)−2 + 120x5(1− x2)−3 + 48x7(1− x2)−4

= 24x
1 + x2

(1− x2)4
,

F1(X) =
∞∑

k=0

(2k + 4)(2k + 3)(2k + 2)Xk/24

=
1 + X

(1−X)4
.

Thus we have

B2
1,r,∆(z, w) = F1(a1/r2) + F1(b1/r2)− 1 =

1 + a1/r2

(1− a1/r2)4
+

1 + b1/r2

(1− b1/r2)4
− 1.

By (6)

B2
1,r,∆(z, w) =

Q1,r( z
2r ·

w
2r , z2

4r2
w2

4r2 )(
1− 2 z

2r ·
w
2r + z2

4r2
w2

4r2

)4 ,
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where Q1,r(s, t) is a polynomial in two complex variables s, t given by

Q1,r(s, t) = 1 + 2s− 24t + 60st + 4t2

+18st2 − 80s2t− 4t3 + 48st3 − 24s2t2 + 40s3t− t4.
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