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BERNSTEIN QUASIANALYTIC FUNCTIONS

ON ALGEBRAIC SETS

by Alicja Skiba

Abstract. We extend the notion of Bernstein quasianalytic functions to
algebraic sets in Cn. We prove a uniqueness principle for such functions.

1. Introduction. Let E ⊂ R be a compact interval. It is the well-known
result of Bernstein that a function f ∈ C(E) can be extended to a holomorphic
function in a neighbourhood U ⊂ C of the set E if and only if

(1.1) lim sup
k→∞

k
√

distE(f,Pk) < 1,

where Pk = Pk(C) denotes the space of all polynomials of one complex variable
of degree at most k and distE(f,Pk) = inf{‖f − p‖E ; p ∈ Pk}. If a function
f satisfies (1.1) then obviously the following identity principle holds:
(IP) f = 0 on a subinterval of E implies that f vanishes on E.

As was observed by Bernstein, to establish the above identity principle it
is enough to assume that the function f satisfies the weaker condition

(1.2) lim inf
k→∞

k
√

distE(f,Pk) < 1.

If a function f has property (1.2) it is called quasianalytic in the sense
of Bernstein. Condition (1.2) can be reformulated as follows. There exist a
constant % ∈ (0, 1) and a strictly increasing sequence of positive integers {nj}
such that

lim sup
nj→∞

nj
√

distE(f,Pnj ) = %.

Szmuszkowiczówna [17] and, independently, Lelong [5] extended (IP) by
proving that a quasianalytic function f 6= 0 defined on E can vanish only on a
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subset of E with a transfinite diameter equal to 0 (or, equivalently, on a polar
subset of E).

An important property of quasianalytic functions was found by Mazurkie-
wicz [8]: the set B(E) of all quasianalytic functions defined on E is residual
in the space C(E). Let us recall that a subset A of a topological space X is
residual if the set X \ A is a union of a countable number of nowhere dense
subsets of X. Another interesting result was obtained by Markuszewicz [7]:
for any function f ∈ C(E) there exist f1, f2 ∈ B(E) such that f = f1 + f2.

The notion of quasianalyticity has been extended to the n–dimensional
case in [9]. The theory of quasianalytic functions of several variables in the
sense of Bernstein has been developed by Pleśniak in [11].

The aim of this paper is to show that the notion of a quasianalytic function
in the sense of Bernstein can be extended to algebraic subsets of Cm. In
particular, it has been proved (Theorem 3.7) that an identity principle for
such functions also holds on some algebraic sets. We complete the paper by
Section 4, in which we give some examples of compact sets E ⊂ Cm preserving
the Szmuszkowiczówna–Lelong type identity principle (see Definition 3.6).

2. Preliminaries. A subset A of Cm is said to be pluripolar if there exists
a plurisubharmonic function u on Cm such that A ⊂ {u = −∞}. If for each
point a ∈ A there exist an open neighbourhood V of a and a plurisubharmonic
function v on V such that A ∩ V ⊂ {v = −∞}, then the set A is said to be
locally pluripolar. Josefson [4] proved that both notions are equivalent.

Let us recall that a set A ⊂ Cm is called locally analytic if for each point a ∈
A there are an open neighbourhood U of a and functions f1, ..., fs holomorphic
in U such that A ∩ U = {z ∈ U : f1(z) = ... = fs(z) = 0}. Let M be a
locally analytic subset of Cm whose subset Mreg of regular points is a complex
submanifold of Cm of pure dimension k (k 6 m). A function defined on M is
said to be plurisubharmonic on M if it is plurisubharmonic on Mreg and locally
bounded from above on M. We say that a set N ⊂ M is pluripolar in M if there
exists a plurisubharmonic function u on M such that N ∩Mreg ⊂ {u = −∞}.

Let E be a subset of the space Cm. The function

VE(z) = sup{u(z) : u ∈ L(Cm), u|E 6 0 },

where L(Cm) = {u ∈ PSH(Cm) ; supz∈Cm [u(z) − log(1 + |z|)] < ∞} is the
Lelong class of plurisubharmonic functions with minimal growth, is called the
extremal function of the set E. Let P = P(Cm) be the space of all polynomials
of m complex variables. For a compact set E ⊂ Cm Siciak [15] has introduced
the function

ΦE(z) = {|p(z)|1/deg p : p ∈ P(Cm), deg p > 1, ‖p‖E= sup
z∈E

|p(z)| 6 1}
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by now called Siciak’s extremal function. It is known (Zakharyuta [18], Siciak
[16]) that VE(z) = log ΦE(z) for z ∈ Cm. It follows directly from the defi-
nition of ΦE that for any compact set E and any polynomial p the following
Bernstein–Walsh–Siciak inequality holds:

(2.1) |p(z)| 6‖p‖E [ΦE(z)]deg p , z ∈ Cm.

A set D ⊂ Cm is called negligible if there exists a family of functions
{uι} ⊂ PSH(Cm) locally bounded from above such that

D ⊂ {z ∈ Cm ; sup uι(z) < (sup uι(z))∗},

where h∗(z) = lim supu→z h(u).
An essential role in this paper is played by the following Bedford–Taylor

counterpart of the classical Kellogg lemma (see e.g. [13, Theorem 4.2.5]).

Theorem 2.1. ([2, Theorem 7.1]) Negligible sets in Cm are exactly pluripo-
lar sets.

Let now E be a compact subset of Cm. Observe that

F := {z ∈ E ; VE is not continuous in z} = {z ∈ E ; V ∗
E(z) > VE(z) = 0}.

Therefore F is a negligible subset of Cm and, by the above Bedford–Taylor
version of the Kellogg lemma, F must be pluripolar.

3. Bernstein quasianalytic functions on algebraic sets.

Definition 3.1. Let M ⊂ Cm be an algebraic set, and let K be a compact
subset of M. A function f defined on K, with values in C, is said to be
quasianalytic on K in the sense of Bernstein if there exist a strictly increasing
sequence of positive integers {nj}∞j=1 and a sequence of polynomials pnj ∈
Pnj (Cm), j = 1, 2, ..., such that

(3.1) lim sup
j→+∞

nj
√
‖f − pnj ‖K < 1.

The set of all quasianalytic functions on K is denoted by B(K).

This definition extends the notion of quasianalyticity of functions defined
on a compact subset of the space Ck to those defined on pieces of algebraic
sets.

Lemma 3.2. Let h be a holomorphic mapping defined on an open set U⊂Ck,
with values in a locally analytic set M in Cm of pure dimension k (k 6 m). As-
sume that h is non-degenerate, which means that rankUh = maxz∈U rankzh =
k. Let E be a compact subset of U and F = h(E). If a set N ⊂ F is non-
pluripolar in M, then the set h−1(N) ∩ E is non-pluripolar in Ck.
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Proof. Let Msing be the set of singular points of M. Then Msing is an
analytical subset of M and dim Msing < k (see e.g. [6, Chapter IV.2.4]).
Hence, in view of Josefson’s theorem, the set Msing is pluripolar in M. The set
A = {z ∈ U : rankzh < k} is analytic. By the well-known theorem (see e.g.
[3, Chapter 1.3.8]) the set h(A) is contained in at most countable family of
locally analytic sets in M of dimension less than k. Consequently, by Josefson’s
theorem, h(A) is a pluripolar subset of M. Hence the set Ñ := N\(h(A)∪Msing)
is non-pluripolar in M. So applying again Josefson’s theorem we show that
there exists a point a ∈ Ñ such that

(3.2) for each ε > 0 the set B(a, ε) ∩ Ñ is non-pluripolar in M.

Since a is a regular point of the set M, we can find a constant ε0 > 0 and a
biholomorphism φ of the set B(a, ε0)∩M onto the unit ball B in Ck. Let us take
a point b ∈ h−1(a) ∩ E. Then b /∈ A, so one can find an open neighbourhood
V ⊂ U of the point b such that h|V is a biholomorphism of V onto h(V ) and
a ∈ h(V ) ⊂ B(a, ε0). By (3.2) the set φ(h(V ) ∩ Ñ) is non-pluripolar. Hence,
since the mapping φ ◦ h|V is a biholomorphism of V onto φ(h(V )), the set
(φ ◦ h|V )−1

(
φ(h(V ) ∩ Ñ)

)
= h−1

|V (h(V ) ∩ Ñ) is non-pluripolar in Ck. Since

Ñ ⊂ F = h(E) and h|V is a biholomorphism, we have h−1
|V (h(V ) ∩ Ñ) ⊂ E.

Consequently, the set E ∩ h−1(N) must be non-pluripolar in Ck.

Lemma 3.3. Let E ⊂ Ck be a non-pluripolar, polynomially convex compact
set. Let h be a non-degenerate holomorphic mapping defined on an open neigh-
bourhood U of E, with values in an algebraic set M ⊂ Cm (k 6 m). Let K be
a compact subset of M such that h(E) ⊂ K. If a function f is quasianalytic
on K, then the function g = f ◦ h is quasianalytic on E.

To prove this lemma we shall need a characterization of algebraic sets in
Cm given by Sadullaev [14].

Theorem 3.4. (Sadullaev’s criterion) An analytic subset A of Cm is
algebraic if and only if Siciak’s extremal function ΦE is locally bounded on A
for some (and hence for each) non-pluripolar compact subset E of A.

An important role in the following proof is played by a uniform version of
the Bernstein–Walsh–Siciak theorem [10, Lemma 1].

Theorem 3.5. Let A(U) be the space of bounded holomorphic functions
defined in an open set U ⊂ Ck, and let ‖ f ‖U := supz∈U |f(z)|. For every
polynomially convex compact subset E of U there exist constants M > 0 and
a ∈ (0, 1) such that
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distE(f,Pl) := inf{‖f − p‖E ; p ∈ Pl} 6 M ‖f ‖U al

for f ∈ A(U) and l ∈ N.

Proof of Lemma 3.3. The definition of a quasianalytic function (3.1)
implies that for such a function f one can choose a sequence of polynomials
pnj ∈ Pnj of m variables and a constant % ∈ (0, 1) such that

(3.3) ‖f − pnj ‖K6 %nj for j > j0.

Since K ⊃ h(E), we have

(3.4) ‖f ◦ h− pnj ◦ h‖E=‖f − pnj ‖h(E)6‖f − pnj ‖K6 %nj for j > j0.

We may assume that h is bounded on U . Then taking a constant R > 0
sufficiently large, we have h(U) ⊂ B(0, R) ∩ M. Hence, by the Bernstein–
Walsh–Siciak inequality (2.1), we get

(3.5) sup
z∈U

|pnj ◦ h(z)| 6 sup
w∈h(U)

|pnj (w)| 6‖pnj ‖K

[
sup

w∈h(U)
ΦK(w)

]nj .

By [1, Lemma 0.1], h(E) is a non-pluripolar subset of the algebraic set M,
whence by Sadullaev’s criterion we get

(3.6) C1 := sup
w∈h(U)

ΦK(w) < ∞.

Now, since
‖pnj ‖K6‖f − pnj ‖K + ‖f ‖K6 1+ ‖f ‖K

for all j > j0, by (3.5) and (3.6) one can find a constant C > 0 such that

sup
z∈U

|pnj ◦ h(z)| 6 Cnj , j > j0.

Owing to this we can apply Theorem 3.5 to the family of functions {pnj ◦ h}
and we get

distK(pnj ◦ h, Pl(Ck)) 6 M ‖pnj ◦ h‖U al 6 MCnjal

for each j, l ∈ N with suitably chosen constants M > 0 and a ∈ (0, 1). Conse-
quently, for each j ∈ N and each l ∈ N there exists rl ∈ Pl(Ck) such that

‖pnj ◦ h− rl ‖K6 MCnjal.

Choosing an integer t such that Cat 6 a and putting l = tnj gives

(3.7) ‖pnj ◦ h− rtnj ‖K6 Manj .

By the triangle inequality, (3.4) and (3.7), for j > j0 we get

‖f ◦ h− rtnj ‖E6 %nj + Manj 6 2Mηnj = 2M(η
1
t )tnj ,

where η = max{%, a} < 1.
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Finally, setting uj := tnj gives

lim sup
j→∞

uj
√
‖f ◦ h− ruj ‖E 6 η

1
t < 1,

whence f ◦ h is a quasianalytic function on E.

Definition 3.6. A compact set E ⊂ Ck is said to satisfy condition (NB)
if for every f ∈ B(E) and every non-pluripolar set F ⊂ E, f = 0 on F implies
f = 0 on E.

Theorem 3.7. Let E be a polynomially convex compact set in Ck satisfying
condition (NB). Let

h : U ⊃ E 7→ M ⊂ Cm

be a non-degenerate holomorphic mapping in an open neighbourhood U of E,
with values in an algebraic set M of pure dimension k (k 6 m), and K = h(E).
If f is quasianalytic on K and f(z) = 0 for z ∈ N ⊂ K, where N is a non-
pluripolar subset of M, then f ≡ 0 on K.

Proof. In view of Lemma 3.2 the set F = h−1(N)∩E is a non-pluripolar
subset of E on which the function f ◦ h vanishes. By Lemma 3.3 the function
f ◦ h is quasianalytic on E. Consequently, by condition (NB), f ◦ h ≡ 0 on E,
and therefore f ≡ 0 on K = h(E).

4. Sets satisfying condition (NB). By the Szmuszkowiczówna–Lelong
theorem every closed subinterval of C satisfies condition (NB). In [9] it has been
proved that this condition is satisfied by subsets of Cn of type E = E1×. . .×En

where each set Ei is a continuum in C. By Theorem 2.1 and (IP) we derive
that if E is a convex compact subsets of Cn then it satisfies (NB). Now we shall
prove essentially more, viz. that the sets whose two arbitrary points can be
connected by an analytic curve belong to the class of NB–sets. We shall need a
counterpart of Lemma 3.3 in the case where h is a holomorphic mapping with
values in Cm.

Lemma 4.1. Let E ⊂ Ck be a non-pluripolar, polynomially convex compact
set, and let K ⊂ Cm be a non-pluripolar compact set. Let h be a holomorphic
map defined in an open neighbourhood U of E, with values in Cm, such that
h(E) ⊂ K. Then for every quasianalytic function f on K the function f ◦ h
is quasianalytic on E.

Remark 4.2. The dimensions k and m can be arbitrary.

The proof of Lemma 4.1 is similar to that of Lemma 3.3. Now, the constant
C1 in (3.6) is finite, since Siciak’s extremal function associated with a non-
pluripolar compact set is locally bounded (see [16, Lemma 3.4, Corollary 3.9
and Theorem 3.10]).
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Theorem 4.3. Let E be a non-pluripolar compact subset of Cn. Assume
that for any two different points of E there exists an analytic mapping la,b

defined in a neighbourhood of [0, 1] such that la,b([0, 1]) ⊂ E, la,b(0) = a and
la,b(1) = b. Then the set E satisfies (NB).

Proof. Let us take a function f ∈ B(E) and a non-pluripolar set F ⊂ E
such that f(z) = 0 for z ∈ F . By the continuity of the function f it can be
assumed that the set F is compact. The definition of a quasianalytic function
implies that for some % ∈ (0, 1) and a sequence of polynomials {pnj} with
deg pnj 6 nj we have

‖f − pnj ‖F 6‖f − pnj ‖E6 %nj for j > j0.

Since f|F ≡ 0, it follows that ‖pnj ‖F 6 %nj . Due to the above estimate and
inequality (2.1), we get

(4.1) |pnj (z)| 6 %nj [ΦF (z)]nj .

By Theorem 2.1 the set of all points of F at which Siciak’s extremal function
ΦF is not continuous must be pluripolar. So there exists a point a ∈ F at which
ΦF is continuous. If we take η ∈ (0, 1

%) then we can choose a constant ε > 0
such that |ΦF (z)| 6 η for z ∈ B(a, ε). Applying this estimate to inequality
(4.1) gives ‖ pnj ‖B(a,ε)6 (% η)nj for j > j0. Since (% η) < 1, f(z) = 0 for
z ∈ B(a, ε) ∩ E. Now let us choose an arbitrary point b ∈ E \ {a} and
an analytic map la,b satisfying the assumptions of the theorem. Let us note
that the function f ◦ la,b defined in a neighbourhood of the interval [0, 1] is
quasianalytic on [0, 1] (Lemma 4.1) and that there exists α > 0 such that
la,b([0, α]) ⊂ B(a, ε)∩E. Hence f ◦ la,b ≡ 0 on [0, α]. By the classical Bernstein
theorem it follows that h ◦ la,b ≡ 0 on [0, 1]. Hence, in particular, f(b) = 0. By
the arbitrariness of the choice of b ∈ E we derive that f ≡ 0 on E.

By Lemma 3.2 and Lemma 3.3, property (NB) is invariant under biholo-
morphic mappings. Under certain conditions, we can prove more, namely

Theorem 4.4. Let W ⊂ Ck be a compact set satisfying (NB). Assume
moreover that for every point a ∈ W and for every constant ε > 0

(4.2) the set B(a, ε) ∩W is non-pluripolar.

Let h be a non-degenerate holomorphic mapping defined in an open neighbour-
hood U of the set W , with values in Cm (k > m). Then h(W ) satisfies (NB).

Proof. Condition (4.2) implies that the set W is non-pluripolar. Since
h is a non-degenerate holomorphic mapping, the set h(W ) is non-pluripolar
(see [12, Lemma 2.5]). Let us take a quasianalytic function q on h(W ) and
a non-pluripolar set N ⊂ h(W ) such that q = 0 on N . We can proceed like
in the first part of the proof of Theorem 4.3. Namely we may assume that N
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is compact and we can choose a sequence of polynomials pnj ∈ Pnj such that
‖q − pnj ‖h(W )6 %nj for a certain % ∈ (0, 1) and a sequence of positive integers
nj ↗∞.

Then, due to the non-pluripolarity of N , by Theorem 2.1 and the Bernstein–
Walsh–Siciak inequality (2.1), there exist a point b ∈ N and constants r > 0,
γ ∈ (%, 1) such that ‖ pnj ‖B(b,r)6 γnj for j > j0. Since h is a continuous
mapping, the set h−1(B(b, r)) is an open subset of U . Let a ∈ h−1(b) ∩ W .
Obviously, there is a constant δ > 0 such that B(a, δ) ⊂ h−1(B(b, r)). By
assumption (4.2) the set F := B(a, δ) ∩W is not pluripolar. Let us note that

h(F ) = h(B(a, δ) ∩W ) ⊂ h(h−1(B(b, r)) ∩W )

⊂ h(h−1(B(b, r))) ∩ h(W ) = B(b, r) ∩ h(W ).

So we have

‖q ◦ h‖F =‖q‖h(F )6‖q − pnj ‖h(F ) + ‖pnj ‖h(F )6 %nj + γnj 6 2γnj .

Hence the function q ◦h vanishes on a non-pluripolar subset F of W . Since W
satisfies (NB) and, by Lemma 3.3, the function q ◦ h is quasianalytic, we have
q ◦ h ≡ 0 on W . Consequently, q ≡ 0 on h(W ).

Other examples of NB–sets are yielded by the following

Proposition 4.5. Let E1 and E2 be compact subsets of Ck satisfying (NB).
If the set E1 ∩ E2 is non-pluripolar then the set E := E1 ∪ E2 also satisfies
(NB).

Proof. Let q ∈ B(E), and let F ⊂ E be a non-pluripolar set such that
q vanishes on F . We may assume that F ∩ E1 is a non-pluripolar set. Since
E1 ∈ (NB), we get q ≡ 0 on E1. Hence q = 0 on the non-pluripolar subset
E1 ∩ E2 of E2. Since E2 ∈ (NB), q = 0 on E2.
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