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ON MINIMAL AND INVARIANT SETS IN SEMIDYNAMICAL

SYSTEMS

by Anna Bistroń

Abstract. We investigate the structure of non-trivial, weakly minimal and
negatively strongly invariant sets in a semidynamical system on a locally
compact metric space. For a negative prolongational limit set for a semi-
dynamical system we present two different definition which appear to be
equivalent. Certain properties of these sets are discussed.

1. Introduction. In a dynamical system a movement is defined for pos-
itive and negative values of time. In a semidynamical system the situation is
different. Here, the movement is defined only for positive values of time. This
leads to a main difference between dynamical systems and semidynamical sys-
tems.

We can ask about “the past” of a given point x. It depends on a negative
semisolution σ through x. It is possible that such a negative semisolution σ
through x does not exist, there can exist only one semisolution or more, even
infinitely many. In a dynamical system we define positive and negative limit
sets L+(x) and L−(x). In a semidynamical system a negative limit set L−σ (x)
depends on a negative semisolution σ through x. In a dynamical system as
well as in a semidynamical system we define a positive prolongational limit set
J+(x) in the same way. In the case of a negative prolongational limit set for a
semidynamical system the situation is more complicated. We may state such
a definition in different ways, which in each case is the generalization of the
analogous definition for dynamical systems. Here we define two types of such
sets and prove that they give the same sets. We also show certain properties
of the negative prolongational limit set.

In the second part of this paper we define some kinds of invariance and
minimality, as in semidynamical systems this may be done in different ways.
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Next we investigate non-trivial, weakly minimal and negatively strongly invari-
ant sets in a semidynamical system on a locally compact metric space. S.Kono
([3]) characterized a non-trivial, non-compact minimal set in a dynamical sys-
tem on a locally compact metric space. He fully characterized the types of
trajectories which can be contained in such set.

In this paper a similar problem is studied for semidynamical systems. We
prove that a non-trivial, weakly minimal and negatively strongly invariant
sets in a semidynamical system on a locally compact metric space consists
of infinitely many trajectories similarly as in the case of a dynamical system.
However, the difference appears in the types of trajectories which may be
contained in such set. The main theorem of this paper states that this set can
contain four types of trajectories. Also, it is shown that certain trajectories
cannot be contained in such set.

We also give some examples of non-trivial, weakly minimal sets, which may
appear in semidynamical systems, describing what phenomena may occur here.

2. Preliminaries. A semidynamical system on a metric space X with
metric d is a triplet (X,R+, π) where π : X × R+ → X is a continuous
mapping such that:

(i) π(x, 0) = x for all x ∈ X
(ii) π(π(x, t), s) = π(x, t + s) for all x ∈ X and all s, t ∈ R+.

Replacing R+ by R we get a definition of dynamical system.
The positive trajectory of x ∈ X is defined as {π(x, t): t ∈ R+} and denoted

by π+(x).
In a dynamical system the negative trajectory of x ∈ X is defined as

{π(x, t) : t ∈ R−} and denoted by π−(x), the trajectory of x ∈ X is defined as
π(x) = π−(x) ∪ π+(x).

A point x ∈ X is called:

– start point if x 6= π(y, t) for any y ∈ X and any t > 0;
– stationary point if π(x, t) = x for any t ≥ 0;
– periodic point if there exists a t > 0 such that π(x, t) = x and x is not

a stationary point.

A function σ : I → X where I is a non-empty interval in R is called a
solution if π(σ(t), s) = σ(t + s) whenever t ∈ I, t + s ∈ I and s ∈ R+. If
0 ∈ I and σ(0) = x then a solution is called a solution through x. If a solution
σ is maximal (relative to the property of being a solution, with respect to
inclusion), then its image is called a trajectory through x. Note that in such
case [0,∞) is contained in the domain of a solution.

Let X be locally compact and π have no start points. Then we may assume
without loss of generality that any solution can be prolongated so as to have
(−∞, 0] contained in its domain. This is because we can transform the system
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by a suitable isomorphism which does not change trajectories, but only changes
the speed of movement along trajectories (see [4]).

In this paper by a solution (through x) we mean a solution with a do-
main equal to R. By a positive (negative) semisolution through x we mean a
suitable solution defined on [0,∞) ((−∞, 0]); their images are called positive
(negative) semitrajectories. Note that for any x there is precisely one positive
semisolution through x, however there may exist even infinitively many nega-
tive semisolutions through x. Throughout this paper by a trajectory πσ(x) we
mean σ((−∞, 0]) ∪ π+(x) where σ is a negative semisolution through x. By
B(x, ε) we denote an open ball of radius ε centred in x.

By a positive limit set we mean

L+(x) = {y ∈ X : there exists a sequence {tn} in R

with tn → +∞ and π(x, tn) → y}.

By a negative limit set L−σ (x) we define {y ∈ X : there exists a sequence
{tn} in R with tn → −∞ and σ(tn) → y} where σ is a negative semisolution
through x.

A set M ⊂ X is called:

– positively invariant if π(x, t) ∈ M for any x ∈ M and any t ∈ R+;
– negatively strongly invariant if σ((−∞, 0]) ⊂ M for any x ∈ M and any

negative semisolution σ through x;
– negatively weakly invariant if for every x ∈ M there exists a negative

semisolution σ through x such that σ((−∞, 0]) ⊂ M .

A set M ⊂ X is called strongly (weakly) invariant if it is positively invariant
and negatively strongly (weakly) invariant.

A set M ⊂ X is called strongly (weakly) minimal if it is non-empty, closed,
strongly (weakly) invariant and no proper subset of M has all these properties.

It is easy to see that for any x the positive trajectory π+(x) is positively
invariant, the set σ((−∞, 0]) for any solution σ through x is negatively weakly
invariant and πσ(x) is weakly invariant.

A strongly (weakly) minimal set is called trivial if it consists only of one
trajectory. A strongly (weakly) minimal set which is not trivial is called non-
trivial.

A point x ∈ X is called a point of negative unicity if F (x, t) contains at
most one element for any t ∈ R, where

F (x, t) = {y ∈ X : π(y, t) = x}.

A point x ∈ X is called a point of negative unicity in M if FM (x, t)
contains at most one element for any t ∈ R, where

FM (x, t) = {y ∈ M : π(y, t) = x}.
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A set M ⊂ X is called a set of negative unicity if every point x ∈ M is a
point of negative unicity in set M.

3. Negative prolongational limit set. In a semidynamical system the
movement is defined only for positive values of time t. However, we may ask
about “the past” of a given point x.

We have

Lemma 3.1. ([1, 5.15]) A negative limit set L−σ (x) is closed, positively
invariant and if X is locally compact, then it is weakly invariant and contains
no start points.

The positive prolongational limit set is J+(x) = {y ∈ X : there are a
sequence {xn} in X and a sequence {tn} in R+ such that xn → x, tn → +∞
and π(xn, tn) → y}.

This is the same definition as in the case of a dynamical system. All
properties of these sets in semidynamical systems are the same as in dynamical
systems. The negative prolongational limit set must be defined in another way.

Definition 3.2. We define:
j−(x) ={y ∈ X : there are a sequence {xn} in X and a sequence {tn}

in R− such that xn → x, tn → −∞ and for each xn there exists

a semisolution σn through xn such that σn(tn) → y}

J−(x) ={y ∈ X : there are a sequence {xn} in X and a sequence {tn}
in R− and there exists a semisolution σx through x and t ≤ 0

such that xn → σx(t), tn → −∞ and for each xn there exists

a semisolution σn through xn such that σn(tn) → y}.

It will proved that the sets j−(x) and J−(x) are equal. It is clear that
j−(x) ⊂ J−(x) and L−σ (x) ⊂ j−(x) for any semisolution σ through x. This is
an immediate consequence of the definitions.

Theorem 3.3. Let x, y ∈ X. If x ∈ J−(y) then y ∈ J+(x).

Proof. Let x ∈ J−(y). It means that there are a sequence {yn} in X
and a sequence {tn} in R− and there exist a solution σy through y and t ≤ 0
such that yn → σy(t), tn → −∞ and for each yn there exists a semisolution σn

through yn such that σn(tn) → x. Set σn(tn) = xn and τn = −tn − t. Then
xn → x, τn → +∞ and
π(xn, τn) = π(σn(tn),−tn − t) = π(π(σn(tn),−tn),−t) = π(σn(tn − tn),−t)

= π(σn(0),−t) = π(yn,−t) → π(σy(t),−t) = σy(t− t) = σy(0) = y.

Consequently, y ∈ J+(x).
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Theorem 3.4. Let x, y ∈ X. If y ∈ J+(x) then x ∈ j−(y).

Proof. Let y ∈ J+(x). It means that there are a sequence {xn} in X and
a sequence {tn} in R+ such that xn → x, tn → +∞ and π(xn, tn) → y. Set
π(xn, tn) = yn and τn = −tn. Then yn → y, τn → −∞. We claim that for
each yn there exists a semisolution σn through yn such that σn(τn) → x. Since
yn = π(xn, tn), then there exists a solution through yn which contains yn and
xn in its image. We denote this solution by σn. Hence σn(τn) = xn, and we
see that σn(τn) → x. Consequently, x ∈ j−(y).

Theorem 3.5. Let x ∈ X. Then J−(x) = j−(x).

Proof. According to Theorems 3.3 and 3.4 and the property j−(x) ⊂
J−(x) we have: x ∈ J−(y) ⇔ y ∈ J+(x) ⇔ x ∈ j−(y).

Theorem 3.6. For any x ∈ X the set J−(x) is closed and positively in-
variant.

Proof. We first prove that j−(x) is closed. Let {yk} be a sequence in
j−(x) with yk → y. For each integer k, there are sequences {xk

n} in X and
{tkn} in R− with xk

n → x, tkn → −∞ and such that for each xk
n there exists

a semisolution σk
n through xk

n with σk
n(tkn) → yk. We may assume (taking

subsequences, if necessary) that tkn < −k , d(xk
n, x) ≤ 1

k and d(σk
n(tkn), yk) ≤ 1

k

for n ≥ k. Now consider the sequences {xn
n}, {tnn}. Since d(xn

n, x) ≤ 1
n and

tnn < −n, we have xn
n → x, tnn → −∞ for n → +∞. For every xn

n we choose a
semisolution σn

n through xn
n such that d(σn

n(tnn), yn) ≤ 1
n (such σn

n exists because
yn ∈ j−(x)). To see that σn

n(tnn) → y note that d(σn
n(tnn), y) ≤ d(σn

n(tnn), yn) +
d(yn, y) ≤ 1

n + d(yn, y). Thus y ∈ j−(x) and j−(x) is closed.
To see that j−(x) is positively invariant, let y ∈ j−(x) and t ∈ R+. There

are a sequence {xn} in X and a sequence {tn} in R− such that xn → x,
tn → −∞ and for each xn there exists a semisolution σn through xn with
σn(tn) → y. Now consider the sequence {tn + t}. Clearly tn + t → −∞ and
σn(tn + t) = π(σn(tn), t) → π(y, t). Since xn → x we have π(y, t) ∈ j−(x).
In view of Theorem 3.5 J−(x) is closed and positively invariant.

In a dynamical system we know that a point x ∈ X is said to be non-
wandering if every neighbourhood U of x is self positively recursive (i.e. for
each T ∈ R there are a t > T and a y ∈ U such that π(y, t) ∈ U). We know
also ([2, 2.12]) that the following conditions are equivalent:

– a point x is non-wandering,
– x ∈ J+(x),
– every neighbourhood of x is self negatively recursive,
– x ∈ J−(x).
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In a semidynamical system the definition of a self positively recursive neigh-
bourhood U of x is introduced in the same way as in a dynamical system. Ac-
cording to Theorems 3.3 and 3.4, also in a semidynamical system the following
conditions are equivalent:

– every neighbourhood of x is self positively recursive,
– x ∈ J+(x),
– x ∈ J−(x).
Now we will define negatively weakly recursiveness.

Definition 3.7. A set A ⊂ X is said to be self negatively weakly recursive
if for each T ∈ R there are a t < T , an x ∈ A and a semisolution σx through
x such that σx(t) ∈ A.

Theorem 3.8. For any x ∈ X, the following conditions are equivalent:
(i) every neighbourhood U of x is self negatively weakly recursive,
(ii) x ∈ j−(x).

Proof. Assume (i). Consider a sequence {εn}, 0 < εn, εn → 0, and a
sequence {tn} in R with tn → −∞. Since each B(x, εn) is self negatively
weakly recursive, we can find an xn ∈ B(x, εn), a τn < tn and a semisolution
σn through xn with σn(τn) ∈ B(x, εn). Since εn → 0 we have xn → x and
σn(τn) → x and we conclude that x ∈ j−(x) (as τn → −∞). Thus (ii) holds.

Now assume (ii). Then there are a sequence {xn} in X and a sequence {tn}
in R with tn → −∞, xn → x such that for each xn there exists a semisolution
σn through xn with σn(tn) → x. Now for any neighbourhood U and T < 0
there is an N such that tn < T , xn ∈ U and σn(tn) ∈ U for n ≥ N . Thus U is
self negatively weakly recursive.

Theorem 3.9. Let x ∈ X. Every y ∈ L+(x) is non-wandering (i.e. y ∈
J+(y) and y ∈ J−(y)).

The proof of this theorem is analogous to the proof in the case of dynamical
systems (see [2, 2.13]).

4. Trajectories in non-trivial, weakly minimal and negatively
strongly invariant set. The structure of a trivial weakly minimal, negatively
strongly invariant set is simple. It is either a periodic point or a rest point or
a single trajectory πσ(x) with L+(x) = ∅ and L−σ (x) = ∅; there exists precisely
one maximal solution σ through x. Thus in this chapter we concentrate on the
study of the properties of non-trivial weakly minimal set.

A point x ∈ X (or the positive trajectory π+(x) ) is called positively Pois-
son stable, if L+(x) ∩ π+(x) 6= ∅ .

A point x ∈ X is called:
– negatively strongly Poisson stable if L−σ (x) ∩ σ((−∞, 0]) 6= ∅ for any

negative semisolution σ through x;
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– negatively weakly Poisson stable if there exists a negative semisolution
σ through x such that L−σ (x) ∩ σ((−∞, 0]) 6= ∅;

– strongly Poisson stable if x is both positively and negatively strongly
Poisson stable;

– weakly Poisson stable if x is both positively and negatively weakly Pois-
son stable.

Lemma 4.1. If M is strongly invariant then it is also weakly invariant. If
M is strongly minimal then it must not be a weakly minimal set.

This lemma is an immediate consequence of the definitions.

Theorem 4.2. If M is weakly minimal and negatively strongly invariant
then M is also strongly minimal.

Proof. We know that M is non-empty, closed, positively invariant and
negatively strongly invariant. Suppose that there exists a proper subset B ⊂ M
having these properties. Since B is negatively strongly invariant it is also neg-
atively weakly invariant so it is weakly minimal. This contradicts the weakly
minimality of M .

In the sequel we consider a semidynamical system (X,R+, π) on a locally
compact metric space X and we assume that π has no start points.

Theorem 4.3. Let M ⊂ X be a non-trivial, weakly minimal and negatively
strongly invariant set. If a trajectory through x is contained in M then it does
not fulfill any of the following properties:

(i) L+(x) = ∅ and there exists a negative semisolution σ through x such
that L−σ (x) = ∅

(ii) L+(x) 6= ∅ and L+(x) ∩ π+(x) = ∅
(iii) there exists a negative semisolution σ through x such that L−σ (x) 6= ∅

and L−σ (x) ∩ σ((−∞, 0]) = ∅.
Proof.

(i) Suppose that L+(x) = ∅ and L−σ (x) = ∅. Then π+(x) is closed and posi-
tively invariant. The trajectory πσ(x) is contained in M because M is nega-
tively strongly invariant. Then πσ(x) itself is a closed, weakly invariant set.
It means that πσ(x) is weakly minimal. Hence πσ(x) = M , which contradictis
the non-triviality of M .
(ii) Suppose that L+(x) 6= ∅ and L+(x) ∩ π+(x) = ∅. Then L+(x) ⊂ M and
x /∈ L+(x), that is L+(x) 6= M . The set L+(x) is closed and weakly invariant,
which contradicts the weakly minimality of M .
(iii) Suppose that there exist an x ∈ M and a negative semisolution σ through
x such that L−σ (x) 6= ∅ and L−σ (x) ∩ σ((−∞, 0]) = ∅. Then σ((−∞, 0]) ⊂ M
for every σ, because M is negatively strongly invariant and closed. Hence
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L−σ (x) ⊂ M and L−σ (x) 6= M . Since L−σ (x) is closed, negatively weakly in-
variant and positively invariant set, then it is a weakly minimal set. This
contradicts the minimality of M .

For a question if there exists a weakly minimal set which is not a set of
negative unicity, the answer is positive.

Example 4.4. Consider a dynamical system defined on a 2-dimensional
torus T (where T = [0, 1]2/ ∼ , with a suitable identification of points) by a
planar differential system

dϕ

dt
= f(ϕ, θ),

dθ

dt
= α · f(ϕ, θ)

where f(ϕ, θ) = f(ϕ + 1, θ + 1) = f(ϕ + 1, θ) = f(ϕ, θ + 1) and f(ϕ, θ) > 0 for
all ϕ, θ. If α > 0 is irrational, then every trajectory is dense in the torus T .
Thus dynamical system on the torus looks as in Figure 1.

π(x)
x

Figure 1.

We choose a point x and the trajectory π(x) of x. To obtain a required
semidymamical system (on another phase space, which is torus T ′) we change
the trajectory π(x) in the following way. For t ≥ 0 the trajectory π(x, t)
does not change. For t < 0 we replace π(x, t) by infinitely many negative
semitrajectories σ such that: σ(0) = x, all negative semitrajectories σ (σ 6=
σ1, σ 6= σ2) are between σ1, σ2 and σ((−∞, 0))∩ π(x) = ∅. Also, σ((−∞, 0]) is
disjoint from any other trajectory of π (see Figure 2).

The set A consisting of semitrajectories σ replaces the negative trajectory
π−(x). The transformed torus T ′ is homeomorphic to torus T (see Figure 3).

In the obtained semidynamical system the point x is not a point of negative
unicity. The trajectory πσ1(x) = π+(x)∪σ1((−∞, 0]) is a weakly invariant set.
The positive limit set L+(x) of x and L−σ1

(x) are equal to T \intA. It means that
it contains negative semitrajectories σ1, σ2. Any other negative semitrajectory
is not contained in any of limit sets. We denote this part of the torus as M .
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π(x)
x

σ2 σ1

σ

Figure 2.

π(x)xA
A

Figure 3.

The set M is weakly minimal and is not a set of negative unicity, but it is also
not negatively strongly invariant.

Example 4.5. Now we restrict the semidynamical system from Example
4.4 to the phase space M . This semidynamical system has precisely one weakly
minimal set, that is M . It is clear that M is non-trivial, negatively strongly
invariant and is not a set of negative unicity.

Example 4.6. Consider a dynamical system defined on a 2-dimensional
torus T from Example 4.4 with conditions

f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0

and
f(ϕ, θ) > 0 for (ϕ, θ) /∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.

This dynamical system has exactly one stationary point p, exactly one posi-
tively Poisson stable trajectory π(x) (we have L−(x) = {p}) and exactly one
negatively Poisson stable trajectory π(y) (we have L+(y) = {p}). All other
trajectories are Poisson stable. Restricting this dynamical system to T \{p}, we
obtain a dynamical system on a locally compact metric space. This dynamical
system has exactly one positively Poisson stable trajectory (π(x)), L−(x) = ∅
and exactly one negatively Poisson stable trajectory (π(y)), L+(y) = ∅. All
other trajectories are Poisson stable. We take the trajectory through x; we
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have L−(x) = ∅. To obtain a suitable semidynamical system we change the
trajectory π(x) as in Example 4.4. In this case L−σ (x) = ∅ for any σ. The set
T ′ \ {p} is homeomorphic to T \ {p} (see Figure 4.).

x

σ2

σ1

σ

P

P

Figure 4.

We denote by M the positive limit set of x. It contains negative semitra-
jectories σ1, σ2. The negative semitrajectories, different from σ1 and σ2 are
not contained in M . The set M is weakly minimal, is not a set of negative
unicity, and it is not negatively strongly invariant. However, this semidynam-
ical system restricted to M has only one weakly minimal set, that is M . It
is clear that M is non-trivial, negatively strongly invariant and is not a set of
negative unicity.

We have shown that there exists a weakly minimal, negatively strongly
invariant set, which is not a set of negative unicity.

Theorem 4.7. Let M ⊂ X be a non-trivial, weakly minimal and negatively
strongly invariant set. Then each trajectory π(x) contained in M has exactly
one of the following properties:

(i) π(x) is strongly Poisson stable.
(ii) π(x) is positively Poisson stable and for any negative semisolution σ

through x we have L−σ (x) = ∅.
(iii) L+(x)∩π+(x) 6= ∅, there exists a negative semisolution σ1 through x such

that L−σ1
(x)∩σ1((−∞, 0]) 6= ∅ and there exists a negative semisolution σ2

through x such that L−σ2
(x) = ∅; moreover, each semisolution σ through

x in M has the same properties.
(iv) π(x) is negatively strongly Poisson stable and L+(x) = ∅.

Proof. Let M be a non-trivial, weakly minimal and negatively strongly
invariant set. Let x ∈ M . Consider an intersection of the positive limit set
L+(x) with a positive semitrajectory π+(x).
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According to Theorem 4.3 we have two cases:

• L+(x) ∩ π+(x) 6= ∅
• L+(x) = ∅ so L+(x) ∩ π+(x) = ∅
The last case L+(x) 6= ∅ and L+(x)∩π+(x) = ∅ which contradicts (ii) from

Theorem 4.3.
Consider now the intersection of the negative limit set L−σ (x) with the

image of a negative semisolution σ through x. Depending on the set L−σ (x), this
intersection is either empty or nonempty. Also, depending on σ the negative
limit set L−σ (x) is either empty or nonempty. Hence we have eight possibilities.
Since we know that M contains no trajectories which fulfill property (iii) from
Theorem 4.3, we have only three possible cases.

• L−σ (x) ∩ σ((−∞, 0]) 6= ∅ for any negative semisolution σ through x
• L−σ (x) = ∅ for any negative semisolution σ through x
• there exists a negative semisolution σ1 through x such that L−σ1

(x) ∩
σ1((−∞, 0]) 6= ∅ and there exists a negative semisolution σ2 through x
such that L−σ2

(x) = ∅; moreover, each semisolution σ through x in M
has the same properties.

Considering now the sets L+(x)∩π+(x) and L−σ (x)∩σ((−∞, 0]) we obtain
six cases:

(i) L+(x) ∩ π+(x) 6= ∅ and for any negative semisolution σ through x we
have L−σ (x) ∩ σ((−∞, 0]) 6= ∅.

(ii) L+(x) ∩ π+(x) 6= ∅ and for any negative semisolution σ through x we
have L−σ (x) = ∅.

(iii) L+(x) ∩ π+(x) 6= ∅ and there exists a negative semisolution σ1 through
x such that L−σ1

(x)∩σ1((−∞, 0]) 6= ∅ and there exists a negative semiso-
lution σ2 through x such that L−σ2

(x) = ∅; moreover, each semisolution
σ through x in M has the same properties.

(iv) L+(x) = ∅ and for any negative semisolution σ through x we have
L−σ (x) ∩ σ((−∞, 0]) 6= ∅.

(v) L+(x) = ∅ and for any negative semisolution σ through x we have
L−σ (x) = ∅.

(vi) L+(x) = ∅ and there exists a negative semisolution σ1 through x such
that L−σ1

(x)∩σ1((−∞, 0]) 6= ∅ and there exists a negative semisolution σ2

through x such that L−σ2
(x) = ∅; moreover, each semisolution σ through

x in M has the same properties.

From (v) and (vi) we know that L+(x) = ∅ and there exists a semisolution
σ through x with L−σ (x) = ∅. According to (i) from Theorem 4.3 this is
impossible. This means that any trajectory in M fulfills one of conditions
(i)–(iv). It is easy to notice that a trajectory cannot fulfill any two of those
conditions simultaneously.
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In the same way as in Examples 4.5 and 4.6, for any property among (i)-
(iv) we can construct a non-trivial, weakly minimal and negatively strongly
invariant set containing a trajectory with this property.

Lemma 4.8. Let M ⊂ X be a non-trivial, weakly minimal and negatively
strongly invariant set and x ∈ M . Then either M = L+(x) or M =

⋃
σ L−σ (x).

Proof. We have four cases:
(1) L+(x) 6= ∅ and

⋃
{L−σ (x) : σ is a semisolution through x} = ∅

(2) L+(x) = ∅ and
⋃
{L−σ (x) : σ is a semisolution through x} 6= ∅

(3) L+(x) 6= ∅ and
⋃
{L−σ (x) : σ is a semisolution through x} 6= ∅

(4) L+(x) = ∅ and
⋃
{L−σ (x) : σ is a semisolution through x} = ∅

(1) If L+(x) 6= ∅ then L+(x) ⊂ M . Since L+(x) is closed, weakly invariant
and M is weakly minimal, we have M = L+(x).
(2) If

⋃
σ L−σ (x) 6= ∅ we know that there exists a solution σ1 such that L−σ1

(x) 6=
∅ and σ1((−∞, 0]) ⊂ M , because M is negatively strongly invariant and closed.
Hence L−σ1

(x) ⊂ M . Since L−σ1
(x) is closed, weakly invariant and M is weakly

minimal, we have M = L−σ1
(x). In the same way we prove that L−σ (x) = M

for any L−σ (x) 6= 0. We have shown that M =
⋃

σ L−σ (x).
The proof of (3) is analogous to the proof of (1) and (2).
(4) If L+(x) = ∅ and

⋃
σ L−σ (x) = ∅ then there exists a solution σ1 such that

L−σ1
(x) = ∅. Hence πσ1(x) is closed. The trajectory πσ1(x) is weakly invariant

and contained in M because M is negatively strongly invariant. Then πσ1(x)
is weakly minimal. Hence πσ1(x) = M , which contradicts the non-triviality
of M .
Any trivial weakly minimal and negatively strongly invariant set contains only
one trajectory. How many trajectories may a non-trivial weakly minimal and
negatively strongly invariant set contain? The answer to this question is pre-
sented in the next theorem.

Theorem 4.9. Each non-trivial, weakly minimal and negatively strongly
invariant set contains infinitely many trajectories.

Proof. Let X be a locally compact metric space. Let M be a non-trivial,
weakly minimal and negatively strongly invariant set. Suppose that M consists
of finitely many trajectories:

M =
n⋃

i=1

mi⋃
j=1

πσj (xi)

where n ∈ N and mi ∈ N. Then we have

M = L+(xi) ∪
mi⋃
j=1

L−σj
(xi)

for every i ∈ {1, . . . , n}.
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Choose any p0 ∈ M . Then p0 ∈ L+(x1) ∪
⋃m1

j=1 L−σj
(x1). Take any ε > 0

such that B(p0, ε) is compact. Then there exists a t1 ∈ R such that |t1| > 1
and if t1 > 1 then π(x1, t1) ∈ B(p0, ε) and if t1 < −1 then there exists a σj

such that σj(t1) ∈ B(p0, ε) for some j ∈ {1, . . . ,m1}. Denote this σj as σ. Set

p1 =

{
π(x1, t1) if t1 > 1,

σ(t1) if t1 < −1.

Since M is non-trivial, weakly minimal and negatively strongly invariant it does
not contain neither any periodic point nor any stationary point. Then x1 is
neither a periodic point nor a stationary point and we have p1 /∈ πσ(x1, [−1, 1]).
It is easy to see that p1 /∈ πσj (x1, [−1, 1]) for j ∈ {1, . . . ,m1} and σj 6= σ.
On the other hand, p1 /∈ πσj (xi, [−1, 1]) for every i 6= 1 and for every j ∈
{1, . . . ,mi}. Thus we have

p1 /∈
n⋃

i=1

mi⋃
j=1

πσj (xi, [−1, 1])

There exists an α > 0 such that α < ε
2 and B(p1, α) ⊂ B(p0, ε). On the other

hand, there exists a β > 0 such that β < ε
2 and

B(p1, β) ∩
n⋃

i=1

mi⋃
j=1

πσj (xi, [−1, 1]) = ∅

Let ε1 = min{α, β}. Then we obtain the following:

B(p1, ε1) ⊂ B(p0, ε)

B(p1, ε1) ∩ (
n⋃

i=1

mi⋃
j=1

πσj (xi, [−1, 1])) = ∅

ε1 <
ε

2
We have

p1 ∈ πσ(x1) ⊂ M = L+(xi) ∪
m1⋃
j=1

L−σj
(x1)

so there exists a t2 ∈ R such that |t2| > 2 and if t2 > 2 then π(x1, t2) ∈
B(p1, ε1) and if t2 < −2 then there exists a σl such that σl(t2) ∈ B(p1, ε1) for
some l ∈ {1, . . . ,m1}. Denote

p2 =

{
π(x1, t2) if t2 > 2,

σl(t2) if t2 < −2.

So x1 is neither periodic nor stationary and we have p2 /∈ πσl
(x1, [−2, 2]) if

σl 6= σ and if σl = σ then p2 /∈ πσ(x1, [−2, 2]).
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In both cases it is easy to see that p2 /∈ πσj (x1, [−2, 2]) for j ∈ {1, . . . ,m1} and
σj 6= σl or σj 6= σ, respectively. On the other hand, p2 /∈ πσj (xi, [−2, 2]) for
every i 6= 1 and for every j ∈ {1, . . . ,mi}. Thus we have

p1 /∈
n⋃

i=1

mi⋃
j=1

πσj (xi, [−2, 2])

Repeating the above procedure, we obtain ε2 > 0 such that:

B(p2, ε2) ⊂ B(p1, ε1)

B(p2, ε2) ∩ (
n⋃

i=1

mi⋃
j=1

πσj (xi, [−2, 2])) = ∅

ε2 <
ε1

2
In this way we obtain a sequence {εk} in R such that for every k ∈ N

B(pk, εk) ⊂ B(pk−1, εk−1)

B(pk, εk) ∩ (
n⋃

i=1

mi⋃
j=1

πσj (xi, [−k, k])) = ∅

εk <
εk−1

2
where

pk =

{
π(x1, tk) if tk > k,

σj(tk) for j ∈ {1, . . . ,m1} if tk < −k.

Thus we have a sequence

B(p0, ε) ⊃ B(p1, ε1) ⊃ . . . ⊃ B(pk, εk) ⊃ . . .

where every B(pk, εk) is non-empty and B(p0, ε) is compact.
Hence

⋂∞
k=1 B(pk, εk) 6= ∅. Take any q ∈

⋂∞
k=1 B(pk, εk).

We have d(pk, q) ≤ εk for every k ∈ N. We know that pk = π(x1, tk) if tk > k
and pk = σj(tk) for j ∈ {1, . . . ,m1} if tk < −k and |tk| > k, for every k ∈ N.
Hence we have |tk| → +∞ (k → +∞). So, we can find a subsequence {tkl

} of
{tk} such that tkl

→ +∞ or tkl
→ −∞.

Thus we have
π(x1, tkl

) → q if tkl
→ +∞ (l → +∞)

σj(tkl
) → q if tkl

→ −∞ (l → +∞) for some j ∈ {1, . . . ,m1}
(taking a subsequence, if necessary), so q ∈ L+(x1) ∪

⋃m1
j=1 L−σj

(x1) = M .
However, since

B(pk, εk) ∩ (
n⋃

i=1

mi⋃
j=1

πσj (xi, [−k, k])) = ∅
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holds for every k ∈ N, we have

q /∈
n⋃

i=1

mi⋃
j=1

πσj (xi, [−k, k]) for every k ∈ N

which implies that q /∈ πσj (xi, [−k, k]) for every i ∈ {1, . . . , n}, for every j ∈
{1, . . . ,mi} and for every k ∈ N. Thus q /∈ πσj (xi,R) for every i ∈ {1, . . . , n},
j ∈ {1, . . . ,mi}. Hence we have

q ∈ M \ (
n⋃

i=1

mi⋃
j=1

πσj (xi,R))

which is a contradiction.

Theorem 4.10. Let M ⊂ X be a non-trivial, weakly minimal and nega-
tively strongly invariant set. Then every point x in M is non-wandering in M .

Proof. Let x ∈ M . Then M = L+(x) or M =
⋃

σ L−σ (x).
If M = L+(x) then the proof that x is non-wandering in M is the same as the
proof of analogous theorem for dynamical systems ([3, Theorem 1]).
If M =

⋃
σ L−σ (x) then there exists a semisolution σ1 through x such that

L−σ1
(x) 6= ∅. Hence L−σ1

(x) = M . Put σ1 = σ. Let πM be the restriction of π
to M ×R+. The map πM defines a semidynamical system (M,R+, πM ). By
L−σ,M (x) and j−M (x) we denote the negative limit set and negative prolonga-
tional limit set of x in (M,R+, πM ) respectively, i.e.,

L−σ,M (x) ={y ∈ M : there exists a sequence {tn} in R

with tn → −∞ and σ(tn) → y}
j−M (x) ={y ∈ M : there is a sequence {xn} in X and a sequence

{tn} in R− such that xn → x, tn → −∞ and for each xn

there exists a σn such that σn(tn) → y}.

It is clear that

L−σ,M (x) ⊂ j−M (x) ⊂ M

On the other hand, we have L−σ,M (x) = L−σ (x) = M . Thus we see that

L−σ,M (x) = j−M (x) = M.

Hence x ∈ j−M (x). This implies that x is non-wandering in (M,R+, πM ).
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