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THE GLEASON PROBLEM FOR Ak(Ω), Hk(Ω), Lipk+ε(Ω)

by Piotr Kot

Abstract. Let T (Ω) be the algebra of functions holomorphic in Ω. We
consider the following problem (known as the Gleason problem):

Let p be a point in Ω. Does the maximal ideal in T (Ω) consist of
functions vanishing at p generated by (z1− p1), . . . , (zn− pn)? We give the
answer for star-shaped domains with more general situation than in [2].
Moreover we give some results for the Gleason problem in products of sets.

1. Introduction. For a given domain Ω in Cn, let A(Ω) be the algebra of
functions holomorphic in Ω and continuous on the closure of Ω. We consider
the following problem (known as the Gleason Problem):

Let p be a point in Ω. Does the maximal ideal in A(Ω) consist of functions
vanishing at p generated by (z1 − p1), . . . , (zn − pn)?

This question was considered by A.M. Gleason [6] in the special case when
Ω is the unit ball and p is the origin. The problem is interesting since the
ideals in a neighbourhood U of an algebraically finitely generated ideal in the
maximal ideal space of A(Ω) are also finitely generated and consequently U
contains an analytic variety.

The Gleason problem, as well as other related division problems for function
algebras (Ak(Ω), Hk(Ω), Lipk+ε(Ω)) were considered earlier by several authors,
e.g. [14], [9], [3], [4], [11], [5], [12], [8]. The results, which appeared in the
papers cited above, were usually the extensions of the results on the division
problems for algebras A(Ω), H∞(Ω) in bounded stricly pseudoconvex domanis
with sufficiently smooth boundary. These results were derived with use of
theorems on the solution of the ∂-problem in stricly pseudoconvex domains
with boundary regularity, together with the use of some integral formulas,
invented originally for the solution of the ∂-problem in stricly pseudoconvex
domains by Lieb [10], Henkin [7] and Ramirez de Arellano [13]. In our paper
we would like, similarly to the case of stricly pseudoconvex domains, to extend
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the results on the solution of the Gleason problem in convex domains with a
Lip1+ε-boundary, obtained by Backlund and Fälström in [2], into the case of
more general function algebras.

We introduce a definition for the new Lipk,ϕ algebra (for a definition see
below), which allows us to extend a result from [2] into convex domains with
a

⋃
ε>0 Lip1+ε -boundary. Moreover we prove our results for algebras Ak(Ω),

Hk(Ω) and Lipk+ε(Ω) (for a definition see below). We consider extending the
result of [2] into Lipk+ε(Ω) algebra to be the most important. We also give
the solution for the Gleason problem in some products of sets. It enables us to
give a natural example of sets which have a merely continuous boundary and
for which the Gleason problem has a solution.

2. Notation and Geometric Preliminaries. In this chapter we would
like to explain the geometric background for the new Lipk,ϕ algebra used
throughout the paper.

Definition 2.1. Let ϕ : [0, 1] → R+ be a continuous function such that:
1. ϕ(0) = 0,
2. ϕ(x) < ϕ(y) for all x < y < 1,
3.

∫ 1
0

ϕ(η)
η dη < +∞,

4. there exists M > 0 such that if 0 < η < 1 and η ln2(η/2) < 1 then:
ϕ(η ln2(η/2)) ≤Mϕ(η).

Definition 2.2. By O(Ω) we denote a set of all functions holomorphic on
Ω. For a given multiindex α = (α1, ..., αn) we set |α| = α1 + ... + αn and
Dα = ∂|α|

∂z
α1
1 ...∂zαn

n
. Moreover for a non-negative integer k and ε > 0 we define:

Ak(Ω) := {h ∈ O(Ω) : Dαh is continuous on Ω for all |α| ≤ k},
Hk(Ω) := {h ∈ O(Ω) : Dαh is bounded on Ω for all |α| ≤ k},

Lipk+ε(U) := {h ∈ Ck(U) : sup
w,z∈U

|Dαh(z)−Dαh(w)|
|z − w|ε

<∞ for all |α| ≤ k}.

Now for a given continuous function ϕ satisfying the conditions 1 and 2
from Definition 2.1 we set:
Lipk,ϕ(U) :=

{h ∈ Ck(U) : lim
(w,z)→(x,x)

|Dαh(z)−Dαh(w)|
ϕ(|z − w|)

= 0 for x ∈ U, |α| ≤ k}.

Remark. If ϕ(η) = 1
ln2(η/2)

then ϕ satisfies all the conditions of Definition
2.1 and moreover Lipk+ε(U) ⊂ Lipk,ϕ(U) for all ε > 0 .
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Definition 2.3. For x, y ∈ Rn we set

[x, y] := {x+ t(y − x) : 0 ≤ t ≤ 1}

Lemma 2.4. Let r ∈ Lip1,ϕ(U) where U is a convex subdomain of Rn. If
we define ϑr so that

(2.1) r(w)− r(z) =
n∑

j=1

∂r

∂zj
(z)(w − z)j + ϑr(w, z)|w − z|ϕ(|w − z|)

and ϑr|{(z,z): z∈U} = 0, then ϑr is a continuous function.

Proof. Let h = w− z. Without the loss of generality we can assume that
|h| < 1. We get r(z + h)− r(z) =

∑
j

∫ 1
0

∂r
∂zj

(z + th)hjdt. We can calculate

r(z + h)− r(z)−
n∑

j=1

∂r

∂zj
(z)hj =

n∑
j=1

∫ 1

0

(
∂r

∂zj
(z + th)hj −

∂r

∂zj
(z)hj

)
dt.

Let

ψ(x, y) :=
n∑

j=1

∣∣∣ ∂r
∂zj

(x)− ∂r
∂zj

(y)
∣∣∣

ϕ(|x− y|)
.

From the definition of Lip1,ϕ(U) it follows that ψ is a continuous function and
ψ(x, x) = 0 for x ∈ U. Now we can estimate∣∣∣ ∂r

∂zj
(z + th)hj − ∂r

∂zj
(z)hj

∣∣∣
|h|ϕ(|h|)

≤

∣∣∣ ∂r
∂zj

(z + th)− ∂r
∂zj

(z)
∣∣∣

ϕ(|th|)
for t ∈ (0, 1). From this there follows that

|ϑr(z + h, z)| ≤
n∑

j=1

∫ 1

0

∣∣∣ ∂r
∂zj

(z + th)hj − ∂r
∂zj

(z)hj

∣∣∣
|h|ϕ(|h|)

dt ≤
∫ 1

0
ψ(z + th, z)dt.

We conclude that ϑr is continuous and ϑr|{(z,z): z∈U} = 0.

Definition 2.5. Let ϕ be a function satisfying Definition 2.1. We define

ξ : (0, 1) 3 η → ξ(η) = min
{

ln2(η/2),
1

ϕ(η)

}
∈ R+

Lemma 2.6. Function ξ has the following properties:
1. limη→0+ ηξ(η) = 0;
2. limη→0+ ξ(η) = ∞;
3.

∫ 1
0

1
ηξ(η)dη < +∞;

4. if 0 < η < 1 and η ln2(η/2) < 1 then ξ(η)ϕ(ηξ(η)) ≤M .
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Proof. We have limη→0+ ξ(η) = ∞ because ϕ(0) = 0. We can calculate

lim
η→0+

ηξ(η) ≤ lim
η→0+

η ln2(η/2) = 0.

Now we can estimate:

ξ(η)ϕ(ηξ(η)) ≤ ln2(η/2)Mϕ(η) ≤M if ξ(η) = ln2(η/2),

ξ(η)ϕ(ηξ(η)) ≤ 1
ϕ(η)ϕ(η ln2(η/2)) ≤M if ξ(η) =

1
ϕ(η)

.

Moreover: ∫ 1

0

1
ηξ(η)

dη ≤
∫ 1

0

1
η ln2(η/2)

dη +
∫ 1

0

ϕ(η)
η

dη < +∞.

Definition 2.7. By K(z, r) we denote the ball in the Cn with the centre
at z and radius r.

We need a geometric lemma describing precisely the properties of star-
shaped domains with a Lip1,ϕ boundary.

Lemma 2.8. Let Ω be a domain in Cn with a Lip1,ϕ boundary such that
[0, z] is not tangent to ∂Ω for every z ∈ ∂Ω. Let z∗ ∈ ∂Ω and let e(z) be a unit
tangent vector to ∂Ω at a point z ∈ ∂Ω. There exists ε0 ∈ (0, 1) so that for all
η ∈ (0, 1), t ∈ C, z ∈ Cn : if

• 0 < η < ε0,
• 2|t| < ηξ(η),
• z ∈ K(z∗, ε0) ∩ ∂Ω

then we have the following property: (1− η)z + te(z) ∈ Ω.

Proof. Since ξ(η) →∞ and ηξ(η) → 0 as η → 0 we can choose ε0 so small
that 2|z| < ξ(η) and ηξ(η) < 1 for 0 < η < ε0 and z ∈ K(z∗, ε0) ∩ ∂Ω. Let
zj = x2j +ix2j−1. We can assume that there exists a Lip1,ϕ(K(z∗, ε0))–defining
function r, so that Ω∩K(z∗, ε0) = {z ∈ K(z∗, ε0) : r(z) < 0}. We can assume
that 0 /∈ K(z∗, ε0).
Let h=h(z, t, η)= te(z)−ηz. Firstly we can easily see that limε0→0 h(z, t, η)=0.

It is enough to prove that r(z + h) < 0. By Lemma 2.4 we have

r(z+h)−r(z) =
n∑

j=1

∂r

∂x2j
(z)Re(hj)+

n∑
j=1

∂r

∂x2j−1
(z)Im(hj)+ϑr(z+h, z)|h|ϕ(|h|).

From this, because r(z) = 0, it follows that

r(z + h)
η

= −
n∑

j=1

∂r

∂x2j
(z)Re(zj)−

n∑
j=1

∂r

∂x2j−1
(z)Im(zj)+ϑr(z+h, z)

(
|h|
η
ϕ(|h|)

)
.
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Moreover |h| = |te(z)− ηz| ≤ ηξ(η) and:

(2.2)
|h|
η
ϕ(|h|) ≤ ξ(η)ϕ(|h|) ≤ ξ(η)ϕ(ηξ(η)) ≤M.

Because [0, z] is not tangent to ∂Ω we can conclude that

(2.3) −
n∑

j=1

∂r

∂x2j
(z)Re(zj)−

n∑
j=1

∂r

∂x2j−1
(z)Im(zj) 6= 0.

Moreover from this it follows that we can choose ε0 so small that z − ηz ∈ Ω
for 0 < η < ε0 and z ∈ K(z∗, ε0) ∩ ∂Ω. Therefore

(2.4)
r(z − ηz)

η
< 0.

This argument is valid for all z ∈ K(z∗, ε0)∩∂Ω. Because ϑr is continuous and
ϑr(z, z) = 0, by (2.2) and (2.4) it follows that

lim
ε0→0

r(z + h)
η

− ϑr(z + h, z)
(
|h|
η
ϕ(|h|)

)
≤ 0.

Now from property (2.3) it can be concluded that

−
n∑

j=1

∂r

∂x2j
(z)Re(zj)−

n∑
j=1

∂r

∂x2j−1
(z)Im(zj) < 0

for all z ∈ K(z∗, ε0) ∩ ∂Ω. Now we can easily see that we can choose ε0 so
small that:

−
n∑

j=1

∂r

∂x2j
(z)Re(zj)−

n∑
j=1

∂r

∂x2j−1
(z)Im(zj) + ϑr(z + h, z)

(
|h|
η
ϕ(|h|)

)
< 0

for all z ∈ K(z∗, ε0)∩ ∂Ω. From this it follows that r(z+ h) < 0 for all desired
z ∈ K(z∗, ε0) ∩ ∂Ω, which finishes the proof.

3. Results for the Banach algebras Ak(Ω) and Hk(Ω). In this chapter
we would like to solve the Gleason problem for a star-shaped domain with
respect to zero and with Lip1,ϕ regularity on the boundary. We note that a
star-shaped domain with respect to each point in its interior is convex.

We use the technique of proof which is very close to that of the Backlund
and Fälström paper (compare [2]). This technique of the proof will be used in
the next sections.

Theorem 3.1. If Ω is a bounded domain with a Lip1,ϕ boundary such that
[0, z) ⊂ Ω and [0, z] is not tangent to ∂Ω for every z ∈ ∂Ω, then the Gleason
problem has a solution for the Banach algebra Ak(Ω) (resp. Hk(Ω)) with respect
to the point 0.
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Proof. Let z∗ ∈ ∂Ω, f ∈ Ak(Ω) (resp. f ∈ Hk(Ω) ). Assume that
f(0) = 0. We have f(z) =

∑n
i=1 zifi(z) for fi(z) =

∫ 1
0

∂
∂zi
f(λz)dλ. We will

prove that fi ∈ Ak(Ω)(resp. fi ∈ Hk(Ω) ).
Because Ω has a C1-boundary, there exist an open set U such that z∗ ∈ U

and the continuous functions e1, . . . , en−1 on U such that:

• ei(z) is a unit tangent vector to ∂Ω for all z ∈ ∂Ω ∩ U ,
• tz ∈ U and ei(tz) = ei(z) for all t > 0, z ∈ ∂Ω ∩ U ,
• e1(z), . . . , en−1(z) are linearly independent vectors for every z ∈ U .

Let α = (α1, ..., αn) be a multiindex so that |α| ≤ k. We define α̂(i) :=
(α1, . . . , αi − 1, . . . , αn). We consider the system of n equations:

n∑
i=1

ziD
αfi(z) = Dαf(z)−

∑
αi>0

Dα̂(i)fi(z),

n∑
i=1

e1i (z)D
αfi(z) =

∫ 1

0
λ|α|

∂

∂t

(
Dαf(λz + te1(z))

)∣∣
t=0

dλ,

...
n∑

i=1

en−1
i (z)Dαfi(z) =

∫ 1

0
λ|α|

∂

∂t

(
Dαf(λz + ten−1(z))

)∣∣
t=0

dλ.

Since the vectors e1(z), . . . , en−1(z), z are linearly independent for every
z ∈ U , the above system of n equations has the unique solution Dαf1, ..., D

αfn.
Let λ ∈ (0, 1). It follows from Lemma 2.8 that there exists ε0 > 0 such that if

• 1− λ < ε0,
• 2|t| < (1− λ)ξ(1− λ),
• z ∈ K(z∗, ε) ∩ ∂Ω,
• 0 < ε ≤ ε0

then λz + tej(z) ∈ Ω. If for a given pair (ε0, ε): λ, z and t satisfy the above
conditions we say that (λ, z, t) is admissible for (ε0, ε). Now let

R(ε0, ε) := {λz + tej(z) ∈ Ω : (λ, z, t) is admissible for (ε0, ε)}.

We can easily see that R(ε0, ε) is compact.
Using Cauchy estimates we get:

(3.1)
∣∣∣∣ ∂∂t (

Dαf(λz + tej(z))
)∣∣∣∣

t=0

∣∣∣∣ ≤ 2 supw∈R(ε0,ε0) |Dαf(w)|
(1− λ)ξ(1− λ)

for 1− λ < ε0, and z ∈ K(z∗, ε) ∩ ∂Ω. Moreover if we denote

Dαf̃(λz + tej(z)) := Dαf(λz + tej(z))−Dαf(λz∗ + tej(z∗))
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then

(3.2)
∣∣∣∣ ∂∂t (

Dαf̃(λz + tej(z))
)∣∣∣∣

t=0

∣∣∣∣ ≤ 2 supw∈R(ε0,ε)

∣∣∣Dαf̃(w)
∣∣∣

(1− λ)ξ(1− λ)

for 1− λ < ε0 and z ∈ K(z∗, ε) ∩ ∂Ω. Now let G := Ω ∩K(z∗, ε0/2) and

ψ : G× [0, 1] 3 (z, ε) → ψ(z, ε) :=
∫ 1

1−ε
λ|α|

∂

∂t

(
Dαf(λz + tej(z))

)∣∣
t=0

dλ.

If f ∈ Hk(Ω) then because
∫ 1
0

1
ηξ(η)dη < +∞ we can conclude from (3.1) that

lim sup
z∈G, ε→0

|ψ(z, ε)| = 0.

Therefore ψ is bounded (we need the asumption that Ω is bounded) and from
this it follows that fi ∈ Hk(Ω).

If f ∈ Ak(Ω) then

lim sup
ε→0, w∈R(ε0,ε)

∣∣∣Dαf̃(w)
∣∣∣ = 0

moreover because
∫ 1
0

1
ηξ(η)dη < +∞ we can conclude from (3.2) that ψ is con-

tinuous at the point (z∗, 1) and from this follows that Dαfi is continuous at z∗.
Therefore fi ∈ Ak(Ω) and the proof is finished.

4. Results for the Banach algebra Lipk+ε(Ω).

Definition 4.1. For the sets S, T , Ω ⊂ Cnwe define

dS(T ) := inf
w∈S,z∈T

|w − z|,

dS(z) := inf
w∈S

|w − z|,

Ωδ := (1− δ)Ω,

∂̂α := grad ◦Dα.

Definition 4.2. We denote

Λk
ε(Ω) := {f ∈ Ck(Ω) ∩O(Ω) : sup

z∈Ω, |α|≤k

|∂̂αf(z)|d∂Ω(z)1−ε <∞}

for k ∈ N, ε ∈ (0, 1).

Remark 4.3. If D ⊂ Rn, f ∈ C1(D), s ∈ (0, 1) then the following condi-
tions are equivalent

1. There exists M > 0 such that |gradf(z)|d∂D(z)1−s ≤M for all z ∈ D.
2. There exists M̃ > 0 such that |f(z)−f(w)| ≤ M̃ |z−w|s for all z, w ∈ D.
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Proof. This is a standard “Hardy-Littlewood” result; see [1].

Remark 4.4. From the Remark 4.3 it follows that

Λk
ε(Ω) = Lipk+ε(Ω) ∩O(Ω)

for ε ∈ (0, 1), k ∈ N.

Theorem 4.5. If Ω is a bounded domain with a Lip1,ϕ boundary such that
[0, z) ⊂ Ω and [0, z] is not tangent to ∂Ω for every z ∈ ∂Ω then the Gleason
problem has a solution for the Banach algebra Λk

ε (Ω) (k ∈ N, 0 < ε < 1) at the
point 0.

First we need the following lemmas:

Lemma 4.6. If Ω is a bounded domain with a C1 boundary such that [0, z]
is not tangent to ∂Ω for every z ∈ ∂Ω, then there exists M > 0 such that:

ε

d∂Ω(∂Ωε)
≤M

for all ε ∈ (0, 1).

Proof. Let r be a defining function for Ω.
Assume that there exists a sequence εn such that εn

d∂Ω(∂Ωεn ) → ∞. From
this it follows that d∂Ω((1− εn)∂Ω) → 0 and εn → 0. We denote δn := 1− εn.
There exist an and bn ∈ ∂Ω such that d∂Ω(δn∂Ω) = |δnan− bn|. Because ∂Ω is
a compact set we can asssume that bn → b ∈ ∂Ω. This implies that an → b.

Because [0, b] is not tangent to ∂Ω at the point b we have the following
inequality: ∑ ∂r

∂xi
(b)bi 6= 0.

Now because
d∂Ω(δn∂Ω)

1− δn
=
|δnan − bn|

1− δn
→ 0

we can conclude that an + δnan−bn
1−δn

= an−bn
1−δn

→ b.
There exists a sequence ξn ∈ [an, bn] (limn→∞ ξn = b) such that

0 = r(an)− r(bn) =
∑ ∂r

∂xi
(ξn)(an − bn)i.

Now we can calculate

0 = lim
n→∞

∑ ∂r

∂xi
(ξn)(an − bn)i

1
1− δn

→
∑ ∂r

∂xi
(b)bi 6= 0

and we get a contradiction.
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Definition 4.7. Let Ω ⊂ Cn be a domain such that [0, z) ⊂ Ω for every
z ∈ ∂Ω. We denote by ω and δ the functions defined on Ω \ {0} so that for
every z ∈ Ω \ {0} we have the following properties:

1. ω(z) ∈ ∂Ω;
2. δ(z) ∈ [0, 1);
3. z = (1− δ(z))ω(z).

Lemma 4.8. Let Ω ⊂ Cn be a domain with Lip1,ϕ boundary such that
[0, z) ⊂ Ω and [0, z] is not tangent to ∂Ω for every z ∈ ∂Ω. Let z∗ ∈ ∂Ω and let
e(z) be a unit tangent vector to ∂Ω at the point z ∈ ∂Ω. There exists ε0 ∈ (0, 1)
so that for all η ∈ (0, 1), t ∈ C, z ∈ Cn : if

• η < ε0,
• z ∈ ω−1(K(z∗, ε0) ∩ ∂Ω),
• 2|t| < (1− δ(z))ηξ(η)

then (1− η)z + te(ω(z)) ∈ Ωδ(z).

Proof. It follows from Lemma 2.8 that there exists ε0 > 0 such that for
all η ∈ (0, 1), s ∈ C, z ∈ Cn if

• η < ε0,
• 2|s| < ηξ(η),
• z ∈ K(z∗, ε0) ∩ ∂Ω

then (1− η)z + se(z) ∈ Ω.
If z ∈ ω−1(K(z∗, ε0) ∩ ∂Ω) then (1− η)ω(z) + se(ω(z)) ∈ Ω. From this we

can conclude that (1 − η)(1 − δ(z))ω(z) + (1 − δ(z))se(ω(z)) ∈ (1 − δ(z))Ω.
Therefore (1 − η)z + (1 − δ(z))se(ω(z)) ∈ Ωδ(z). Now it is enough to denote
t := s(1− δ(z)).

Now we can prove Theorem 4.5

Proof. Let z∗ ∈ ∂Ω, f ∈ Λk
ε (Ω). Let us assume that f(0) = 0. We have

f(z) =
∑n

i=1 zifi(z) for fi(z) =
∫ 1
0

∂
∂zi
f(λz)dλ. We will prove that fi ∈ Λk

ε (Ω).
Because Ω has a C1-boundary, there exists an open set U such that z∗ ∈ U

and there exist continuous functions e1, . . . , en−1 on U such that:

• ei(z) is a unit vector tangent to ∂Ω for all z ∈ ∂Ω ∩ U ,
• tz ∈ U and ei(tz) = ei(z) for all t > 0, z ∈ ∂Ω ∩ U ,
• e1(z), . . . , en−1(z) are linearly independent vectors for every z ∈ U .
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Let α = (α1, ..., αn) be a multiindex such that |α| ≤ k. We define α̃(i) :=
(α1, . . . , αi − 1, . . . , αn). Now we can consider the system of n equations:

n∑
i=1

zi∂̂αfi(z) = ∂̂αf(z)−
∑
αi>0

∂̂α̃(i)fi(z)− (Dαf1(z), . . . , Dαfn(z)),

n∑
i=1

e1i (z)∂̂αfi(z) =
∫ 1

0
λ|α|+1 ∂

∂t

(
∂̂αf(λz + te1(z))

)∣∣∣
t=0

dλ,

...
n∑

i=1

en−1
i (z)∂̂αfi(z) =

∫ 1

0
λ|α|+1 ∂

∂t

(
∂̂αf(λz + ten−1(z))

)∣∣∣
t=0

dλ.

Since the vectors e1(z), . . . , en−1(z), z are linearly independent for every
z ∈ U , the above system of n equations has the unique solution ∂̂αf1, ..., ∂̂αfn.
Let λ ∈ (0, 1). From Lemma 4.8 it follows that there exists ε0 ∈ (0, 1) so that
for all λ ∈ (0; 1), t ∈ C, z ∈ Cn : if

• 1− λ < ε0,
• z ∈ ω−1(K(z∗, ε0) ∩ ∂Ω),
• 2|t| < (1− δ(z))(1− λ)ξ(1− λ)

then λz + te(ω(z)) ∈ Ωδ(z). Moreover we can assume that K(z∗, ε0) ⊂ U .
Because f ∈ Λk

ε (Ω), from Lemma 4.6 it follows that there exists T such
that

• |∂̂αf(z)|d∂Ω(z)1−ε ≤ T for all z ∈ Ω,
• δ

d∂Ω(∂Ωδ) ≤ T for all δ ∈ (0, 1),
• supz∈Ω |z| ≤ T .

Let z ∈ Ω \ {0}. If w ∈ Ωδ(z) then

d∂Ω(∂Ωδ(z)) ≤ d∂Ω(w).

Moreover d∂Ω(z) ≤ |ω(z)− z| = |δ(z)ω(z)| and |ω(z)| ≤ T . We can estimate:
(4.1)

1
d∂Ω(w)1−ε

≤ 1
d∂Ω(∂Ωδ(z))1−ε

≤ T 1−ε

δ(z)1−ε
=

T 1−ε|ω(z)|1−ε

δ(z)1−ε|ω(z)|1−ε
≤ T 1−εT 1−ε

d∂Ω(z)1−ε
.

Now let z ∈ ω−1(K(z∗, ε0)∩∂Ω)∩Ω be such that δ(z) < 1/2. We can calculate

sup
w∈Ωδ(z)

∣∣∣∂̂αf(w)
∣∣∣ ≤ T sup

w∈Ωδ(z)

1
d∂Ω(w)1−ε

≤ T 3−2ε

d∂Ω(z)1−ε
.
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Now from Cauchy estimate for z ∈ Ω with δ(z) < 1/2 we get:∣∣∣∣ ∂∂t (
∂̂αf(λz + tej(z))

)∣∣∣
t=0

∣∣∣∣ dη ≤
2 supw∈Ωδ(z)

∣∣∣∂̂αf(w)
∣∣∣

(1− δ(z))(1− λ)ξ(1− λ)

≤ 4T 3−2ε

(1− λ)ξ(1− λ)d∂Ω(z)1−ε

for 1−ε0 < λ < 1, z ∈ ω−1(K(z∗, ε0)∩∂Ω) and 2|t| < (1−δ(z))(1−λ)ξ(1−λ)
Because

∫ 1
0

1
ηξ(η)dη < +∞ then it is clear that there exists M > 0 such that

(4.2)
∣∣∣∣∫ 1

0
λ|α|+1 ∂

∂t

(
∂̂αf(λz + tej(z))

)∣∣∣
t=0

dλ

∣∣∣∣ ≤ M

d∂Ω(z)1−ε
.

Moreover because

|Dαfi(z)|2 ≤
∫ 1

0

∑
i

∣∣∣∣t|α|Dα ∂

∂zi
f(tz)

∣∣∣∣2 dt ≤ ∫ 1

0

∣∣∣∂̂αf(tz)
∣∣∣2 dt

≤
∫ 1

0

(
T

d∂Ω(tz)1−ε

)2

dt

therefore by (4.1) it follows that:

(4.3) |(Dαf1(z), . . . , Dαfn(z))| ≤

√
n

∫ 1

0

(
T

d∂Ω(tz)1−ε

)2

dt ≤
√
nT 3−2ε

d∂Ω(z)1−ε

for all z ∈ Ω. We can conclude from (4.2) and (4.3) that fi ∈ Λk
ε (Ω).

5. Gleason Problem in products of sets. For a given multiindex α =
(α1, ..., αn), β = (β1, ..., βm) we denote |α| = α1 + ...+ αn, |β| = β1 + ...+ βm

and Dα,β = ∂|α|+|β|

∂z
α1
1 ...∂zαn

n ∂w
β1
1 ...∂wβm

m

. Moreover let ∂̂α,β := grad ◦Dα,β . If αi > 0

then α̃(i) := (α1, . . . , αi − 1, . . . , αn).

Corollary 5.1. Let Ω2 ⊂ Cm be a bounded domain. Let us assume
that the Gleason problem has a solution for the Banach algebra Ak(Ω2) (resp.
Hk(Ω2)) at the point 0. If Ω1 ⊂ Cn is a bounded domain with a Lip1,ϕ boundary
such that [0, z) ⊂ Ω1 and [0, z] is not tangent to ∂Ω1 for every z ∈ ∂Ω1 then
the Gleason problem has a solution for the Banach algebra Ak(Ω1 × Ω2) (resp.
Hk(Ω1 × Ω2)) at the point 0.

Proof. For x ∈ Ω1 × Ω2 we denote x = (x!, x2) for x1 ∈ Ω1 and x2 ∈ Ω2.
Let f ∈ Ak(Ω1 × Ω2) (resp. f ∈ Hk(Ω1 × Ω2)). We have f(z, w) − f(0, w) =∑n

i=1 zifi(z, w) for fi(z, w) =
∫ 1
0

∂
∂zi
f(λz,w)dλ. Because f(z, w) − f(0, 0) =

f(z, w)−f(0, w)+f(0, w)−f(0, 0) it is enough to prove that fi ∈ Ak(Ω1×Ω2)
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(resp. fi ∈ Hk(Ω1 × Ω2)). Without the loss of generality we can assume that
fi(0, w) = 0 for all w ∈ Ω2.

Let (z∗, w∗) ∈ ∂(Ω1 × Ω2). We consider the system of n equations:
n∑

i=1

ziD
α,βfi(z, w) = Dα,βf(z, w)−

n∑
i=1,αi>0

Dα̃(i),βfi(z, w),

n∑
i=1

e1i (z)D
α,βfi(z, w) =

∫ 1

0
λ|α|

∂

∂t

(
Dα,βf(λz + te1(z), w)

)∣∣∣
t=0

dλ,

...
n∑

i=1

en−1
i (z)Dα,βfi(z, w) =

∫ 1

0
λ|α|

∂

∂t

(
Dα,βf(λz + ten−1(z), w)

)∣∣∣
t=0

dλ,

where e1, ..., en−1 are linearly independent vectors chosen for the set Ω1 as in
the proof of Theorem 3.1.

We denote

Dα,β f̃(λz + tej(z), w) := Dα,βf(λz + tej(z), w)−Dα,βf(λz∗ + tej(z∗), w).

Let ε0, R(ε0, ε) be the same as in the proof in the Theorem 3.1. Using the same
arguments (as in the proof in the Theorem 3.1) we can obtain main estimates:∣∣∣∣ ∂∂t (

Dα,βf(λz + tej(z), w)
)∣∣∣∣

t=0

∣∣∣∣ ≤ 2 supv∈R(ε0,ε0),w∈Ω2

∣∣Dα,βf(v, w)
∣∣

(1− λ)ξ(1− λ)

and ∣∣∣∣ ∂∂t (
Dα,β f̃(λz + tej(z), w)

)∣∣∣∣
t=0

∣∣∣∣ ≤ 2 supv∈R(ε0,ε),w∈Ω2

∣∣∣Dα,β f̃(v, w)
∣∣∣

(1− λ)ξ(1− λ)

for 1− λ < ε0 and z ∈ K(z∗, ε) ∩ ∂Ω.
From this it follows that

∫ 1
0 λ|α| ∂

∂t

(
Dα,β f(λz + tei(z), w)

)∣∣
t=0

dλ ∈
Ak(Ω1 × Ω2) and Dα̃(i),βfi(z, w) ∈ Ak(Ω1 × Ω2) (resp. Dα̃(i),βfi(z, w) ∈
Hk(Ω1 × Ω2) and

∫ 1
0 λ

|α| ∂
∂t

(
Dα,βf(λz + tei(z), w)

)∣∣
t=0

dλ ∈ Hk(Ω1 × Ω2)).
Therefore we can conclude that fi ∈ Ak(Ω1×Ω2) (resp. fi ∈ Hk(Ω1×Ω2)).

Corollary 5.2. Let Ω2 ⊂ Cm be a bounded domain. Let us assume that
the Gleason problem has a solution for the Banach algebra Ak(Ω2) (respectively
Hk(Ω2)) at the point 0. If Ω1 ⊂ C is a bounded domain, 0 ∈ Ω1 then the Gleason
problem has a solution for the Banach algebra Ak(Ω1×Ω2) (resp. Hk(Ω1×Ω2))
at the point 0.

Proof. Let f ∈ Ak(Ω1 × Ω2) (resp. f ∈ Hk(Ω1 × Ω2)). For (z, w) ∈
Ω1 × Ω2 we denote h(z, w) := 1

z (f(z, w) − f(0, w)). Let ε0 be so small that
K(0, 2ε0) ⊂ Ω1. It is enough to show that h ∈ Ak(K(0, ε0) × Ω2) (resp.



107

h ∈ Hk(K(0, ε0) × Ω2)). We can write f(z, w) − f(0, w) = z
∫ 1
0

∂
∂zf(λz,w)dλ.

From this it follows that h(z, w) =
∫ 1
0

∂
∂zf(λz,w)dλ. Now from the Cauchy

estimate we obtain∣∣∣∣∣ ∂∂z (
Dα,βf(λz,w)

)∣∣∣∣
z=z0

∣∣∣∣∣ ≤ 2 supv∈K(0,2ε0),w∈Ω2

∣∣Dα,βf(v, w)
∣∣

ε0

for z0 ∈ K(0, ε0), λ ∈ (0, 1). Therefore, like in the proof in Theorem 3.1, we
can conclude the required properties.

Now we would like to prove some results for Λk
ε (Ω) algebra.

Definition 5.3. Let Ω ⊂ Ck be a domain such that [0, z) ⊂ Ω for every
z ∈ ∂Ω. We denote by ωΩ and δΩ the functions defined on Ω \ {0} so that for
every z ∈ Ω \ {0} we have the following properties:

1. ωΩ(z) ∈ ∂Ω,
2. δΩ(z) ∈ [0, 1),
3. z = (1− δΩ(z))ωΩ(z).

Moreover we denote δΩ(0) = 1.

Definition 5.4. For x, y ∈ Ck we set

(x, y) := {x+ t(y − x) : 0 < t < 1}.

Definition 5.5. For sets S, T , Ω ⊂ Cnwe define

dS(T ) := inf
w∈S,z∈T

|w − z|,

dS(z) := inf
w∈S

|w − z|,

Ωδ := (1− δ)Ω,

∂̂α,β := grad ◦Dα,β.

Lemma 5.6. If Ω1 ⊂ Cn and Ω2 ⊂ Cm are open, bounded domains so that
[0, xi) ⊂ Ωi for all xi ∈ Ωi (i = 1, 2) then

(5.1) min
i=1,2

d∂Ωi
(δ∂Ωi) ≤ d∂(Ω1×Ω2)(δ∂(Ω1 × Ω2))

for all δ ∈ (0, 1).

Proof. Let Ω := Ω1 × Ω2. Let δ ∈ (0, 1). There exist w, z ∈ ∂Ω such
that d∂Ω(δ∂Ω) = |z − δw|. We can write z = (z1, z2) and w = (w1, w2) for
zi, wi ∈ Ωi. Without the loss of generality we can assume that w1 ∈ ∂Ω1.

If w2 ∈ ∂Ω2 then because z1 ∈ ∂Ω1 or z2 ∈ ∂Ω2, we may estimate

min
i=1,2

d∂Ωi
(δ∂Ωi) ≤

√
|z1 − δw1|2 + |z2 − δw2|2 = |z − δw| = d∂Ω(δ∂Ω),
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which completes in this case. If z1 ∈ ∂Ω1 then we may estimate

d∂Ω1(δ∂Ω1) ≤ |z1 − δw1| ≤
√
|z1 − δw1|2 + |z2 − δw2|2 = |z − δw| = d∂Ω(δ∂Ω)

which completes in this case.
Now we assume that w2 ∈ Ω2 and z1 ∈ Ω1. We conclude that z2 ∈ ∂Ω2.
If (1

δ z2, w2) ∩ ∂Ω2 = ∅ then (1
δ z2, w2) ⊂ Ω2 but from this it follows that

1
δ z2 ∈ Ω2 and we have a contradiction: z2 ∈ [0, 1

δ z2) ⊂ Ω2.

If there exists w3 ∈ (1
δ z2, w2) ∩ ∂Ω2 then δw3 ∈ (z2, δw2) and we have the

following estimate:

d∂Ω2(δ∂Ω2) ≤ |z2 − δw3| ≤ |z2 − δw2| ≤
√
|z1 − δw1|2 + |z2 − δw2|2

= |z − δw| = d∂Ω(δ∂Ω)

which completes the proof.

Lemma 5.7. Let Ω := Ω1 × ... × Ωk where Ωi ⊂ Cni are open bounded
domains with C1 boundaries. If [0, xi) ⊂ Ωi for all xi ∈ Ωi and [0, xi] is not
tangent to ∂Ωi for every xi ∈ ∂Ωi (i = 1, 2, ..., k) then there exists T > 0 such
that:

δ

d∂Ω(δ∂Ω)
≤ T

for all δ ∈ (0, 1).

Proof. From Lemma 4.6 it follows that there exists T > 0 such that
δ

d∂Ωi
(δ∂Ωi)

≤ T

for all δ ∈ (0, 1). Now by Lemma 5.6 we may estimate

δ

d∂Ω(δ∂Ω)
≤ δ

mini=1,..,k d∂Ωi
(δ∂Ωi)

≤ T

for all δ ∈ (0, 1).

Lemma 5.8. Let Ω2 ⊂ Cm be a bounded domain such that [0, w) ⊂ Ω2 for
every w ∈ ∂Ω2. Let Ω1 ⊂ Cnbe a bounded domain with a Lip1,ϕ boundary such
that [0, z) ⊂ Ω1 and [0, z] is not tangent to ∂Ω1 for every z ∈ ∂Ω1. By e(z)
we denote a unit tangent vector to ∂Ω1 at the point z ∈ ∂Ω1. Moreover let
Ω := Ω1 × Ω2. There exists ε0 ∈ (0, 1) such that if

• η ∈ (0, ε0) ⊂ R,
• z ∈ Ω1, w ∈ Ω2, 2δΩ(z, w) < 1,
• t ∈ C , 8|t| < ηξ(η).

then (1− η)z + te(ωΩ1(z)) ∈ (1− δΩ(z, w))Ω1 and w ∈ (1− δΩ(z, w))Ω2,
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Proof. If x ∈ Ω then there exists x1 ∈ Ω1 and x2 ∈ Ω2 so that x =
(x1, x2). Now we denote (x)i = xi for i = 1, 2. We have the following
equality: (1 − δΩ(x))(ωΩ(x))i = xi = $(1 − δΩi(xi))ωΩi(xi). From this, be-
cause (ωΩ(x))i ∈ Ωi, it follows that 1 − δΩi(xi) ≤ 1 − δΩ(x) and therefore
δΩ(x) ≤ δΩi(xi) for x ∈ Ω, i = 1, 2. Now we may calculate w ∈ (1−δΩ2(w))Ω2 ⊂
(1− δΩ(z, w))Ω2 for all z ∈ Ω1, w ∈ Ω2.

Because limη→0 ηξ(η) = 0 there exists ε1 > 0 so that if
• η ∈ (0, ε1),
• z ∈ Ω1, 4δΩ1(z) > 3,
• t ∈ C , 8|t| < ηξ(η),
• w ∈ Ω2, 2δΩ(z, w) < 1

then

1− δΩ1 ((1− η)z + te(ωΩ1(z))) <
1
2
< 1− δΩ(z, w)

and therefore (1− η)z + te(ωΩ1(z)) ∈ (1− δΩ(z, w))Ω1.
Now let us assume that 4δΩ1(z) ≤ 3. If 8|t| < ηξ(η) then 2|t| < (1 −

δΩ1(z))ηξ(η) and therefore by Lemma 4.8 we may conclude that there exists ε2
so that if

• η ∈ (0, ε2),
• z ∈ Ω1, 4δΩ1(z) ≤ 3,
• t ∈ C , 8|t| < ηξ(η)

then (1− η)z + te(ωΩ1(z)) ∈ (1− δΩ1(z))Ω1 ⊂ (1− δΩ(z, w))Ω1.
Now it is enough to define ε0 := min{ε1, ε2}.

Theorem 5.9. Let Ω1 ⊂ Cn be a bounded domain with a Lip1
ϕ boundary

such that [0, z) ⊂ Ω1 and [0, z] is not tangent to ∂Ω1 for every z ∈ ∂Ω1.
Moreover let Ω2 := Ω̃1 × ... × Ω̃k ⊂ Cm for bounded domains Ω̃i with C1

boundaries such that [0, w) ⊂ Ω̃i and [0, w] is not tangent to ∂Ω̃i for every
w ∈ ∂Ω̃i. If f ∈ Λk

ε (Ω1 × Ω2) then there exists fi ∈ Λk
ε (Ω1 × Ω2) such that

f(z, w)− f(0, w) =
∑n

i=1 zifi(z, w).

Proof. Let Ω := Ω1 ×Ω2. From Lemma 5.7 it follows that we can choose
T > 0 so that δ

d∂Ω(∂Ωδ) ≤ T for all δ ∈ (0, 1).
Let α = (α1, ..., αn) and β = (β1, ..., βm) be a multiindex such that |α| +

|β| ≤ k. We denote (z, w) ∈ Ω iff z ∈ Ω1 and w ∈ Ω2. Let (z∗, w∗) ∈ ∂Ω.
Moreover let f ∈ Λk

ε (Ω). We have f(z, w) − f(0, w) =
∑n

i=1 zifi(z, w) for
fi(z, w) =

∫ 1
0

∂
∂zi
f(λz,w)dλ. It is enough to show that fi ∈ Λk

ε (Ω). Now
without the loss of generality we may assume that f(0, w) = 0 for all w ∈ Ω2.
Because Ω1 has a C1-boundary, there exist an open set U ⊂ Cn such that
z∗ ∈ U and continuous functions e1, . . . , en−1 on U such that:
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• ei(z) is a unit tangent vector to ∂Ω1 for all z ∈ ∂Ω1 ∩ U ,
• tz ∈ U and ei(tz) = ei(z) for all t > 0, z ∈ ∂Ω1 ∩ U ,
• e1(z), . . . , en−1(z) are linearly independent vectors for every z ∈ U .

We denote Fn,λ (z1, ..., zn,zn+1, ..., zn+m) := (λz1, ..., λzn,zn+1, ..., zn+m) and
π(f) := (f1, ..., fn, 0, ..., 0). Now we can consider the system of n equations:

n∑
i=1

zi∂̂α,βfi(z, w) = ∂̂α,βf(z, w)−
∑
αi>0

∂̂α̃(i),βfi(z, w)−Dα,βπ(f)(z, w),

n∑
i=1

e1i (z)∂̂α,βfi(z, w) =
∫ 1

0
λ|α|Fn,λ

(
∂

∂t

(
∂̂α,βf(λz + te1(z), w)

)∣∣∣
t=0

)
dλ,

...
n∑

i=1

en−1
i (z)∂̂α,βfi(z, w) =

∫ 1

0
λ|α|Fn,λ

(
∂

∂t

(
∂̂α,βf(λz + ten−1(z), w)

)∣∣∣
t=0

)
dλ.

Since the vectors e1(z), . . . , en−1(z), z are linearly independent for every
z ∈ U the above system of n equations has the unique solution ∂̂α,βf1, ..., ∂̂α,βfn.

There exists T such that

• |∂̂α,βf(τ)|d∂Ω(τ)1−ε ≤ T for all τ ∈ Ω,
• δ

d∂Ω(∂Ωδ) ≤ T for all δ ∈ (0, 1),
• supτ∈Ω |τ | ≤ T .

Let µ ∈ Ω \ {0}. We denote ω := ωΩ and δ := δΩ. If τ ∈ Ωδ(µ) then

d∂Ω(∂Ωδ(µ)) ≤ d∂Ω(τ).

Moreover d∂Ω(µ) ≤ |ω(µ)−µ| = |δ(µ)ω(µ)| and |ω(µ)| ≤ T . We may estimate:
(5.2)

1
d∂Ω(τ)1−ε

≤ 1
d∂Ω(∂Ωδ(µ))1−ε

≤ T 1−ε

δ(µ)1−ε
=

T 1−ε|ω(µ)|1−ε

δ(µ)1−ε|ω(µ)|1−ε
≤ T 1−εT 1−ε

d∂Ω(µ)1−ε
.

We may calculate

sup
τ∈Ωδ(µ)

∣∣∣∂̂α,βf(τ)
∣∣∣ ≤ T sup

τ∈Ωδ(µ)

1
d∂Ω(τ)1−ε

≤ T 3−2ε

d∂Ω(µ)1−ε
.

By Lemma 5.8 there exists ε0 ∈ (0, 1) such that if

• η ∈ (0, ε0) ⊂ R,
• z ∈ Ω1, w ∈ Ω2, 2δΩ(z, w) < 1,
• t ∈ C , 8|t| < ηξ(η)

then (1− η)z + te(ωΩ1(z)) ∈ (1− δΩ(z, w))Ω1 and w ∈ (1− δΩ(z, w))Ω2.
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Now from the Cauchy estimate for ε0 < λ < 1 and µ = (µ1, µ2) ∈ ω−1(U ∩
Ω) with 2δ(µ) < 1 we get:∣∣∣∣ ∂∂t (

∂̂α,βf(λµ1 + tej(µ1), µ2)
)∣∣∣

t=0

∣∣∣∣ ≤
8 supτ∈Ωδ(µ)

∣∣∣∂̂α,βf(τ)
∣∣∣

(1− λ)ξ(1− λ)

≤ 8T 3−2ε

(1− λ)ξ(1− λ)d∂Ω(µ)1−ε
.

Because
∫ 1
0

1
ηξ(η)dη < +∞, it is clear that there exists M > 0 such that

(5.3)
∣∣∣∣∫ 1

0
λ|α|Fn,λ

(
∂

∂t

(
∂̂α,βf(λµ1 + tej(µ1), µ2)

)∣∣∣
t=0

)
dλ

∣∣∣∣ ≤ M

d∂Ω(µ)1−ε

for all µ ∈ ω−1(U ∩ Ω) with 2δ(µ) < 1.
Moreover because∣∣∣Dα,βfj(z, w)

∣∣∣ ≤
√√√√∫ 1

0

n∑
i=1

∣∣∣∣Dα,β
∂

∂zi
f(tz, w)

∣∣∣∣2 +
m∑

i=1

∣∣∣∣Dα,β
∂

∂wi
f(tz, w)

∣∣∣∣2 dt
by (5.2) we may estimate:

∣∣∣(Dα,βf1(z, w), . . . , Dα,βfn+m(z, w)
)∣∣∣ ≤

√
(n+m)

∫ 1

0

∣∣∣∂̂α,βf(tz, w)
∣∣∣2 dt

≤

√
(n+m)

∫ 1

0

(
T

d∂Ω(tz, w)1−ε

)2

dt

≤
√
n+mT 3−2ε

d∂Ω(z, w)1−ε

for all (z, w) ∈ Ω. We may conclude from (5.3) and (5.2) that fi ∈ Λk
ε (Ω).

References

1. Ahern P., Schneider R., Holomorphic Lipschitz functions in pseudoconvex domains, Amer.
J. Math., 101 (1979), 543–565.

2. Backlund U., Fälström A., The Gleason problem for A(Ω), New Zealand J. Math., 24
(1995), 17–22.

3. de Bartolomeis P., Tomassini G., Finitely generated ideals in A∞(D), C. R. Acad. Sci.
Paris, 293 (1981), 133–134.

4. Bonneau P., Cumenge A., Zeriahi A., Division dans les espaces de Lipschitz de fonctions
holomorphes, C. R. Acad. Sci. Paris, 273 (1983), 145–164.

5. Bruna J., Ma Ortega J., Closed finitely generated ideals in algebras of holomorphic
functions and smooth to the boundary in stricly pseudoconvex domains, Math. Ann., 268
(1984), 137–157.



112

6. Gleason A.M., Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964),
125–132.

7. Henkin G.M., Integral representations of functions holomorphic in stricly pseudoconvex
domains and some applications (in Russian), Math. USRR Sb., 11 (1970), 273–282.

8. Jakóbczak P., Extension and decomposition with local boundary regularity properties in
stricly pseudoconvex domains, Math. Z., 188 (1985), 513–533.

9. Kerzman N., Nagel A., Finitely generated ideals in certain function algebras, J. Funct.
Anal., 7 (1971), 212–215.

10. Lieb I., Die Cauchy-Riemmannsche Differentialgleichungen auf streng pseudo-konvexen
Gebieten: Beschränkte Lösungen, Math. Ann., 190 (1970), 6–44.

11. Lieb I., Range M., Lösungsoperatoren für den Cauchy–Riemann Komplex mit Ck–
Abschätzungen, Math. Ann., 253 (1980), 145–164.

12. Øvrelid N., Generators of the maximal ideals of A(D), Pacific J. Math., 39 (1971),
219–233.

13. Ramirez de Arellano E., Ein Divisionproblem und Randintegraldarstellungen in der kom-
plexen Analysis, Math. Ann., 184 (1970), 172–187.

14. Yum-Tong Siu, The ∂-problem with uniform norms on derivatives, Math. Ann., 207
(1974), 163–176.

Received September 30, 2001
Technical University of Kraków
Institute of Mathematics
Warszawska 24
31-155 Kraków, Poland
e-mail : pkot@usk.pk.edu.pl

mailto:pkot@usk.pk.edu.pl

	1. Introduction
	2. Notation and Geometric Preliminaries.
	3. Results for the Banach algebras  Ak() and  Hk().
	4. Results for the Banach algebra  Lipk+().
	5. Gleason Problem in products of sets
	References

