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FIRST-ORDER DIFFERENTIAL EQUATIONS OF THE

HYPERBOLIC TYPE

by Ma lgorzata Radoń

Abstract. By using the extrapolation spaces the existence and uniqueness
of the solution of the semilinear first order equation in the “hyperbolic” case
are studied.

1. Introduction. Let (X, ‖.‖) be a Banach space and for each t ∈ [0, T ]
let A(t) : X ⊃ Dt → X be a linear closed densely defined operator, where Dt

denotes domain of A(t) depends on t. Let u be an unknown function from
[0, T ] into X, f be a nonlinear function from [0, T ] × X into X and x0 ∈ X.
We consider the abstract semilinear initial value problem

(1)

{
u′(t) = A(t)u(t) + f(t, u(t)), t ∈ (0, T ]

u(0) = x0 ∈ X.

Our purpose is to study the existence and uniqueness of solution of (1).
We shall introduce the extrapolation space and reduce the problem (1) to the
problem with operator whose domain does not depend on t.

2. Preliminaries. Let A : X ⊃ D(A) → X be a closed linear operator
on a Banach space (X, ‖ · ‖) with nonempty resolvent set ρ(A). We do not
assume that A is densely defined. For such an operator A we may define the
extrapolation space X−1 which was introduced by R. Nagel ([3]). For details
and proofs see, e.g. ([4], Chap.3).

For fixed µ ∈ ρ(A)

(2) |x| := ‖R(µ,A)x‖, x ∈ X

defines new norm on X.
It is easy to prove that

Proposition 2.1. The space (X, | · |) is not a Banach space.
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This proposition motivates the following definition. We define the extra-
polation space X−1 as the closure of X in the norm | · |.

Next, we may extend the operator A. We denote by A−1 the extension of A

with domain X0 := D(A)
‖·‖

. We collect some facts about A−1 in the following
proposition.

Proposition 2.2. Let A be a closed operator and λ ∈ ρ(A). Then
(i) the mapping λ−A−1 : X0 → X−1 is an isomorphism
(ii) if λ ∈ ρ(A), then λ ∈ ρ(A−1) and R(λ, A) = R(λ, A−1)|X
(iii) ‖R(λ, A−1)‖X−1 ≤ ‖R(λ, A)‖, λ ∈ ρ(A)
(iv) A is the part of A−1 in X
(v) if there exist M ≥ 1 and ω ∈ R such that (ω,∞) ⊂ ρ(A) and

‖R(λ, A)n‖ ≤ M(λ− ω)−n, λ > ω, n = 1, 2, . . .

then A−1 generates a C0-semigroup T−1(t) on X−1 such that
T−1(t)|X0 = T0(t), where T0(t) is C0-semigroup on X0 whose generator
is an operator A0 = A|{x∈D(A) : Ax∈X0}.

From this proposition it follows that the norm on X−1 is given by

(3) ‖x−1‖X−1 = |x−1| = ‖R(µ,A−1)x−1‖ x−1 ∈ X−1, µ ∈ ρ(A).

In the sequel we shall need the following theorems.

Theorem 2.3. ([1], Th.1.47). Let for each t ∈ [0, T ], A(t) be a linear closed
densely defined operator, the domains Dt depend on t. For each t ∈ [0, T ] the
operator A(t) has the inverse operator A−1(t) ∈ B(X), where B(X) denotes the
Banach space of bounded linear operators from X into X. If for an arbitrary
s ∈ [0, T ] the mapping [0, T ] 3 t → A−1(t)A(s)is continuous in t = s, then
there exist m > 0,M > 0 such that for t, r ∈ [0, T ] and x ∈ X

(4) m‖A−1(t)x‖ ≤ ‖A−1(r)x‖ ≤ M‖A−1(t)x‖.

Theorem 2.4. ([2], Lemma 3.8). If the operator A(t)∈B(X, Y ) is strongly
continuously differentiable on [0,T] and has an inverse operator A−1(t) uni-
formly bounded on that interval, then A−1(t) is also strongly continuously dif-
ferentiable and the following formula holds

[A−1(t)]′ = −A−1(t)A′(t)A−1(t).

Theorem 2.5. ([1], Th.1.52). Let g : ∆T = {(t, s) : 0 ≤ s ≤ t ≤ T} → X
and suppose that

(i) for almost all s ∈ [0, T ] the function [s, T ] 3 t → g(t, s) is continuous
(ii) for each t ∈ [0, T ], g(t, ·) is summable over [0, t]
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(iii) there exists a function ϕ ∈ L1(0, T ; [0,∞)) such that for (t, s) ∈ ∆T ,
‖g(t, s)‖ ≤ ϕ(s).

Then the function G : [0, T ] 3 t →
∫ t
0 g(t, s)ds ∈ X is continuous.

Theorem 2.6. ([6], Th.7.11, p.127). Let fn : [0, T ] → X and let for
t ∈ [0, T ], limn→∞ fn(t) = f(t). Suppose that

(i) fn → f uniformly on [0,T] as n →∞, i.e.

sup{‖fn(t)− f(t)‖ : t ∈ [0, T ]} → 0, n →∞

and let
(ii) limt→t0 fn(t) = An, n = 1, 2, 3, . . . , t ∈ [0, T ].

Then {An} is convergent and

lim
t→t0

( lim
n→∞

fn(t)) = lim
n→∞

( lim
t→t0

fn(t)).

3. The construction of a space X̂0. In this section we shall construct
the extrapolation space X̂0 associated with the family {A(t)}, t ∈ [0, T ].

Let (X, ‖ · ‖) be a Banach space. We make the following assumptions
(Z1) Let for each t ∈ [0, T ], A(t) : X ⊃ D(A(t)) → X be a closed densely

defined linear operator; the domain D(A(t)) = Dt of A(t) depends on
t ∈ [0, T ].

(Z2) The resolvent set ρ(A(t)) does not depend on t and 0 belongs to ρ(A(t)).
(Z3) For an arbitrary s ∈ [0, T ] the mapping t → A−1(t)A(s) is continuous

in t = s on [0,T] in the sense that limt→s ‖A−1(t)A(s)− I‖ = 0.

Analogously to the norm (2), for fixed µ ∈ ρ(A(t)) and for each t ∈ [0, T ]
define the new norm on X as

(5) |x|t := ‖R(µ,A(t))x‖, x ∈ X.

Applying Theorem 2.3 we can prove the following

Theorem 3.1. Let assumptions (Z1) − (Z3) hold. For each t ∈ [0, T ] the
norms | · |0 and | · |t are equivalent.

Proof. It follows from (4) that there exist m > 0, M > 0 such that for
t ∈ [0, T ] and x ∈ X

m‖A−1(t)x‖ ≤ ‖A−1(0)x‖ ≤ M‖A−1(t)x‖.

From this and from (5) we have

|x|0 ≤ ‖R(µ,A(0))A(0)A−1(0)A(t)R(µ,A(t))x‖+ M2‖R(µ,A(t))x‖ ≤ M3|x|t.

Analogously |x|t ≤ m3|x|0.
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We remark that from Theorem 3.1 it follows that we can for example
choose the space X0 := (X, | · |0). By Proposition 2.1, X0 is not a Banach
space. Because X0 is the normed space we can complete it in the sense of
norm | · |0 to the complete space X̂0. The space X̂0 is the Banach space and
does not depend on t.

Under assumptions (Z1) − (Z3) we constructed the extrapolation space
of X. Now, we shall extend the family of operators {A(t)}, t ∈ [0, T ].

4. The family of operators {Â(t)}, t ∈ [0,T]. Let assumptions (Z1)−
(Z3) hold.We remark that for each t ∈ [0, T ] the operator A(t) is bounded as
a map A(t) : X ⊃ Dt → X ⊂ X̂0. In fact, from Theorem 3.1, for each x ∈ Dt,
t ∈ [0, T ] we have

|A(t)x|0 ≤ M |A(t)x|t = M‖A(t)R(µ,A(t))x‖ ≤ M̂‖x‖.

Hence we can extend it to a bounded linear operator on the all X. Conse-
quently we obtain family of the closed linear operators

Â(t) : X̂0 ⊃ D(Â(t)) → X̂0,

the domains D(Â(t)) = X do not depend on t and X is dense in X̂0.
In the sequel we shall prove theorems about family {Â(t)}, t ∈ [0, T ], which

we shall apply to the study of the existence and uniqueness of the solution of
the Cauchy problem (1) with the operator A(t), which domain Dt depends on
t ∈ [0, T ].

Applying Proposition 2.2 to Â(t) for each t ∈ [0, T ], we have the following
theorem.

Theorem 4.1. Suppose that assumptions (Z1)− (Z3) hold. Then

(i) for λ ∈ ρ(A(t)) and t ∈ [0, T ], λ− Â(t) : X → X̂0 is an isomorphism,
(ii) if λ ∈ ρ(A(t)), then λ ∈ ρ(Â(t)) and R(λ, A(t)) = R(λ, Â(t))|X ,

t ∈ [0, T ].

Analogously to norm (3) we have the norm on X̂0 given by

(6) ‖x̂‖X̂0
= |x̂|0 = ‖R(µ, Â(0))x̂‖, x̂ ∈ X̂0, µ ∈ ρ(A(0)).

Our purpose is to study the existence and uniqueness of solution of (1)
in the “hyperbolic” case. In this case we make the following assumptions on
{A(t)}, t ∈ [0, T ].



61

(Z4) For each t ∈ [0, T ], A(t) is the generator of a C0-semigroup on X.
(Z5) The family {A(t)}, t ∈ [0, T ] is stable in the sense that there exist real

numbers M ≥ 1 and ω such that

‖
k∏

j=1

(λ−A(tj))−1‖ ≤ M(λ− ω)−k

for all λ > ω, 0 ≤ t1 ≤ · · · ≤ tk ≤ T , k ∈ N.

We shall prove that family {Â(t)}, t ∈ [0, T ] has identical properties.

Theorem 4.2. Let assumptions (Z1)− (Z4) hold.
Then for each t ∈ [0, T ], Â(t) is the generator of a C0-semigroup on X̂0.

Proof. Theorem 4.1 together with (Z4) shows that there exist M̂ ≥ 1 and
ω ∈ R such that (ω,∞) ⊂ ρ(Â(t)) and

|R(λ, Â(t))n|0 ≤ M̂(λ− ω)−n, λ > ω, n = 1, 2, . . .

Since D(Â(t)) = X is dense in X̂0, it follows that for each t ∈ [0, T ], Â(t) is
the generator of a C0-semigroup on X̂0 (by [5], Th.5.3. “Hille-Yosida”).

Using the same method as in ([4], Prop.3.1.11, p.47) we prove

Theorem 4.3. Under the assumptions (Z1) − (Z3) if St(s), s ≥ 0 is a
C0-semigroup on X, whose generator is A(t), t ∈ [0, T ], then St(s) extends to
a C0-semigroup Ŝt(s), s ≥ 0 on X̂0, whose generator is Â(t), t ∈ [0, T ].

In the sequel we shall need the following

Theorem 4.4. ([8], Th. 5). Let assumptions (Z1) − (Z5) hold. Then the
family {Â(t)}, t ∈ [0, T ] is stable on X̂0.

In the special case of problem (1) where D(A(t)) = D is independent of t,
it is usually assumed that for x ∈ D, [0, T ] 3 t → A(t)x ∈ X is of class C1. In
our case, where D(A(t)) = Dt depend on t, instead of the above condition, we
assume
(Z6) For each x ∈ X, [0, T ] 3 t → R(λ, A(t))x is of class C1.

Theorem 4.5. Under the assumptions (Z1)− (Z6) for each x̂ ∈ X̂0,

[0, T ] 3 t → R(λ, Â(t))x̂ is of class C1.

Proof. First we show that for each x̂ ∈ X̂0, [0, T ] 3 t → R(λ, Â(t))x̂
is continuous. Let x̂ ∈ X̂0. Since X is dense in X̂0, there is a sequence
{xn}∞n=1 ⊂ X such that xn → x̂ in X̂0. Hence

R(λ, Â(t))xn −R(λ, Â(t0))xn → R(λ, Â(t))x̂−R(λ, Â(t0))x̂, n →∞
uniformly on [0,T].
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Next, for arbitrary xn ∈ X from Theorem 4.1 and (Z6) it follows that

‖R(λ, Â(t))xn −R(λ, Â(t0))xn‖ = ‖R(λ, A(t))xn −R(λ, A(t0))xn‖ → 0,

t → t0.

Thus
R(λ, Â(t))xn −R(λ, Â(t0))xn → 0, t → t0

for each fixed xn ∈ X.
Therefore from Theorem 2.6

‖R(λ, Â(t))x̂−R(λ, Â(t0))x̂‖ → 0, t → t0, x̂ ∈ X̂0.

Secondly we show that [0, T ] 3 t → R(λ, Â(t))x̂ is of class C1. From (Z6)
it follows that [0, T ] 3 t → Φ(t)x ∈ X, defined as

Φ(t)x :=


R(λ, A(t))x−R(λ, A(t0))x

t− t0
, t 6= t0

∂

∂t
R(λ, A(t))x|t=t0 , t = t0

is continuous in t0 ∈ [0, T ], x ∈ X.
The operator ∂

∂tR(λ, A(t)) : X → X is bounded. Thus there is the bounded
operator B(t) : X̂0 → X̂0 which is the extension of ∂

∂tR(λ, A(t)).
Let Φ̂(t) : X̂0 → X̂0 be defined as follows

Φ̂(t)x̂ :=


R(λ, Â(t))x̂−R(λ, Â(t0))x̂

t− t0
, t 6= t0

B(t)x̂|t=t0 , t = t0.

Analogously to the first part of proof we prove that for each x̂ ∈ X̂0,
[0, T ] 3 t → Φ̂(t)x̂ is continuous.

Consequently, there is ∂
∂tR(λ, Â(t))x̂|t=t0 = B(t)x̂|t=t0 , for t0 ∈ [0, T ],

x̂ ∈ X̂0.
Since [0, T ] 3 t → ∂

∂tR(λ, A(t))x, x ∈ X is continuous,
[0, T ] 3 t → ∂

∂tR(λ, Â(t))x̂, x̂ ∈ X̂0 is continuous (similarly to the first part of
proof).

The operator R(λ, Â(t)) : X̂0 → X has the inverse operator

λ− Â(t) : X → X̂0, λ ∈ ρ(A(t)), t ∈ [0, T ].

Applying Theorem 2.4 and Theorem 4.5 we have the following

Corollary 4.6. The mapping [0, T ] 3 t → Â(t)x, x ∈ X is of class C1.
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5. An evolution system in X̂0. In this section we consider the following
initial value problem on X̂0

(7)

{
u′(t) = Â(t)u(t), t ∈ (0, T ]

u(0) = x0.

Definition 5.1. ([5], Def.5.3, p.129). A two parameter family of bounded
operators {Û(t, s)}, 0 ≤ s ≤ t ≤ T , on X̂0 is called an evolution system of (7)
if the following two conditions are satisfied

(i) Û(s, s) = I, Û(t, r)Û(r, s) = Û(t, s) for 0 ≤ s ≤ r ≤ t ≤ T ,
(ii) (t, s) → Û(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .

It is known that the following is true.

Theorem 5.2. ([5], Th.4.8, p.145). Let assumptions (Z1) − (Z6) hold.
Then there exists the unique evolution system of (7) {Û(t, s)}, 0 ≤ s ≤ t ≤ T
satisfying

(i) |Û(t, s)|0 ≤ Mexp{ω(t− s)}, 0 ≤ s ≤ t ≤ T

(ii) ∂+

∂t Û(t, s)x|t=s = Â(s)x, x ∈ X, 0 ≤ s ≤ T

(iii) ∂
∂s Û(t, s)x = −Û(t, s)Â(s)x, x ∈ X, 0 ≤ s ≤ t ≤ T

(iv) Û(t, s)X ⊂ X, 0 ≤ s ≤ t ≤ T

(v) for x ∈ X, Û(t, s)x is continuous in (X, ‖ · ‖D(Â(0))) for 0 ≤ s ≤ t ≤ T

where

(8) ‖x‖D(Â(0)) := |x|0 + |Â(0)x|0, x ∈ X.

Proposition 5.3. The norm ‖ · ‖D(Â(0)) is equivalent to the norm on X.

Proof. From Theorem 4.1 it follows that for x ∈ X

‖x‖D(Â(0)) = ‖R(µ, Â(0))Â(0)x‖+ ‖R(µ, Â(0))x‖ ≤ M̃‖x‖.

On the other hand

‖x‖ = ‖R(µ, Â(0))(µ− Â(0))x‖ ≤ |µ|‖x‖D(Â(0)).



64

We remark that from Proposition 5.3 it follows

Proposition 5.4. For x ∈ X, Û(t, s)x is continuous in (X, ‖ · ‖) for
0 ≤ s ≤ t ≤ T.

Using the same construction as in the proof of ([5], Th.3.1, p.135), we have
the following proposition

Proposition 5.5. Let assume that for each t ∈ [0, T ], A(t) is the generator
of a C0-semigroup. Let {A(t)}, t ∈ [0, T ] be a stable family. If Dt = D is
independent of t and for x ∈ D, [0, T ] 3 t → A(t)x ∈ X is of class C1 then
Û(t, s)|X = U(t, s).

Proof. Using the same method as in the proof of Theorem 3.1, [5], p.135,
we construct the evolution system U(t, s) in the following way

U(t, s)x = lim
n→∞

Un(t, s)x, x ∈ X

where

Un(t, s)x :=



Stnj
(t− s)x, tnj ≤ s ≤ t ≤ tnj+1

Stnk
(t− tnk)[

k−1∏
j=l+1

Stnj
(
T

n
)]Stnl

(tnl+1 − s)x,

k > l, tnk ≤ t ≤ tnk+1, t
n
l ≤ s ≤ tnl+1.

Stnk
(s), s ≥ 0 is C0-semigroup, generated by a operator A(tnk) for k = 0, 1, . . . , n,

tnk := k T
n , n = 1, 2, . . .

Analogously we may construct Û(t, s) and from Theorem 4.3 we obtain the
proposition.

6. The linear case. In this section we consider the following linear prob-
lem

(9)

{
u′(t) = A(t)u(t) + f(t), t ∈ (0, T ]

u(0) = x0

where {A(t)}, t ∈ [0, T ] satisfies the assumptions
(Z1

′
) Let for each t ∈ [0, T ], A(t) : X ⊃ D(A(t)) → X be a closed densely de-

fined linear operator; the domain D(A(t)) = D of A(t) does not depend
on t ∈ [0, T ].

(Z6
′
) The mapping [0, T ] 3 t → A(t)x, x ∈ D is of class C1.

and (Z2), (Z4), (Z5) from section 3 (see Prop.5.5).
From Theorem 4.8, [5], p.145, (see Th.5.2) it follows that under assump-

tions (Z1
′
), (Z2), (Z4), (Z5), (Z6

′
) there exists the unique evolution system of

(9) {U(t, s)}, 0 ≤ s ≤ t ≤ T satisfying
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(i) ‖U(t, s)‖ ≤ Mexp{ω(t− s)}, 0 ≤ s ≤ t ≤ T

(ii) ∂+

∂t U(t, s)x|t=s = A(s)x, x ∈ Y, 0 ≤ s ≤ T

(iii) ∂
∂sU(t, s)x = −U(t, s)A(s)x, x ∈ Y, 0 ≤ s ≤ t ≤ T

(iv) U(t, s)Y ⊂ Y, 0 ≤ s ≤ t ≤ T
(v) for x ∈ Y, U(t, s)x is continuous for 0 ≤ s ≤ t ≤ T , where Y = D

equipped with the norm ‖x‖Y = ‖x‖+ ‖A(0)x‖ for x ∈ Y = D.

Now we shall prove a theorem which is a slight generalization of ([5], Th.5.2,
p.146).

Theorem 6.1. Let assumptions (Z1
′
), (Z2), (Z4), (Z5), (Z6

′
) hold.

If f ∈ L1(0, T ;Y )∩C([0, T ], X) then for every x0 ∈ Y the initial value problem
(9) possesses the unique solution u given by

(10) u(t) = U(t, 0)x0 +
∫ t

0
U(t, s)f(s)ds, t ∈ [0, T ],

such that u ∈ C([0, T ], Y ) ∩ C1((0, T ], X).

Proof. From (Theorem 4.3, [5], p.141) it follows that the function
v : [0, T ] → Y given by v(t) = U(t, 0)x0 is a solution of the problem{

u′(t) = A(t)u(t), t ∈ (0, T ]

u(0) = x0

such that v ∈ C([0, T ], Y ) ∩ C1((0, T ], X).
We need only show that the function w : [0, T ] → X given by

w(t) =
∫ t
0 U(t, s)f(s)ds is:

1) such that w ∈ C([0, T ], Y ) ∩ C1((0, T ], X),
2) a solution of problem (9) with the initial value w(0) = 0.
Ad 1) By Theorem 2.5 w ∈ C([0, T ], Y ). Next, we shall show that w : [0, T ]→ X
is C1. We remark that function t → U(t, s)f(s) is differentiable for almost all
s ∈ [0, T ] and

∂

∂t
U(t, s)f(s) = A(t)U(t, s)f(s).

Use once again Theorem 2.5 to g(t, s) = A(t)U(t, s)f(s). We see that g(·, s) is
continuous and

‖g(t, s)‖ = ‖A(t)U(t, s)A−1(s)A(s)f(s)‖ ≤

‖A(t)U(t, s)A−1(s)‖‖A(s)A−1(0)‖‖A(0)f(s)‖ ≤ C‖f(s)‖Y .

Thus function t →
∫ t
0 A(t)U(t, s)f(s)ds is continuous. Therefore
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w′(t) = f(t) +
∫ t

0
A(t)U(t, s)f(s)ds

is continuous on X.
Applying the same method as in the proof of ([5], Th.5.2, p.146) we prove that
w is the solution of problem (9) with the initial value w(0) = 0 .

Corollary 6.2. Let the assumptions (Z1)− (Z6) hold.
If f ∈ L1(0, T ;X)∩C([0, T ], X̂0) then for every x0 ∈ X the initial value problem

(11)

{
u′(t) = Â(t)u(t) + f(t), t ∈ (0, T ]

u(0) = x0

possesses the unique solution u given by

(12) u(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)f(s)ds, t ∈ [0, T ],

such that u ∈ C([0, T ], X) ∩ C1((0, T ], X̂0) and {Û(t, s)}, 0 ≤ s ≤ t ≤ T is the
evolution system given by Theorem 5.2.

We remark that from Corollary 6.2 it follows that if {A(t)}, t ∈ [0, T ] sa-
tisfies the conditions of Proposition 5.5, and function f ∈ L1(0, T ;X), x0 ∈ D,
then u given by (12) is the “mild solution” of problem (9) ([5], Def.5.1, p.146).

Motivated by this remark we make the following definition. Let the as-
sumptions (Z1)− (Z6) hold.

Definition 6.3. A function u ∈ C([0, T ], X) given by

u(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)f(s)ds, t ∈ [0, T ],

is called the “mild solution” of linear problem (1).

To prove that the “mild solution” of linear problem (1) exists, it is enough
to show that f ∈ L1(0, T ;X) and x0 ∈ X.

7. The semilinear case. In this section we consider semilinear problem
(1), mentioned in the introduction.

Analogously as in the linear case, first we consider the abstract semilinear
initial value problem

(13)

{
u′(t) = A(t)u(t) + f(t, u(t)), t ∈ (0, T ]

u(0) = x0

where {A(t)}, t ∈ [0, T ] satisfies (Z1
′
), (Z2), (Z4), (Z5), (Z6

′
) and next we re-

turn to problem (1).
We have the following
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Theorem 7.1. If f : [0, T ] × Y → Y is continuous and u is a solution of
the problem (13) such that u ∈ C([0, T ], Y )∩C1((0, T ], X) then u satisfies the
integral equation

(14) u(t) = U(t, 0)x0 +
∫ t

0
U(t, s)f(s, u(s))ds, t ∈ [0, T ],

where {U(t, s)}, 0 ≤ s ≤ t ≤ T is the evolution system from section 6.

Theorem 7.2. Suppose that
(i) f : [0, T ]× Y → Y is such that f(·, x) ∈ L1(0, T ;Y );
(ii) there exists L > 0 such that ‖f(t, u) − f(t, v)‖Y ≤ L‖u − v‖Y for

t ∈ [0, T ], u, v ∈ Y .
Then for every x0 ∈ Y there exists exactly one continuous solution of (14) in
(Y, ‖ · ‖Y ).

Proof. Let

(15) (Gu)(t) := U(t, 0)x0 +
∫ t

0
U(t, s)f(s, u(s))ds, t ∈ [0, T ].

The operator G is a mapping from C([0, T ], Y ) into itself. Indeed, let
u ∈ C([0, T ], Y ). Then function {f(·, u(·)) : [0, T ] → Y } ∈ L1(0, T ;Y ). Simi-
larly to the proof of Theorem 6.1 we prove that∫ t

0
U(t, s)f(s, u(s))ds ∈ C([0, T ], Y ).

From (15) it follows that Gu is continuous.
Let C := sup{‖U(t, s)‖Y : 0 ≤ s ≤ t ≤ T}. In the space C([0, T ], Y )

consider the two equivalent norms

(16) ‖u‖Y := sup{‖u(t)‖Y : 0 ≤ t ≤ T},

(17) |u|Y := sup{e−CLt‖u(t)‖Y : 0 ≤ t ≤ T}.

Analogously to the proof of ([7], Th.4.5, p.67) we can prove that G is a con-
traction under the norm (17). By Banach’s contraction principle, this implies
that (14) has exactly one solution u ∈ C([0, T ], Y ).

Theorem 7.3. Under assumptions (i), (ii) of Theorem 7.2 if
f(·, x)∈C([0, T ];X), x0∈D and u is the solution of (14) then u∈C1((0, T ];X).

Proof. Consider the abstract linear initial value problem

(18)

{
z′(t) = A(t)z(t) + f(t, u(t)), t ∈ (0, T ]

z(0) = x0
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where u satisfies (14). The existence and uniqueness of u follows from Theorem
7.2. In the proof of the previous theorem we showed that f(·, u(·))∈L1(0, T ;Y ).
Therefore applying Theorem 6.1 to the problem (18) we prove that this problem
has exactly one solution z ∈ C([0, T ], Y )∩C1((0, T ], X). From the uniqueness of
the solution of (14) we have: z(t) = u(t), t ∈ [0, T ]. Theorem 7.3 is proved.

Analogously to the linear case we apply Theorems 7.1–7.3 to the problem
with the operator Â(t), t ∈ [0, T ] and define the “mild solution” of problem (1).

Definition 7.4. A function u ∈ C([0, T ], X) given by

u(t) = Û(t, 0)x0 +
∫ t

0
Û(t, s)f(s, u(s))ds, t ∈ [0, T ],

is called the “mild solution”of initial value problem (1).

From the above theorems it follows that the “mild solution”of initial value
problem (1) exists if

(i) f : [0, T ]×X → X is such that f(·, x) ∈ L1(0, T ;X)
(ii) there exists L > 0 such that ‖f(t, u)− f(t, v)‖ ≤ L‖u− v‖ for t ∈ [0, T ],

u, v ∈ X.
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