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EXISTENCE AND UNIQUENESS OF SOLUTIONS CAUCHY

PROBLEM FOR NONLINEAR INFINITE SYSTEMS OF

PARABOLIC DIFFERENTIAL-FUNCTIONAL EQUATIONS

by Anna Pude lko

Abstract. We consider the Cauchy problem for an infinite system of weakly
coupled nonlinear differential-functional equations of parabolic type. The
right-hand sides of the system are functionals of unknown functions and
these system are thus essentially coupled by the functional argument. To
prove the existence and uniqueness of the solution to this problem, we shall
apply the well-known Banach fixed point theorem.

1. Introduction. We consider an infinite system of weakly coupled non-
linear differential-functional equations of the form

(1) F i[ui](t, x) = f i(t, x, u), i ∈ S,

where

F i :=
∂

∂t
−Ai, Ai :=

m∑
j,k=1

aijk(t, x)
∂2

∂xj∂xk
,

(t, x) ∈ Ω := {(t, x) : t > 0, x ∈ Rm}, Ω := {(t, x) : t ≥ 0, x ∈ Rm}, S is a set
of indices (finite or countable) and u stands for the mapping

u : S × Ω 3 (i, t, x) → ui(t, x) ∈ R,

composed of unknown functions ui.
Let B(S) be the space of mappings

v : S 3 i→ vi ∈ R,
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with the finite norm
‖v‖B(S) := sup{|vi| : i ∈ S}.

Remark 1.
(
B(S), ‖ · ‖B(S)

)
is a Banach space.

In the case of finite systems we have B(S) = Rr and in case of an infinite
countable S there is B(S) = l∞.

Denote by CBS(Ω) the space of mappings

w : Ω 3 (t, x) →
(
w(t, x) : S 3 i→ wi(t, x) ∈ R

)
∈ B(S),

where the functions wi are continuous and bounded in Ω with the finite norm

‖w‖0 := sup{|wi(t, x)| : (t, x) ∈ Ω, i ∈ S}.

Remark 2.
(
CBS(Ω), ‖ · ‖0

)
is a Banach space.

A function u is said to be a classical (or regular) solution of the system (1)
in Ω if u ∈ C(Ω), ∂u

∂t and ∂2u
∂xj∂xk

(j, k = 1, . . . ,m) exist and are continuous in
Ω, and u satisfies (1) in Ω.

For system (1) we consider the Cauchy problem:
Find a classical solution u of system (1) in Ω fulfilling the initial condition

(2) u(0, x) = ϕ(x) for x ∈ Rm.
Now to prove the existence and uniqueness of the solution to this problem,

we shall apply the Banach fixed point theorem (see [7], [10]). Considering
mainly Banach spaces of continuous and bounded functions, we give some nat-
ural sufficient conditions for the existence and uniqueness.
We notice that finite systems of differential-functional equations with the Hale-
type functional was studied by H.Leszczyński [9]. Infinite systems of parabolic
differential-functional equations with the Fourier first initial-boundary condi-
tion have been studied by S.Brzychczy [2]–[5].

2. Notations, definitions and assumptions. A fundamental solution
Γi(t, x; τ, ξ) of the equation F i[ui] = 0 in Ω is a function defined for all (t, x) ∈
Ω, and (τ, ξ) ∈ Ω, where t > τ , which satisfies the following conditions (see [7,
p. 3]):

(i) for any fixed (τ, ξ) ∈ Ω it satisfies, as a function (t, x) ∈ Ω for t > τ, the
equation F i[ui] = 0,

(ii) for any continuous function h = h(x) in x ∈ Rm there is

lim
t↘τ

∫
Rm

Γi(t, x; τ, ξ)h(ξ)dξ = h(x).
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We assume that:
(Hα) the coefficients aijk(t, x) (i ∈ S, j, k = 1, . . . ,m), aijk(t, x) = aikj(t, x)

satisfy the following Hölder continuous condition with exponent α (0 <
α ≤ 1) in Ω :

∃ H > 0 ∀ i ∈ S ∀ j, k = 1, . . . ,m ∀ (t, x) ∈ Ω ∀ (t′, x′) ∈ Ω :

|aijk(t, x)− aijk(t
′, x′)| ≤ H(‖x− x′‖α + |t− t′|

α
2 )

We also assume that the operators F i (i ∈ S) are uniformly parabolic in
Ω (the operators Ai are uniformly elliptic in Ω), i.e.

∃ µ1, µ2 > 0 ∀ ξ = (ξ1, . . . , ξm) ∈ Rm ∀ (t, x) ∈ Ω ∀ i ∈ S :

µ1

m∑
j=1

ξ2j ≥
m∑

j,k=1

aijk(t, x)ξjξk ≥ µ2

m∑
j=1

ξ2j

and the functions

f i : Ω× CBS(Ω) 3 (t, x, s) → f i(t, x, s) ∈ R, i ∈ S,
are continuous and satisfy:

(L) the Lipschitz condition in s uniformly with respect to (t, x), i.e.

∀ i ∈ S ∃ L > 0 ∀ (t, x) ∈ Ω ∀s, s̃ ∈ CBS(Ω) :

|f i(t, x, s)− f i(t, x, s̃)| ≤ L‖s− s̃‖0.

(V) the Volterra condition, i.e. for arbitrary (t, x) ∈ Ω and arbitrary η, η̃ ∈
CBS(Ω) such that ηj(t̄, x) = η̃j(t̄, x), j ∈ S for 0 ≤ t̄ ≤ t is f i(t, x, η) =
f i(t, x, η̃) (i ∈ S).

Let η ∈ CBS(Ω). We define the nonlinear Nemytskǐı operator
F = (F1,F2, ...)

F : η → F[η],
setting

Fi[η](t, x) := f i(t, x, η), i ∈ S.
Using Nemytskǐı operator we can rewrite the Cauchy problem (1), (2) in

the form

(3)
{
F i[ui](t, x) = Fi[u](t, x), (t, x) ∈ Ω, i ∈ S,
u(0, x) = ϕ(x), x ∈ Rm.

Lemma 1. If the continuous function f = (f1, f2, ...) generating the Ne-
mytskǐı operator F satisfies the Lipschitz condition (L) and

(B) ∃ M0 > 0 ∀ i ∈ S ∀ (t, x) ∈ Ω |f i(t, x, 0)| ≤M0

then
F : CBS(Ω) → CBS(Ω).
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Proof. For any z ∈ CBS(Ω), there is

|Fi[z](t, x)| ≤ |Fi[z](t, x)− Fi[0](t, x)|+ |Fi[0](t, x)| ≤ L‖z‖0 +M0.

Lemma 2. (A.Friedman [7, Theorem 10, p. 23] or O.A.Ladyzhenskaya,
V.A.Solonnikov, N.N.Uraltseva [8, p. 405])
If the operators F i (i ∈ S) are uniformly parabolic in Ω and the coefficients
aijk(t, x) (i ∈ S, j, k = 1, . . . ,m) satisfy the condition (Hα) and are bounded
in Ω, then there exists a fundamental solution Γi(t, x; τ, ξ) of the equation

F i[ui](t, x) = 0.

Using fundamental solutions Γi(t, x; τ, ξ) (i ∈ S) for the equation
F i[ui](t, x) = 0, we consider the following infinite system of nonlinear inte-
gral equations

(4) ui(t, x) =
∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

dτ

∫
Rm

Γi(t, x; τ, ξ) Fi[u](τ, ξ)dξ ,

(i ∈ S).

We define a C-solution of differential problem (1), (2) in Ω as a function
from the space CBS(Ω) which satisfies the system of integral equations (4)
in Ω.

In this sense the system of integral equations (4) is equivalent to differential
problem (1), (2) in Ω.

3. Theorem on the existence and uniqueness.

Theorem 1. Let all the above assumptions hold, f i (i ∈ S) satisfy the
(B)-condition and ϕ ∈ CBS(Rm). Then there exists a C-solution u of problem
(1), (2) in Ω.

Proof. For arbitrary function z ∈ CBS(Ω) we define a mapping T setting

u = T[z],

where

(5) ui(t, x) =
∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

dτ

∫
Rm

Γi(t, x; τ, ξ)Fi[z](τ, ξ)dξ ,

(i ∈ S).

Owing to Lemma 1 it is easily seen that the mapping T maps the space
CBS(Ω) into itself.
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Now, we show that this mapping T is a contraction. To this end in the
space CBS(Ω) we introduce the following Bielecki’s norm (see A.Bielecki [1]
or J.Dugundji, A.Granas [6, p. 25])

‖w‖0,ψ := sup

{
|wi(t, x)|
ψ(t)

: (t, x) ∈ Ω, i ∈ S

}
,

where

ψ(t) = exp
{
Lt

θ

}
, 0 < θ < 1

and we remark that the norms ‖ · ‖0 and ‖ · ‖0,ψ are equivalent in the space
CBS(Ω).

Let z, z ∈ CBS(Ω) and u = T[z], u = T[z]. Owing to the definition of
the mapping T and condition (L), there is

|ui(t, x)− ui(t, x)| =

=

∣∣∣∣∣
∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

dτ

∫
Rm

Γi(t, x; τ, ξ)Fi[z](τ, ξ)dξ−

−
∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ −
t∫

0

dτ

∫
Rm

Γi(t, x; τ, ξ)Fi[z](τ, ξ)dξ

∣∣∣∣∣ ≤

≤
t∫

0

dτ

∫
Rm

Γi(t, x; τ, ξ) |Fi[z](τ, ξ)− Fi[z](τ, ξ)| dξ =

=

t∫
0

dτ

∫
Rm

Γi(t, x; τ, ξ) |f i(τ, ξ, z)− f i(τ, ξ, z)| dξ ≤

≤
t∫

0

dτ

∫
Rm

Γi(t, x; τ, ξ) L ‖z − z‖0 dξ =

=

t∫
0

dτ

∫
Rm

Γi(t, x; τ, ξ) L
‖z − z‖0

ψ(τ)
ψ(τ) dξ ≤

≤ ‖z − z‖0,ψ

t∫
0

L ψ(τ) dτ = ‖z − z‖0,ψ

t∫
0

L exp
{
Lτ

θ

}
dτ ≤

≤ θ‖z − z‖0,ψ ψ(t).
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Finally
‖u− u‖0,ψ ≤ θ ‖z − z‖0,ψ

which means that operator T is a contraction.
Therefore, from the Banach contraction principle it follows that there exists

the unique fixed point u ∈ CBS(Ω) of the mapping T. This means that the
infinite system of integral equations (4) has the unique solution u ∈ CBS(Ω),
e.i. there exists the C-solution of the problem (1), (2) in Ω.

Remark 3. The C-solution of the problem (1), (2) in Ω has continuous
first order derivatives in Ω.

Indeed if a function u is a C-solution of the problem (1), (2) in Ω, then u
is bounded in Ω and, by virtue of Lemma 1, F[u] is a bounded function too.
Therefore

∫
Rm

∂
∂xj

Γi(t, x; τ, ξ)Fi[u](τ, ξ)dξ (j = 1, . . . ,m, i ∈ S) are uniformly

convergent for all t, x, τ , where (t, x) ∈ Ω, τ < t.
Thus by differentiating (4) we obtain
∂

∂xj
ui(t, x) =

=
∂

∂xj

∫
Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +
∂

∂xj

t∫
0

dτ

∫
Rm

Γi(t, x; τ, ξ)Fi[u](τ, ξ)dξ =

=
∫
Rm

∂

∂xj
Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

dτ

∫
Rm

∂

∂xj
Γi(t, x; τ, ξ)Fi[u](τ, ξ)dξ

i ∈ S, j = 1, . . . ,m.

Now, under additional assumptions, we prove that a C-solution of the
problem (1), (2) in Ω is a classical solution of this problem in Ω.

Theorem 2. Apart from the assumption of Theorem 1, let:
(i) the derivatives Dxjf

i and Dsf
i( j = 1, . . . ,m, i ∈ S) of the functions

f i : Ω × CBS(Ω) 3 (t, x, s) → f i(t, x, s) ∈ R, (i ∈ S) exist and be
continuous in Ω× CBS(Ω),

(ii) ∀ j = 1, . . . ,m ∀ s ∈ CBS(Ω) ∃ N ≥ 0 ‖DxjF[s]‖0 ≤ N,

then the C-solution is a classical solution of the problem (1), (2) in Ω.

Proof. Let u be the C-solution of the problem (1), (2) in Ω, obtained in
Theorem 1. It is easy to see that u satisfies the initial condition.

For x ∈ Rm, t > 0 there exist ∂Γi

∂t ,
∂Γi

∂xj
, ∂2Γi

∂xj∂xk
, ( i ∈ S, j, k = 1, . . . ,m);

furthermore, for all i ∈ S, j = 1, . . . ,m, Γi(t, x; τ, ξ) ∂
∂ξj

Fi[u](τ, ξ) and
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∂
∂xk

Γi(t, x; τ, ξ) ∂
∂ξj

Fi[u](τ, ξ) are continuous for all (t, x, τ, ξ), where (t, x) ∈ Ω,

τ < t, ξ < x, as well as the integrals
∫
Rm

Γi(t, x; τ, ξ) ∂
∂ξj

Fi[u](τ, ξ)dξ and∫
Rm

∂
∂xk

Γi(t, x; τ, ξ) ∂
∂ξj

Fi[u](τ, ξ)dξ are uniformly convergent for all t, x, τ , where

(t, x) ∈ Ω, τ < t; moreover, the following estimate ([7, p. 263] or [8]) holds:

| ∂
∂xj

Γi(t, x; τ, ξ)| ≤ C

(t− τ)
m+1

2

exp

{
−C ′ (x− ξ)2

t− τ

}
(i ∈ S, j = 1, . . . ,m)

where C, C ′ are positive constants.
Therefore, we get

∂2ui

∂xj∂xk
=

=
∂

∂xk

[∫
Rm

∂

∂xj
Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

dτ

∫
Rm

∂

∂xj
Γi(t, x; τ, ξ)Fi[u](τ, ξ)dξ

]
=

=
∫
Rm

∂2

∂xj∂xk
Γi(t, x; 0, ξ)ϕi(ξ)dξ +

∂

∂xk

t∫
0

dτ

∫
Rm

− ∂

∂ξj
Γi(t, x; τ, ξ)Fi[u](τ, ξ)dξ =

=
∫
Rm

∂2

∂xj∂xk
Γi(t, x; 0, ξ)ϕi(ξ)dξ +

∂

∂xk

t∫
0

dτ

∫
Rm

Γi(t, x; τ, ξ)
∂

∂ξj
Fi[u](τ, ξ)dξ =

=
∫
Rm

∂2

∂xj∂xk
Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

dτ

∫
Rm

∂

∂xk
Γi(t, x; τ, ξ)

∂

∂ξj
Fi[u](τ, ξ)dξ.

Hence the C-solution is a classical solution of the problem (1), (2) in Ω.
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10. Zeidler E., Nonlinear Functional Analysis and Applications, Vol.1, Springer-Verlag, New
York, 1986.

Received October 18, 2000
University of Mining and Metallurgy
Faculty of Applied Mathematics
Al. Mickiewicza 30
30-059 Kraków, Poland
e-mail : fronczyk@wms2.mat.agh.edu.pl

mailto:fronczyk@wms2.mat.agh.edu.pl

	1. Introduction.
	2.  Notations, definitions and assumptions.
	3.  Theorem on the existence and uniqueness
	References

