2002

EXPONENTIAL STABILITY OF SOLUTIONS OF THE CAUCHY PROBLEM FOR A DIFFUSION EQUATION WITH ABSORPTION WITH A DISTRIBUTION INITIAL CONDITION

by Joanna Orewczyk

Abstract. We establish the estimate of the L^1 norm of a solution of a diffusion equation with absorption with an initial condition given by a distribution with compact support.

Consider the Cauchy problem

(1)
$$\frac{\partial u}{\partial t} = \Delta u - V(x)u$$

(2)
$$u(t_0) = \Lambda$$

where $0 \leq V \in L^1_{loc}(\mathbb{R}^n)$, $\Lambda \in \mathcal{D}'(\mathbb{R}^n)$, $\sup \Lambda$ is compact. Denote $X = (0, \infty) \times \mathbb{R}^n$.

We call a function $u \in L^1(X)$ a solution of (1) iff (1) holds in the sense of distributions i. e. for all $\psi \in \mathcal{D}(X)$

$$\int_0^\infty \int_{\mathbb{R}^n} u(t,x) \Big(\frac{\partial \psi}{\partial t}(t,x) + \Delta \psi(t,x) - V(x)\psi(t,x) \Big) dx dt = 0.$$

We say that the solution of (1) satisfies the initial condition (2) if for all $\varphi \in \mathcal{D}(\mathbb{R}^n)$

$$\lim_{t \to t_0} \int_{\mathbb{R}^n} u(t, x) \varphi(x) dx = \Lambda(\varphi).$$

When Λ is a Dirac distribution, then a solution of $\{(1), (2)\}$ is called a fundamental solution of (1).

By $(T(t))_{t>0}$ we denote the Gaussian semigroup on $L^1(\mathbb{R}^n)$ given by

$$(T(t)f)(x) = (4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(y) e^{-\frac{|x-y|^2}{4t}} dy.$$

Note that (T(t)) is a holomorphic contraction semigroup. Δ is the generator of (T(t)) defined on its domain $D(\Delta) = \{f \in L^1 : \Delta f \in L^1\}$ meant in the sense of distributions.

For $0 \leq V \in L^1_{loc}(\mathbb{R}^n)$ we define an operator $\Delta - V$ as follows: let $D(A_{min}) = \mathcal{D}(\mathbb{R}^n)$ (the test functions on \mathbb{R}^n) and $A_{min}f = \Delta f - Vf$. Then A_{min} is closable in $L^1(\mathbb{R}^n)$ and we set $\Delta - V = \overline{A_{min}}$ in $L^p(\mathbb{R}^n)$. Then $\Delta - V$ generates a holomorphic semigroup $(S(t))_{t>0}$ on $L^1(\mathbb{R}^n)$.

We say that $G \subset \mathbb{R}^n$ contains arbitrary large balls if for any r > 0 there exists $x \in \mathbb{R}^n$ such that the ball $\mathbb{B}(x, r) := \{y \in \mathbb{R}^n : |x - y| < r\}$ is included in G. By \mathcal{G} we denote the set of all open subsets of \mathbb{R}^n which contain arbitrary large balls. In [1] W. Arendt and Ch. Batty proved the theorem on stability of a solution of equation (1).

THEOREM 1. Let
$$0 \le V \in (L^1 + L^\infty)(\mathbb{R}^n)$$
. If for each $G \in \mathcal{G}$
(3)
$$\int_G V(x)dx = \infty$$

then

$$\inf\{\omega \in \mathbb{R} : \sup_{t \ge 0} e^{-\omega t} ||S(t)|| < \infty\} < 0.$$

So now, we can get an easy

COROLLARY 2. Let $0 \leq V \in (L^1 + L^\infty)(\mathbb{R}^n)$. If for each $G \in \mathcal{G}$ (3) holds, then there exist constants $M, \omega > 0$ such that for all $f \in L^1(\mathbb{R}^n)$ and for any initial time $t_0 \in \mathbb{R}$ a distribution solution u(t, x) of the Cauchy problem $\{(1), u(t_0, x) = f(x)\}$ satisfies

$$||u(t,\cdot)||_{L^1(\mathbb{R}^n)} \le M e^{-\omega(t-t_0)} ||f||_{L^1(\mathbb{R}^n)}.$$

PROOF. For $t \ge t_0$ define a holomorphic semigroup $S_0(t) = S(t-t_0)$. Then for any $f \in L^1(\mathbb{R}^n)$ the function $u(t, \cdot) = S_0(t)f$ is a solution in the sense of distributions of the problem $\{(1), u(t_0, \cdot) = f\}$, so by Theorem 1 there exists $\omega > 0$ such that

$$M := \sup_{t \ge 0} e^{\omega t} ||S(t)|| < \infty.$$

Consequently,

$$sup_{t \ge t_0} e^{\omega(t-t_0)} ||S_0(t)|| = sup_{t \ge t_0} e^{\omega(t-t_0)} ||S(t-t_0)|| = M$$

 \mathbf{SO}

$$||u(t,\cdot)||_{L^1(\mathbb{R}^n)} = ||S_0(t)f||_{L^1(\mathbb{R}^n)} \le ||S_0(t)|| \cdot ||f||_{L^1(\mathbb{R}^n)}$$

which completes the proof.

Our main result is

46

THEOREM 3. Let $0 \leq V \in (L^1 + L^\infty)(\mathbb{R}^n)$. Let $\Lambda \in \mathcal{D}'(\mathbb{R}^n)$, supp Λ is compact. Let $t_0 \in \mathbb{R}$. Let u be a solution of the Cauchy problem $\{(1), (2)\}$. If for each $G \in \mathcal{G}$ (3) holds, then there exist constants $M, \omega > 0$ such that

$$||u(t,\cdot)||_{L^1(\mathbb{R}^n)} \le M e^{-\omega(t-t_0)} |\Lambda(1)|$$

PROOF. Consider a function $h \in \mathcal{D}(\mathbb{R}^n)$ such that $h \ge 0$, $||h||_{L^1(\mathbb{R}^n)} = 1$ and define

$$h_{\nu}(x) := \nu^n h(\nu x)$$

Then $h_{\nu} \star \Lambda \in \mathcal{D}(\mathbb{R}^n)$ with $\operatorname{supp}(h_{\nu} \star \Lambda) \subset \operatorname{supp} h_{\nu} + \operatorname{supp} \Lambda$. Moreover $[h_{\nu} \star \Lambda] \to \Lambda$, where by [f] we denote a distribution generated by a function f.

Consider a sequence of the Cauchy problems $\{(1), u(t_0) = h_{\nu} \star \Lambda \}$. Denote by u_{ν} solutions in the sense of distributions of these problems. Thanks to Corollary 2 we have

$$||u_{\nu}(t,\cdot)||_{L^{1}(\mathbb{R}^{n})} \leq M e^{-\omega(t-t_{0})} ||h_{\nu} \star \Lambda||_{L^{1}(\mathbb{R}^{n})}$$

Since Λ has a compact support, it can be uniquely extended to a continuous linear functional on $\mathcal{C}^{\infty}(\mathbb{R}^n)$. Moreover, let $\Lambda^+ = \sup\{\Lambda, 0\}, \Lambda^- = \sup\{-\Lambda, 0\}$, then

$$\begin{aligned} ||h_{\nu} \star \Lambda^{+}||_{L^{1}(\mathbb{R}^{n})} &= \int_{\mathbb{R}^{n}} 1 \cdot (h_{\nu} \star \Lambda^{+})(x) dx = \left(1 \star (h_{\nu} \star \Lambda^{+})\right)(0) = \\ &= \left((1 \star (h_{\nu}) \star \Lambda^{+}\right)(0) = \Lambda^{+}(1 \star \check{h_{\nu}}) = \Lambda^{+}(1) \end{aligned}$$

where $\breve{v}(x) = v(-x)$, and similarly

$$||h_{\nu} \star \Lambda^{-}||_{L^{1}(\mathbb{R}^{n})} = \Lambda^{-}(1)$$

 \mathbf{SO}

$$||h_{\nu} \star \Lambda||_{L^1(\mathbb{R}^n)} = |\Lambda(1)|.$$

Hence

(4)
$$||u_{\nu}(t,\cdot)||_{L^{1}(\mathbb{R}^{n})} \leq Me^{-\omega(t-t_{0})}|\Lambda(1)|.$$

Moreover, we have

$$||u_{\nu}||_{L^{1}(X)} \leq \frac{M}{\omega} |\Lambda(1)|,$$

so the sequence u_{ν} is bounded in X, and so is $-Vu_{\nu}$.

Let $0 < \tau < \infty$, denote $Q_{\tau} := (0, \tau) \times \mathbb{R}^n$. Now, we need the following lemma which can be found in [2].

LEMMA 4. Consider the mapping K defined by

$$K: L^{1}(\mathbb{R}^{n}) \times L^{1}(Q_{\tau}) \ni (u_{0}, f) \mapsto u = T(t)u_{0} + \int_{0}^{t} T(t-\tau)f(\tau)d\tau \in L^{1}(Q_{\tau}),$$

i. e. u is the solution of the Cauchy problem

$$\partial u$$

$$\frac{\partial u}{\partial t} - \Delta u = f$$
$$u(0, x) = u_0(x)$$

Then K is a compact operator.

Obviously,

$$u_{\nu} = K(l_{\nu}, -Vu_{\nu}),$$

so by Lemma 4 there exist a subsequence still denoted by u_{ν} and a function $u_{\tau} \in L^1(Q_{\tau})$ such that $u_{\nu} \to u_{\tau}$ in $L^1(Q_{\tau})$. Let $u = \bigcup_{\tau>0} u_{\tau}$. Since u_{ν} are the solutions of (1), for any $\psi \in \mathcal{D}(X)$

$$\left| \int_{0}^{\infty} \int_{\mathbb{R}^{n}} u_{\nu} \Big(\frac{\partial \psi}{\partial t} + \Delta \psi - V\psi \Big) dx dt - \int_{0}^{\infty} \int_{\mathbb{R}^{n}} u \Big(\frac{\partial \psi}{\partial t} + \Delta \psi - V\psi \Big) dx dt \right| \leq \left| \int_{0}^{\infty} \int_{\mathbb{R}^{n}} |u_{\nu} - u| \Big(\frac{\partial \psi}{\partial t} + \Delta \psi - V\psi \Big) dx dt \right| \leq C \int_{0}^{\infty} \int_{\mathbb{R}^{n}} |u_{\nu} - u| dx dt \to 0,$$

so u is a solution of (1) in the sense of distributions.

Moreover, by Riesz-Fischer theorem there exists a subsequence still denoted by u_{ν} which converges pointwise almost everywhere to u so

$$||u_{\nu}(t,\cdot)||_{L^{1}(\mathbb{R}^{n})} \rightarrow ||u(t,\cdot)||_{L^{1}(\mathbb{R}^{n})}.$$

Let $\varphi \in \mathcal{D}(\mathbb{R}^n)$. Denote $\Sigma = \sup\{|\varphi(x)| : x \in \mathbb{R}^n\}$. Let $\varepsilon > 0$. Then there exists N such that $|[h_N \star \Lambda](\varphi) - \varphi(0)| \leq \frac{\varepsilon}{3}$ and

$$\int_{\mathbb{R}^n} |u_N(t,x) - u(t,x)| dx \le \frac{\varepsilon}{3\Sigma}.$$

For N there exists $\delta > 0$ such that if $0 < t - t_0 < \delta$

$$\int_{\mathbb{R}^n} |u_N(t,x) - (h_N \star \Lambda)(x)| dx \le \frac{\varepsilon}{3\Sigma}.$$

Then

$$\left| \int_{\mathbb{R}^n} u(t,x)\varphi(x)dx - \Lambda(\varphi) \right| \le \int_{\mathbb{R}^n} |u(t,x) - u_N(t,x)| \cdot |\varphi(x)|dx + \int_{\mathbb{R}^n} |u_N(t,x) - (h_N \star \Lambda)(x)| \cdot |\varphi(x)|dx + |[h_N \star \Lambda](\varphi) - \Lambda(\varphi)| \le \varepsilon,$$

so u is the solution of the Cauchy problem for $\{(1), (2)\}$, which completes the proof.

References

- 1. Arendt W., Batty Ch.J.K., *Exponential Stability of a Diffusion Equation with Absorption*, Differential and Integral Equations, Vol. 6, No. 5, September 1993, 1009–1024.
- 2. Baras P., Compacite de l'operateur $f \mapsto u$ solution d'une equation non lineaire $(du/dt) + Au \ni f$, C. R. Acad. Sc. Paris, ser. A, Vol. **286** (1978), 1113–1116.

Received March 25, 2002

Jagiellonian University Institute of Mathematics Reymonta 4 30-059 Kraków, Poland *e-mail*: orewczyk@im.uj.edu.pl