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ON THE EXISTENCE OF SOLUTIONS OF NONLINEAR

INFINITE SYSTEMS OF PARABOLIC

DIFFERENTIAL-FUNCTIONAL EQUATIONS

by Stanis law Brzychczy

Abstract. We consider the Fourier first initial-boundary value problem
for an infinite system of nonlinear differential-functional equations. The
right-hand sides of the system are functionals of unknown functions of
the Volterra type and this system being thus essentially coupled by this
functional argument. The existence of the solutions to this problem is
proved by the well-known Schauder fixed point theorem.

1. Introduction. We consider an infinite system of weakly coupled non-
linear differential-functional equations of parabolic type of the form

(1) F i[zi](t, x) = f i(t, x, z), i ∈ S,

where

F i :=
∂

∂t
−Ai, Ai :=

m∑
j,k=1

ai
jk(t, x)

∂2

∂xj∂xk
,

x = (x1, . . . , xm), (t, x) ∈ (0, T ] × G := D, T < +∞, G ⊂ Rm, G is an open
and bounded domain with the boundary ∂G ∈ C2+α ∩ C2−0(0 < α ≤ 1). S is
an arbitrary set of indices (finite or infinite) and z stands for the mapping

z : S ×D 3 (i, t, x) → zi(t, x) ∈ R,

composed of unknown functions zi.
Let B(S) be the Banach space of mappings

v : S 3 i → vi ∈ R,
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with the finite norm
‖v‖B(S) := sup{|vi| : i ∈ S}.

Denote by CS(D) the Banach space of mappings

w : D 3 (t, x) →
(
w(t, x) : S 3 i → wi(t, x) ∈ R

)
∈ B(S),

where the functions wi are continuous in D, with the finite norm

‖w‖0 := sup{|wi(t, x)| : (t, x) ∈ D, i ∈ S}.

A mapping z ∈ CS(D) will be called regular in D if the functions zi (i ∈ S)
have continuous derivatives ∂zi

∂t , ∂2zi

∂xj∂xk
in D for j, k = 1, . . . ,m.

The case of finite systems (B(S) = Rr) was treated in [2]. The case of
infinite countable systems have been discussed in [3]–[6]and for an infinite
countable S there is B(S) = l∞. In this paper S is an arbitrary infinite set of
indices.

For system (1), we consider the following Fourier first initial-boundary
value problem:

Find the regular solution (or briefly: solution) z of system (1) in D fulfilling
the initial-boundary condition

(2) z(t, x) = g(t, x) for (t, x) ∈ Γ,

where D0 = {(t, x) : t = 0, x ∈ G}, σ = (0, T ]×∂G, Γ = D0∪σ and D = D∪Γ.
For τ, 0 < τ ≤ T , we denote Dτ = (0, τ ]×G, στ = (0, τ ]×∂G, Γτ = D0∪στ ,

D
τ = Dτ ∪ Γτ . Obviously DT = D.

In papers [3]–[5],have been used to solve the above problem monotone iter-
ative methods. However, applying the monotone methods takes assuming the
monotonicity of the right-hand side functions f i with respect to the functional
argument and the existence of a pair of a lower and an upper function for the
considered problem (1),(2) in D (cp.[2]). These are not typical assumptions
in existence and uniqueness theorems. In [6], the Banach fixed point theorem
(contraction principle) has been used to prove the existence and uniqueness of
the solutions to this problem. Now to prove the existence of the solution to
this problem, we shall apply the Schauder fixed point theorem [8],[10]. Con-
sidering mainly Banach spaces of continuous and bounded functions, we give
some natural sufficient conditions for the existence. We remark that the a pri-
ori estimates which appear while applying the Banach and the Schauder fixed
point theorems are parallel to the above-mentioned assumptions in the theory
of monotone iterative techniques. We notice that the case of the finite systems
was studied by H. Ugowski [9].
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2. Notations, assumptions and auxiliary lemmas. The Hölder space
C l+α(D) := C(l+α)/2,l+α(D), (l = 0, 1, 2, . . . ; 0 < α ≤ 1) is the space of con-
tinuous functions h in D whose all derivatives ∂r+sh

∂tr∂xs := Dr
t D

s
xh(t, x) (0 ≤

2r + s ≤ l) exist and are Hölder continuous with exponent α (0 < α ≤ 1) in
D, with the finite norm

|h|l+α := sup
P∈D

0≤2r+s≤l

|Dr
t D

s
xh(P )|+ sup

P,P ′∈D
0≤2r+s≤l

P 6=P ′

|Dr
t D

s
xh(P )−Dr

t D
s
xh(P ′)|

[d(P, P ′)]α
,

where d(P, P ′) is the parabolic distance of points P = (t, x), P ′ = (t′, x′) ∈
Rm+1

d(P, P ′) = (|t− t′|+ |x− x′|2)
1
2 ,

and |x| = (
m∑

j=1
x2

j )
1
2 .

By C l+α
S (D) we denote the Banach space of mappings z such that zi ∈

C l+α(D) for all i ∈ S with the finite norm

‖z‖l+α := sup
{
|zi|l+α : i ∈ S

}
.

The boundary norm ‖ · ‖Γ
l+α of a function φ ∈ C l+α

S (Γ) is defined as

‖φ‖Γ
l+α := inf

Φ
‖Φ‖l+α ,

where the greatest lower bound is taken over the set of all extensions Φ of φ
onto D.

Finally, by | · |Dτ

l+α and ‖ · ‖Dτ

l+α we denote the suitable norms in the spaces
C l+α(Dτ ) and C l+α

S (Dτ ), respectively.
We denote by Ck−0(D) (k = 1, 2) the space of functions h for which the

following norms are finite (see [7, p.190])

|h|1−0 := |h|0 + sup
P,P ′∈D
P 6=P ′

|h(t, x)− h(t′, x′)|
|t− t′|+ |x− x′|

, |h|2−0 := |h|1−0 +
m∑

j=1

|Dxjh|1−0.

We assume that the operators F i (i ∈ S) are uniformly parabolic in D (the
operators Ai are uniformly elliptic in D), i.e., there exists a constant µ > 0
such that

m∑
j,k=1

ai
jk(t, x)ξjξk ≥ µ

m∑
j=1

ξ2
j

for all ξ = (ξ1, . . . , ξm) ∈ Rm, (t, x) ∈ D, i ∈ S.
We assume that the functions

f i : D × CS(D) 3 (t, x, s) → f i(t, x, s) ∈ R, i ∈ S,
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are continuous and satisfy the following assumptions:

(Hf ) they are uniformly Hölder continuous (with exponent α) with respect
to t and x in D, i.e., f(·, ·, s) ∈ C0+α

S (D);
(V ) they satisfy the Volterra condition: for arbitrary (t, x) ∈ D and for

arbitrary s, s̃ ∈ CS(D) such that sj(t, x) = s̃j(t, x) for 0 ≤ t ≤ t, j ∈ S,
there is f i(t, x, s) = f i(t, x, s̃) (i ∈ S).

(Ha) The coefficients ai
jk = ai

jk(t, x), ai
jk = ai

kj (j, k = 1, . . . ,m, i ∈ S) in
equations (1) are uniformly Hölder continuous (with exponent α) in D ,
i.e., ai

jk = ai
jk(·, ·) ∈ C0+α(D) and ai

jk belong to C1−0(σ).

From this there follows the existence of constants K1,K2 > 0 such that
m∑

j,k=1

|ai
jk|0+α ≤ K1,

m∑
j,k=1

|ai
jk|Γ1−0 ≤ K2, i ∈ S.

(Hg) We assume that g ∈ C2+α
S (Γ) ∩ C1+β

S (Γ), where 0 < α < β < 1.

Remark 1. We remark that if g ∈ C2+α
S (Γ) and the boundary ∂G ∈ C2+α

then, without loss of generality, we can consider the homogeneous initial-
boundary condition

(3) z(t, x) = 0 for (t, x) ∈ Γ.

Accordingly, in what follows we confine ourselves to considering the homoge-
neous problem (1), (3) in D only.

From the theorems on the existence and uniqueness of solutions of the
Fourier first initial-boundary value problem for linear parabolic equations (see
A.Friedman [7], Theorems 6 and 7, p.65 and Theorem 4, pp.191–201) we di-
rectly get the following lemmas.

Lemma 1. Let us consider the linear initial-boundary value problem

(4)
{
F i[γi](t, x) = δi(t, x) in D, i ∈ S,
γ(t, x) = g(t, x) on Γ.

If δ ∈ C0+α
S (D), the assumptions (Ha), (Hg) hold and F i[gi](t, x) = δi(t, x)

on ∂G (i ∈ S) then problem (4) has the unique solution γ and γ ∈ C2+α
S (D).

Moreover, the following Schauder type (2 + α) – estimate holds

(5) ‖γ‖2+α ≤ c
(
‖δ‖0+α + ‖g‖Γ

2+α

)
,

where c > 0 is a constant depending only on the constants µ,K1, α and the
geometry of the domain D.
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Lemma 2. We consider the linear homogeneous initial-boundary value prob-
lem

(5)
{
F i[γi](t, x) = δi(t, x) in D, i ∈ S,
γ(t, x) = 0 on Γ.

Assume that δ ∈ CS(D), ∂G ∈ C2+α ∩ C2−0 and (Ha) hold. Let δ(t, x)
vanish on ∂G and let γ be a solution of problem (5). Then, for any β, 0 <
β < 1, there exists a constant K > 0, depending only on β, µ, K1,K2 and the
geometry of the domain D, such that the following a priori (1 + β) – estimate
holds

(6) ‖γ‖1+β ≤ K‖δ‖0.

Moreover, there exists a constant K̄ > 0 depending on the same parameters
as K such that

(7) ‖γ‖Dτ

1+β ≤ K̄τ
1−β

2 ‖δ‖Dτ

0

for 0 < τ ≤ T .

Let η = η(t, x) ∈ CS(D). We define the nonlinear Nemytskǐı operator F

F : η → F[η], F = {Fi : i ∈ S},

setting
Fi[η](t, x) := f i(t, x, η), i ∈ S.

We assume that the operator F has the following properties, which hold
for any τ, 0 < τ ≤ T :

(I) the operator F maps the space C0+α
S (Dτ ) into C0+α

S (Dτ ), and for each
function u ∈ C1+α

S (Dτ ) satisfying ‖u‖Dτ

1+α ≤ M the following estimate
holds

‖F[u]‖Dτ

0 ≤ B(1 + ‖u‖Dτ

1 ),

for some B > 0 independent of u;
(II) the operator F is continuous in the space C1+α

S (Dτ ) in the following
sense: if uν , u ∈ C1+α

S (Dτ ) and

lim
ν→∞

‖uν − u‖Dτ

1+α = 0 then lim
ν→∞

‖F[uν ]− F[u]‖Dτ

0 = 0.

3. Theorem on the existence.

Theorem. Let all the assumptions hold and τ∗ ∈ (0, T ] be a sufficiently
small number. Then there exists a solution of the problem (1), (3) in the
domain D

τ , where 0 < τ < τ∗ ≤ T , and z ∈ C2+α
S (Dτ ) ∩ C1+β

S (Dτ ), 0 < α <
β < 1.
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Proof of Theorem. Denote

Aτ,α
M = {u : u ∈ C1+α

S (Dτ ), ‖u‖Dτ

1+α ≤ M, u(t, x) = 0 on Γτ ,

0 < τ ≤ T, 0 < α < 1}

where M > 0 is a constant.
The set Aτ,α

M is a closed convex set of C1+α
S (Dτ ).

For u ∈ Aτ,α
M we define a mapping T setting

z = T[u],

where z is a regular solution of the problem

(8)
{
F i[zi](t, x) = Fi[u](t, x) in Dτ , i ∈ S,
z(t, x) = 0 on Γτ .

From property (I) and Lemma 1, it follows that, for u ∈ Aτ,α
M , problem (8)

has the unique solution z ∈ C2+α
S (Dτ ).

Moreover, by Lemma 2 and (7), for any positive θ, 0 < θ < 1, there exists
a constant K̄ = K̄(θ) that

‖z‖Dτ

1+θ ≤ K̄τ
1−θ
2 ‖F[u]‖Dτ

0

for 0 < τ ≤ T and by property (I), we obtain

‖z‖Dτ

1+θ ≤ K̄τ
1−θ
2 B(1 + ‖u‖Dτ

1+θ).

If we assume that ‖u‖Dτ

1+α ≤ M and

(9) 0 < τ ≤ min{
[ M

K̄B(1 + M)

] 2
α−1

, T} := τ∗

then for θ = α we get finally

‖z‖Dτ

1+α ≤ M.

Therefore, T maps the set Aτ,α
M into itself, i.e., T(Aτ,α

M ) := {T[u] : u ∈
Aτ,α

M } ⊂ Aτ,α
M for τ, 0 < τ ≤ τ∗.

Let θ = β and 0 < α < β < 1. Then from Lemma 2 it follows that the
set T(Aτ,α

M ) is a bounded subset of the space C1+β
S (Dτ ), therefore (see [1],

Theorem 1.31, p.11 or [7], Theorem 1, p.188) this set is a precompact subset
of C1+α

S (Dτ ).
To prove that the mapping T is continuous we notice that, if uν , u ∈ Aτ,α

M
and zν = T[uν ], z = T[u] then, by the definition of T, we have{

F i[zi
ν − zi](t, x) = Fi[uν ](t, x)− Fi[u](t, x) in Dτ , i ∈ S,

zν(t, x)− z(t, x) = 0 on Γτ .
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Using estimate (7) to this problem we obtain

‖T[uν ]−T[u]‖Dτ

1+β = ‖zν − z‖Dτ

1+β ≤ K̄τ
1−β

2 ‖F[uν ]− F[u]‖Dτ

0 .

If we assume that
lim

ν→∞
‖uν − u‖Dτ

1+β = 0,

then, by property (II), we have

lim
ν→∞

‖F[uν ]− F[u]‖Dτ

0 = 0.

Finally by (6)
lim

ν→∞
‖T[uν ]−T[u]‖Dτ

1+β = 0,

i.e., the mapping T is continuous.
Thus, finally, by the Schauder fixed point theorem ([8] or [10], Theorem

2.A, p.56) we conclude that the mapping T has a fixed point z ∈ Aτ,β
M . There-

fore z is a solution of problem (1), (3) and it belongs to C1+β
S (Dτ ). By Lemma

1 it follows that z also belongs to C2+α
S (Dτ ), i.e., z ∈ C2+α

S (Dτ ) ∩ C1+β
S (Dτ ),

0 < α < β < 1 for 0 < τ ≤ τ∗, where τ∗ defined by (9) is a sufficiently small
number.

Remark 2. If we suppose additionally that (see [7], p.204):
(I’) there exists a positive constant M0 such that, for every M > M0, we

have
K‖F[u]‖0 ≤ M in D

for all functions u ∈ C1+α
S (D) satisfying ‖u‖D

1+α ≤ M , where K is the
constant appearing in Lemma 2;

then problem (1), (3) has a solution in the whole domain D.
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