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ON INVARIANTS OF CONTINUOUS SUBGROUPS OF THE

GENERALIZED POINCARÉ GROUP P(1,4)

by V. Fedorchuk

Abstract. For all continuous subgroups of the group P (1, 4) the invariants
in the five-dimensional Minkowski space M(1, 4) have been constructed.
The obtained invariants are one-, two-, three and four-dimensional.
Based on the obtained invariants, the nonsingular manifolds in the spaces
M(1, 3)×R(u) and M(1, 4)×R(u), invariant under nonconjugate subgroups
of the group P(1,4), have been described.
The invariant manifolds have been used for the symmetry reduction of some
important equations of theoretical physics in the spaces M(1, 4)×R(u) and
M(1, 3)×R(u).

Introduction. The knowledge of the nonconjugate subgroups of the local
Lie groups of point transformations and construction of the invariants of these
subgroups in explicit form is important in solving numerous problems of math-
ematics. In particular, in mathematical physics the subgroup structure of the
invariance groups of partial differential equations (PDEs) and the invariants
of these subgroups allow us to solve many problems. Let me mention some of
them.
1. The symmetry reduction of PDEs to differential equations with fewer inde-
pendent variables (see, for example, [1, 2, 3]).
2. The construction of systems of coordinates in which the linear PDEs which
are invariant under given groups admit partial or full separation of variables
[4, 5].

The development of theoretical and mathematical physics has required vari-
ous extensions of four-dimensional Minkowski space and, correspondingly, var-
ious extensions of the Poincaré group P (1, 3). One extension of the group
P (1, 3) is the generalized Poincaré group P (1, 4). The group P (1, 4) is a group
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of rotations and translations of five-dimensional Minkowski space M(1, 4). This
group has many applications in theoretical and mathematical physics [6, 7].

The purpose of the present paper is to give a survey of results obtained in
[8]–[17] as well as of some new results.

1. The subgroup structure of the group P (1, 4). The Lie algebra of
the group P (1, 4) is given by the 15 basis elements Mµν = −Mνµ (µ, ν =
0, 1, 2, 3, 4) and P ′

µ (µ = 0, 1, 2, 3, 4), satisfying the commutation relations[
P ′

µ, P
′
ν

]
= 0,

[
M ′

µν , P
′
σ

]
= gµσP

′
ν − gνσP

′
µ,[

M ′
µν ,M

′
ρσ

]
= gµρM

′
νσ + gνσM

′
µρ − gνρM

′
µσ − gµσM

′
νρ,

where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ 6= ν. Here, and in
what follows, M ′

µν = iMµν .
For this Lie algebra, we choose the following representation in the space

M(1, 4):

P ′
0 =

∂

∂x0
, P ′

1 = − ∂

∂x1
, P ′

2 = − ∂

∂x2
, P ′

3 = − ∂

∂x3
,

P ′
4 = − ∂

∂x4
, M ′

µν = −
(
xµP

′
ν − xνP

′
µ

)
.

In the following we will use new basis elements

G = M ′
40, L1 = M ′

32, L2 = −M ′
31, L3 = M ′

21,

Pa = M ′
4a −M ′

a0, Ca = M ′
4a +M ′

a0, (a = 1, 2, 3),

X0 =
1
2

(
P ′

0 − P ′
4

)
, Xk = P ′

k (k = 1, 2, 3), X4 =
1
2

(
P ′

0 + P ′
4

)
.

In order to study the subgroup structure of the group P (1, 4) we used the
method proposed in [18]. Continuous subgroups of the group P (1, 4) have been
found in [8]–[10].

One of the nontrivial consequences of the description of subalgebras of the
Lie algebra of the group P (1, 4) is that the Lie algebra of the group P (1, 4)
contains, as subalgebras, the Lie algebra of the Poincaré group P (1, 3) and the
Lie algebra of the extended Galilei group G̃(1, 3) [7], i.e. it naturally unites the
Lie algebras of the symmetry groups of relativistic and nonrelativistic quantum
mechanics.
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2. The invariants of the continuous subgroups of the group P (1, 4).
In this paragraph we say something about the invariants of subgroups of the
group P (1, 4). For all continuous subgroups of the group P (1, 4), we have con-
structed the invariants in the five-dimensional Minkowski space. Some of these
invariants have been presented in [11, 12]. Among the invariants obtained,
there are one-, two-, three- and four-dimensional ones.

Proposition 1. In the space M(1, 4) the nonconjugate subgroups of the
group P (1, 4) have jointly 38 one-dimensional invariants.

Some examples

1. 〈G,L3, P1, P2, X3〉 : ω =
(
x2

4 + x2
2 + x2

1 − x2
0

)1/2 ;

2. 〈G+ a3X3, P1, P2, X1, X2, X4, (a3 6= 0)〉 : ω = ln(x0 + x4)−
x3

a3
;

3. 〈G+ aX3, L3, X0, X1, X2, (a 6= 0)〉 : ω = ln(x0 − x4) +
x3

a
;

4. 〈P1 + µ2X2 + µ3X3, P2 +X4 −X0, X1, X4, (µ2 > 0)〉 :

ω = µ3x2 − µ2x3 + µ3
(x0 + x4)2

2
;

Proposition 2. The nonconjugate subgroups of the group P (1, 4) have 111
two-dimensional invariants.

Some examples

1. 〈G,L1, L2, L3〉 : ω1 =
(
x2

1 + x2
2 + x2

3

)1/2
, ω2 =

(
x2

0 − x2
4

)1/2 ;

2. 〈L3 + dG,P3, X3, X4(d > 0)〉 : ω1 = arcsin
x2√
x2

1 + x2
2

− 1
d

ln(x0 + x4),

ω2 =
(
x2

1 + x2
2

)1/2 ;

3. 〈L3, P1, P2, X3〉 : ω1 = x0 + x4, ω2 = x2
2 + x2

1 − 2(x0 + x4)x0;

4. 〈P1 + γX3 +X4, P1 + γX3, P2 +X2 + δX3(γ > 0)〉 : ω1 = x0 + x4,

ω2 =
γx1

x0 + x4
+

δx2

x0 + x4 − 1
+ x3;

Proposition 3. The nonconjugate subgroups of the group P (1, 4) have 84
three-dimensional invariants.

Some examples

1. 〈L3 + eG,X3(e > 0)〉 : ω1 = arcsin
x2√
x2

1 + x2
2

− 1
e

arch
x0√
x2

0 − x2
4

,

ω2 =
(
x2

1 + x2
2

)1/2
, ω3 =

(
x2

0 − x2
4

)1/2 ;
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2. 〈L3 + cG− αX3, X4(c > 0, α 6= 0)〉 : ω1 =
(
x2

1 + x2
2

)1/2
,

ω2 =
x3

α
+ arcsin

x2√
x2

1 + x2
2

, ω3 =
c

α
x3 + ln(x0 + x4);

3. 〈P3 + L3 + α(X4 −X0), X4(α 6= 0)〉 : ω1 =
(
x2

1 + x2
2

)1/2
,

ω2 =
x0 + x4

α
− arcsin

x2√
x2

1 + x2
2

, ω3 = αx3 +
1
2
(x0 + x4)2;

4. 〈P1 +X3, P2 + γX2 + βX3(β, γ > 0)〉 : ω1 = x0 + x4,

ω2 =
x1

x0 + x4
+

βx2

x0 + x4 − γ
+ x3,

ω3 = x2
1 + x2

2 + x2
4 − x2

0 +
γ

(
x2

0 − x2
1 − x2

4

)
x0 + x4

;

Proposition 4. The nonconjugate subgroups of the group P (1, 4) have 28
four-dimensional invariants.

Some examples
1. 〈P3 + C3 + eL3 + s0X0(e, s0 6= 0)〉 : ω1 = (x2

1 + x2
2)

1/2,

ω2 =
2e
s0
x0 − arcsin

x1√
x2

1 + x2
2

, ω3 = x2
4 + x2

3 −
s0
2
x3,

ω4 = arcsin
x3 − s0/4√

(x3 − s0/4)2 + x2
4

− 4
s0
x0;

2. 〈P3 +X1〉 : ω1 = x2, ω2 = x0 + x4, ω3 = (x0 + x4)x1 + x3,

ω4 =
(
x2

0 − x2
3 − x2

4

)1/2 ;

3. 〈L3 +X0〉 : ω1 = x3, ω2 = x0 − x4, ω3 =
(
x2

1 + x2
2

)1/2
,

ω4 = x0 −
1
2

arcsin
x1√
x2

1 + x2
2

;

4. 〈P3 +X0 + hX1(h 6= 0)〉 : ω1 = x2, ω2 = x1 + h(x0 + x4),

ω3 =
1
2
(x0 + x4)2 − x3, ω4 =

1
3
(x0 + x4)3 − x3(x0 + x4) +

1
2
(x0 − x4);

These propositions have been proved with use of the group-analysis meth-
ods.

In the following we will consider the application of the subgroup structure
of the group P (1, 4) and the invariants of these subgroups for construction of
nonsingular manifolds which are invariant under the group P (1, 4) or under its
continuous subgroups.

3. The nonsingular invariant manifolds in the space M(1, 4)×R(u).
In the space M(1, 4) × R(u), the nonsingular manifolds which are invariant
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under the continuous subgroups of the group P (1, 4) can be written in the
following form:

F (ω1(x), . . . , ωk(x), u(x)) = 0,

where ω1(x), . . . , ωk(x), u(x), (k = 1, 2, 3, 4) are invariants of these subgroups
and F is an arbitrary smooth function.

Since the invariants of the continuous subgroups of the group P (1, 4) have
already been constructed, the corresponding invariant manifolds have also been
described.

The manifolds obtained provide us with the ansatzes which reduce those
PDEs in the space M(1, 4)×R(u) which are invariant under the group P (1, 4)
or under continuous subgroups of this group to differential equations with k
independent variables ω1(x), ..., ωk(x)(k = 1, 2, 3, 4).

4. The nonsingular invariant manifolds in the space M(1, 3)×R(u).
In the space M(1, 3) × R(u), the nonsingular manifolds which are invariant
under the nonconjugate subgroups of the group P (1, 4) can be written in the
form:

F (ω1(x, u), . . . , ωk(x, u)) = 0,

where ω1(x, u), . . . , ωk(x, u), (k = 1, 2, 3, 4), are invariants of these subgroups
and F is an arbitrary smooth function.

Since the invariants of the continuous subgroups of the group P (1, 4) in
the space M(1, 3) × R(u) have already been found, the considered invari-
ant manifolds have also been constructed. These manifolds play an impor-
tant role in studying the symmetry reduction of differential equations in the
space M(1, 3) × R(u) which are invariant under the group P (1, 4) or under
its continuous subgroups. The manifolds considered give us ansatzes which
reduce these equations to differential equations with k-1 independent variables
ω1(x, u), . . . , ωk(x, u)(k = 1, 2, 3, 4).

5. Differential equations in the space M(1, 4)×R(u). Let us consider
some applications of the invariants of the continuous subgroups of the group
P (1, 4) as well as the nonsingular invariant manifolds in the space M(1, 4) ×
R(u) to the study of some important equations of theoretical physics.

Below, we present some of the results obtained.
5.1. The nonlinear five-dimensional wave equation. Let us consider the

equation

(5.1)
∂2u

∂x2
0

− ∂2u

∂x2
1

− ∂2u

∂x2
2

− ∂2u

∂x2
3

− ∂2u

∂x2
4

= F (u),

where u = u(x), x = (x0, x1, x2, x3, x4) and F is a sufficiently smooth function.
The invariance group of the equation (5.1) is the generalized Poincaré group
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P (1, 4). Using the invariants of subgroups of the group P (1, 4) we have con-
structed ansatzes which reduce the investigated equation to differential equa-
tions with fewer independent variables. The corresponding symmetry reduction
has been done. We have obtained one-, two-, three- and four- dimensional re-
duced equations. Taking into account the solutions of the reduced equations,
some classes of exact solutions of the investigated equation have been found.
The majority of these results have been published in [11]–[13].

5.2. The linear five-dimensional wave equation. Let us consider the equa-
tion

(5.2) �u = −κ2u,

where

� =
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− ∂2

∂x2
4

,

u(x) = u(x0, x1, x2, x3, x4) is a scalar C2 function and κ = const. Equation
(5.2) is invariant under the group P (1, 4). Using the four-dimensional Abelian
subalgebras of the Lie algebra of the group P (1, 4) and their invariants, we have
achieved full separations of variables in the considered equation. Using three-,
two- and one-dimensional Abelian subalgebras of the considered Lie algebra
and their invariants, we have achieved partial separations of variables. As a
result of partial (or full) separation of variables, we have obtained PDEs with
fewer independent variables (or ordinary differential equations (ODEs)) which
replace the original equation. Some exact solutions of the five-dimensional wave
equation have been constructed. More details about these results can be found
in [14].

5.3. The Dirac equation in M(1, 4). Let us consider the equation

(5.3)
(
γkP

k −m
)
ψ(x) = 0,

where x = (x0, x1, x2, x3, x4), Pk = i
∂

∂xk
, k = 0, 1, 2, 3, 4; γk are (4×4) – Dirac

matrices.
The equation (5.3) is invariant under the group P (1, 4). Following [19, 20]

and using the subgroup structure of the group P (1, 4) as well as the invariants
of these subgroups, the ansatzes which reduce the equation (5.3) to systems of
differential equations with a fewer number of independent variables were con-
structed. The corresponding symmetry reduction has been done. Among these
systems of reduced equations, there are one-, two-, three- and four-dimensional
ones. In order to obtain these results we have used one-, two-, three- and four-
dimensional Abelian subalgebras of the considered Lie algebra as well as the
invariants of these subalgebras. Let me note that in the study of this equation
we have also used some non-Abelian subalgebras of the Lie algebra of the group
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P (1, 4) and the invariants of these subalgebras. Some of the results obtained
were presented in [15].

6. Differential equations in the space M(1, 3)×R(u). Now, we begin
to use the invariants of the continuous subgroups of the group P (1, 4) as well as
the nonsingular invariant manifolds in the space M(1, 3)×R(u) to investigate
some equations in the space M(1, 3)×R(u) important for theoretical physics.
Below we present some of the results received.

6.1. The Eikonal equation. We consider the equation

(6.1) uµuµ ≡ (u0)
2 − (u1)

2 − (u2)
2 − (u3)

2 = 1,

where u = u(x), x = (x0, x1, x2, x3) ∈ M(1, 3), uµ ≡ ∂u

∂xµ
, uµ = gµνuν ,

µ, ν = 0, 1, 2, 3.
From the results of [19] it follows that the symmetry group of equation

(6.1) contains the group P (1, 4) as a subgroup. Using the subgroup structure
of the group P (1, 4) and the invariants of its subgroups we have constructed
ansatzes which reduce the investigated equation to differential equations with
fewer independent variables, and the corresponding symmetry reduction has
been carried out. We have obtained one-, two- and three-dimensional reduced
equations. Among the reduced equations there are also linear ODEs. Having
solved some of the reduced equations, we have found classes of exact solutions
of the investigated equation. Some of these results were given in [11, 12, 16].

6.2. The Euler-Lagrange-Born-Infeld equation. Let us consider the equa-
tion

(6.2) �u (1− uνu
ν) + uµuνuµν = 0,

where u = u(x), x = (x0, x1, x2, x3) ∈ M(1, 3), uµ ≡ ∂u

∂xµ
, uµν ≡ ∂2u

∂xµ∂xν
,

uµ = gµνuν , gµν = (1,−1,−1,−1)δµν , µ, ν = 0, 1, 2, 3, � is the d’Alembert
operator.

The symmetry group [19] of equation (6.2) contains the group P (1, 4) as
a subgroup. Based on the subgroup structure of the group P (1, 4) and the
invariants of its subgroups, the symmetry reduction of the investigated equation
to differential equations with a fewer number of independent variables has been
done. We have obtained one-, two- and three-dimensional reduced equations.
In numerous cases the reduced equations are linear ODEs. Taking into account
the solutions of the reduced equations, we have found multiparameter families of
exact solutions of the considered equation. It should be noted that among these
solutions there are ones which contain arbitrary smooth functions of invariants
of subgroups of the group P (1, 4). Some of these results can be found in [16].
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6.3. The multidimensional homogeneous Monge-Ampère equation. Let us
consider the equation

(6.3) det (uµν) = 0,

where u = u(x), x = (x0, x1, x2, x3) ∈ M(1, 3), uµν ≡ ∂2u

∂xµ∂xν
,

µ, ν = 0, 1, 2, 3.
The symmetry group of equation (6.3) was found in [19].
We have achieved the symmetry reduction of the investigated equation

to differential equations with fewer independent variables, using the subgroup
structure of the group P (1, 4) and the invariants of its subgroups. We have
received one-, two-, and three-dimensional reduced equations. Among the re-
duced equations there are linear ODEs. Having solved some of the reduced
equations, we have obtained classes of exact solutions of the investigated equa-
tion. These classes contain the solutions with arbitrary smooth functions of
invariants of subgroups of the group P (1, 4). Some of these results are pre-
sented in [16].

6.4. The multidimensional inhomogeneous Monge-Ampère equation. Let us
consider the equation

(6.4) det (uµν) = λ (1− uνu
ν)3 , λ 6= 0,

where u = u(x), x = (x0, x1, x2, x3) ∈ M(1, 3), uµν ≡ ∂2u

∂xµ∂xν
, uν = gναuα,

uα ≡
∂u

∂xα
, gµν = (1,−1,−1,−1)δµν , µ, ν, α = 0, 1, 2, 3.

Equation (6.4) is invariant [19] under the group P (1, 4).
We have constructed ansatzes which reduce the investigated equation to

differential equations with a fewer number of independent variables, using the
subgroup structure of the group P (1, 4) and the invariants of its subgroups.
The corresponding symmetry reduction has been done. We have found one-,
two-, and three-dimensional reduced equations. Some classes of exact solutions
of the considered equation have been found. The majority of these results are
published in [17].
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