2002

ENTIRE CURVES IN COMPLEMENTS OF CARTESIAN PRODUCTS IN \mathbb{C}^N

by Nikolai Nikolov

Abstract. It is proved that if F is the Cartesian product of n closed subsets F_1, F_2, \ldots, F_n of \mathbb{C} $(n \ge 2)$ with $F_1 \ne \mathbb{C}$ and $F_2 \ne \mathbb{C}$, then for any two different points $a, b \in D := \mathbb{C}^n \setminus F$ there is a holomorphic mapping $f : \mathbb{C} \to D$ such that f(0) = a and f(1) = b.

The purpose of this note is to prove the following

PROPOSITION 1. Let F be the Cartesian product of n closed subsets F_1, F_2, \ldots, F_n of \mathbb{C} $(n \ge 2)$ with $F_1 \ne \mathbb{C}$ and $F_2 \ne \mathbb{C}$. Then for any two different points $a, b \in D := \mathbb{C}^n \setminus F$ there is a holomorphic mapping $f : \mathbb{C} \to D$ such that f(0) = a and f(1) = b.

In the particular case when $a \in (\mathbb{C} \setminus F_1) \times \mathbb{C}^{n-1}$ and $b \in \mathbb{C} \times (\mathbb{C} \setminus F_2) \times \mathbb{C}^{n-2}$, this proposition has been proved in [1] and the authors raised the question if it still holds for any two different points $a, b \in D := \mathbb{C}^n \setminus F$.

PROOF. It suffices to prove the proposition for points $a = (a_1, a_2, \ldots, a_n)$ and $b = (b_1, b_2, \ldots, b_n)$ such that $a_2, b_2 \in D_2 := \mathbb{C} \setminus F_2$. It is trivial if $a_2 = b_2$. Let $a_2 \neq b_2$. Since $D_1 := \mathbb{C} \setminus F_1$ and D_2 are nonempty open sets, after linear changes in the first two complex planes, we may assume that D_1 contains the unit disc $\Delta \subset \mathbb{C}$, $a_1, b_1 \notin \Delta$, $a_2 = 1, b_2 = -1$, and $D_2 \supset G := \{z : |z - 1| < \varepsilon \}$ for some $\varepsilon > 0$. Let

$$g_1(z) := \frac{1 - \exp(-z^2)}{z^2}, \ g_2(z) := \frac{(1 - \exp(-z^2))^2}{z^3},$$
$$h_j(z) := z \int_0^\lambda g_j(zt) dt, \ j = 1, 2, \ \hat{f}_1(z) := \exp(2z^2 - 1)$$

(we shall choose the number $\lambda > 0$ later on). Note that the set $A := \{z \in \mathbb{C} : |\hat{f}_1(z)| \ge 1\}$ is the union of the sets $A_1 := \{z \in \mathbb{C} : \operatorname{Re}(z) > 0, 2Re(z^2) \ge 1\}$

2000 Mathematics Subject Classification. Primary 32A15.

Key words and phrases. Cartesian product, entire curve.

and $A_2 := \{z \in \mathbb{C} : \operatorname{Re}(z) < 0, 2\operatorname{Re}(z^2) \ge 1\}$. Then there exist numbers $\alpha_1 \in A_1$ and $\alpha_2 \in A_2$ such that $\hat{f}_1(\alpha_1) = a_1$ and $\hat{f}_1(\alpha_2) = b_1$. Let $z \in A_1$. Since $g_1(u)$ and $g_2(u)$ are entire functions, we have

(1)
$$|h_1(z) - h_1(1)| = |\int_{\lambda}^{\lambda z} g_1(u) du| < 2 \frac{|z-1|}{\lambda} \int_0^1 \frac{dt}{|1+(z-1)t|^2} \\ \le 2 \frac{|z-1|}{\lambda} \int_0^1 \frac{dt}{(1+\operatorname{Re}(z-1)t)^2} = \frac{2|z-1|}{\lambda \operatorname{Re}(z)} < \frac{2\sqrt{2}}{\lambda},$$

and

and
(2)
$$|h_2(z) - h_2(1)| = |\int_{\lambda}^{\lambda z} g_2(u) du| < 4 \frac{|z-1|}{\lambda^2} \int_0^1 \frac{dt}{|1+(z-1)t|^3}$$

$$\leq 4^{|z-1|} \int_0^1 \frac{dt}{|1-(z-1)t|^3} + 2^{|z-1|} \operatorname{Re}(z+1) \leq 4^{|z-1|} \int_0^1 \frac{dt}{|1+(z-1)t|^3} + 2^{|z-1|} \operatorname{Re}(z+1) \leq 4^{|z-1|} + 2^{|z-1|} \operatorname{Re}(z+1) \leq 4^{|z-1|} + 2^{|z-1|} + 2^{|z-1|}$$

$$\leq 4\frac{|z-1|}{\lambda^2}\int_0^{\infty}\frac{at}{(1+\operatorname{Re}(z-1)t)^3} = 2\frac{|z-1|\operatorname{Re}(z+1)}{(\lambda\operatorname{Re}(z))^2} < \frac{4}{\lambda^2}.$$

Analogously, if $z \in A_2$, then

(3)
$$|h_1(z) - h_1(-1)| < \frac{2\sqrt{2}}{\lambda} \text{ and } |h_2(z) - h_2(-1)| < \frac{4}{\lambda^2}$$

Note that

and

$$h_1(1) = -h_1(-1) \underset{\lambda \to \infty}{\longrightarrow} d_1 := \int_0^\infty g_1(t)dt > 0$$
$$h_2(1) = h_2(-1) \underset{\lambda \to \infty}{\longrightarrow} d_2 := \int_0^\infty g_2(t)dt > 0.$$

Now, it follows from (1), (2), (3), and the triangle inequality that for any $\lambda \gg 1$, we may find constants c_1 and c_2 ((c_1, c_2) tends to the solution of the system $d_1x_1 + d_2x_2 = 1$, $-d_1x_1 + d_2x_2 = -1$, when $\lambda \to \infty$) such that if $\hat{f}_2 = c_1 h_1 + c_2 h_2$, then $\hat{f}_2(\alpha_1) = 1$, $\hat{f}_2(\alpha_2) = -1$, $|\hat{f}_2(z) - 1| < \varepsilon$ for $z \in A_1$, and $|\hat{f}_2(z) + 1| < \varepsilon$ for $z \in A_2$. Set $l(z) = (\alpha_2 - \alpha_1)z + \alpha_1$, $f_j(z) = \hat{f}_j(l(z))$ for j = 1, 2, and $f_j(z) = (b_j - a_j)z + a_j$ for $3 \le j \le n$. Then the mapping $f := (f_1, f_2, \ldots, f_n)$ has the required properties. \square

Acknowledgments. The author would like thank M. Jarnicki for the useful remarks on an earlier version of this note.

References

1. Jarnicki W., Nikolov N., Concave domains with trivial biholomorphic invariants, Ann. Pol. Math., LXXIX (2002), 63-66.

Received April 15, 2002

Bulgarian Academy of Sciences Institute of Mathematics and Informatics 1113 Sofia, Bulgaria e-mail: nik@math.bas.bg