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ENTIRE CURVES IN COMPLEMENTS

OF CARTESIAN PRODUCTS IN CN

by Nikolai Nikolov

Abstract. It is proved that if F is the Cartesian product of n closed
subsets F1, F2, . . . , Fn of C (n ≥ 2) with F1 6= C and F2 6= C, then for any
two different points a, b ∈ D := Cn \ F there is a holomorphic mapping
f : C → D such that f(0) = a and f(1) = b.

The purpose of this note is to prove the following

Proposition 1. Let F be the Cartesian product of n closed subsets
F1, F2, . . . , Fn of C (n ≥ 2) with F1 6= C and F2 6= C. Then for any two
different points a, b ∈ D := Cn \ F there is a holomorphic mapping f : C → D
such that f(0) = a and f(1) = b.

In the particular case when a ∈ (C\F1)×Cn−1 and b ∈ C×(C\F2)×Cn−2,
this proposition has been proved in [1] and the authors raised the question if
it still holds for any two different points a, b ∈ D := Cn \ F.

Proof. It suffices to prove the proposition for points a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn) such that a2, b2 ∈ D2 := C \ F2. It is trivial if a2 = b2.
Let a2 6= b2. Since D1 := C \ F1 and D2 are nonempty open sets, after linear
changes in the first two complex planes, we may assume that D1 contains the
unit disc ∆ ⊂ C, a1, b1 6∈ ∆, a2 = 1, b2 = −1, and D2 ⊃ G := {z : |z − 1| <
ε or |z + 1| < ε} for some ε > 0. Let

g1(z) :=
1− exp(−z2)

z2
, g2(z) :=

(1− exp(−z2))2

z3
,

hj(z) := z

∫ λ

0
gj(zt)dt, j = 1, 2, f̂1(z) := exp(2z2 − 1)

(we shall choose the number λ > 0 later on). Note that the set A := {z ∈ C :
|f̂1(z)| ≥ 1} is the union of the sets A1 := {z ∈ C : Re(z) > 0, 2Re(z2) ≥ 1}
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and A2 := {z ∈ C : Re(z) < 0, 2 Re(z2) ≥ 1}. Then there exist numbers
α1 ∈ A1 and α2 ∈ A2 such that f̂1(α1) = a1 and f̂1(α2) = b1. Let z ∈ A1.
Since g1(u) and g2(u) are entire functions, we have

|h1(z)− h1(1)| = |
∫ λz

λ
g1(u)du| < 2

|z − 1|
λ

∫ 1

0

dt

|1 + (z − 1)t|2

≤2
|z − 1|

λ

∫ 1

0

dt

(1 + Re(z − 1)t)2
=

2|z − 1|
λ Re(z)

<
2
√

2
λ

,

(1)

and
|h2(z)− h2(1)| = |

∫ λz

λ
g2(u)du| < 4

|z − 1|
λ2

∫ 1

0

dt

|1 + (z − 1)t|3

≤ 4
|z − 1|

λ2

∫ 1

0

dt

(1 + Re(z − 1)t)3
= 2

|z − 1|Re(z + 1)
(λ Re(z))2

<
4
λ2

.

(2)

Analogously, if z ∈ A2, then

(3) |h1(z)− h1(−1)| < 2
√

2
λ

and |h2(z)− h2(−1)| < 4
λ2

.

Note that
h1(1) = −h1(−1) −→

λ→∞
d1 :=

∫ ∞

0
g1(t)dt > 0

and
h2(1) = h2(−1) −→

λ→∞
d2 :=

∫ ∞

0
g2(t)dt > 0.

Now, it follows from (1), (2), (3), and the triangle inequality that for any
λ � 1, we may find constants c1 and c2 ((c1, c2) tends to the solution of the
system d1x1 + d2x2 = 1, −d1x1 + d2x2 = −1, when λ → ∞) such that if
f̂2 = c1h1 + c2h2, then f̂2(α1) = 1, f̂2(α2) = −1, |f̂2(z) − 1| < ε for z ∈ A1,

and |f̂2(z) + 1| < ε for z ∈ A2. Set l(z) = (α2 − α1)z + α1, fj(z) = f̂j(l(z))
for j = 1, 2, and fj(z) = (bj − aj)z + aj for 3 ≤ j ≤ n. Then the mapping
f := (f1, f2, . . . , fn) has the required properties.
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