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HADAMARD’S INEQUALITY IN INNER PRODUCT SPACES

by Marcin Kulczycki

Abstract. The aim of this paper is to prove a generalized version of
Hadamard’s inequality in inner product spaces with assumptions signifi-
cantly weaker than the ones found in existing variants.

1. Introduction.
Several different results are known in the literature as Hadamard’s inequal-

ity. The most basic version for real square matrices A = [aij ]i,j=1,...,n takes the
following form:

(detA)2 ≤
n∏

j=1

(
n∑

i=1

a2
ij)

It is, though, but a simple collorary of a more advanced theorem.
From now on, given a unitary space, we shall consider norms and scalar

products on the exterior products of this vector space to be given by a natu-
ral extrapolation of a canonical construction presented in [1]. This standard
method is presented for real spaces only. It is possible, however, to modify
it to fit the case of complex spaces. The following result is often cited as
Hadamard’s inequality.

Theorem 1.1. For each finite-dimensional real unitary space V and for
each pair of vectors ξ ∈

∧
p V, η ∈

∧
q V , if at least one of the vectors ξ or η is

simple, then
|ξ ∧ η| ≤ |ξ||η|

The simplicity of ξ∧η is also a sufficient condition for the above inequality
to hold, as was shown by Anna Wach in [3].

Author wishes to express his gratitude to prof. dr hab. Piotr Tworzewski for
suggesting the problem and many stimulatng conversations and to the referee for pointing
out an incompatibility with a quoted reference.
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Is is also known that a somewhat weaker inequality is true for any pair of
vectors ξ ∈

∧
p V, η ∈

∧
q V

|ξ ∧ η| ≤
(
p+q

p

) 1
2 |ξ||η|.

See [1] for details.
Our objective is to prove the ineqality in a much more general setting. The

above results will turn out to be particular cases of the main result.

2. Definitions and notation. Define
(
a
b

)
= 0 for b > a. For 1 ≤ p ≤ n

let
Λ(n, p) = {λ : {1, . . . , p} → {1, . . . , n} strictly increasing }

Let V be a finite-dimensional inner product space. If e1, . . . , en is a given
orthonormal basis of V , then for every λ ∈ Λ(n, p) define eλ ∈

∧
p V by

eλ = eλ(1) ∧ . . . ∧ eλ(p)

For p ≥ 0, we say that η ∈
∧

p V is of rank r iff there exist v1, . . . , vp−r ∈ V ,
ṽ ∈

∧
r V such that η = v1 ∧ . . . ∧ vp−r ∧ ṽ and r is the least number having

this property.

Remark 2.1. It is a simple modification of a known result that {eλ}λ∈Λ(n,p)

is a basis of
∧

p V .

Definition 2.2. We introduce an inner product on
∧

p V by defining the
aforementioned basis to be an orthonormal basis for

∧
p V .

Remark 2.3. The above definition only depends on the scalar product on
V rather than the original choice of the basis e1, . . . , en for V . In fact, an
equivalent construction can be done without need for a particular basis of V
to be fixed first, thus guaranteeing the uniqueness of a product (see [1] for
such construction for R case). In the proof of theorem 3.1, however, it is more
convenient to have the scalar product on

∧
p V introduced in the above way.

3. Hadamard’s inequality. The following theorem is the main result of
this paper.

Theorem 3.1. For every pair of vectors ξ ∈
∧

p V, η ∈
∧

q V such that ξ is
of rank not greater than r, η is of rank not greater than s, and ξ ∧ η is of rank
not greater than t we have

|ξ ∧ η| ≤ min{
(
r+s
r

) 1
2 ,

(
n+t−p−q

t

) 1
2 } · |ξ||η|

Remark 3.2. Since a vector is simple iff it is of rank 0, all previously
mentioned versions of Hadamard’s inequality follow from the above
result.
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Proof of theorem 3.1. The cases p = 0, q = 0 or p+ q > n are elemen-
tary. Let p, q > 0, p + q ≤ n. It is enough to prove

(A) (ξ ∧ η) • (ξ ∧ η) ≤
(
r+s
r

)
(ξ • ξ)(η • η)

(B) (ξ ∧ η) • (ξ ∧ η) ≤
(
n+t−p−q

t

)
(ξ • ξ)(η • η),

where • is the scalar product on the exterior products.

Ad A. It is a known result that by the ordinary orthonormalization we can
get two orthonormal bases of V : e1, . . . , en and ẽ1, . . . , ẽn such that

ξ = e1 ∧ . . . ∧ ep−r ∧ ξ̃, ξ̃ ∈
∧

r V,

η = ẽ1 ∧ . . . ∧ ẽq−s ∧ η̃, η̃ ∈
∧

s V,

ξ̃ ∧ η =
∑

λ∈Λ(n,r+q) aλeλ, aλ ∈ C,

ξ̃ ∧ η̃ =
∑

λ∈Λ(n,r+s) bλẽλ, bλ ∈ C,

ξ̃ =
∑

λ∈Λ(n,r) cλeλ, cλ ∈ C,

η̃ =
∑

λ∈Λ(n,s) dλeλ, dλ ∈ C.

Then

(ξ ∧ η) • (ξ ∧ η) = (e1 ∧ . . . ∧ ep−r ∧ ξ̃ ∧ η) • (e1 ∧ . . . ∧ ep−r ∧ ξ̃ ∧ η)

= (e1 ∧ . . . ∧ ep−r ∧ (
∑

λ∈Λ(n,r+q)

aλeλ)) • (e1 ∧ . . . ∧ ep−r ∧ (
∑

λ∈Λ(n,r+q)

aλeλ))

≤
∑

λ∈Λ(n,r+q)

aλaλ = (ξ̃ ∧ η) • (ξ̃ ∧ η)

= ((−1)r(q−s)ẽ1 ∧ . . . ∧ ẽq−s ∧ ξ̃ ∧ η̃) • ((−1)r(q−s)ẽ1 ∧ . . . ∧ ẽq−s ∧ ξ̃ ∧ η̃)

= (ẽ1 ∧ . . . ∧ ẽq−s ∧ (
∑

λ∈Λ(n,r+s)

bλẽλ)) • (ẽ1 ∧ . . . ∧ ẽq−s ∧ (
∑

λ∈Λ(n,r+s)

bλẽλ))

≤
∑

λ∈Λ(n,r+s)

bλbλ = (ξ̃ ∧ η̃) • (ξ̃ ∧ η̃) =
∑

µ∈Λ(n,r+s)

(
∑

eλ∧eκ=±eµ

±cλdκ)(
∑

eλ∧eκ=±eµ

±cλdκ)

≤
∑

µ∈Λ(n,r+s)

(
∑

eλ∧eκ=±eµ

|cλ||dκ|)2 ≤
∑

µ∈Λ(n,r+s)

(
r+s
r

)
(

∑
eλ∧eκ=±eµ

|cλ|2|dκ|2)

≤
(
r+s
r

)
(

∑
λ∈Λ(n,r)

|cλ|2)(
∑

κ∈Λ(n,s)

|dκ|2) =
(
r+s
r

)
(ξ̃ • ξ̃)(η̃ • η̃) =

(
r+s
r

)
(ξ • ξ)(η • η).

Ad B. It is again possible to obtain, by orthonormalization, an orthonormal
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basis e1, . . . , en of V such that

ξ ∧ η = e1 ∧ . . . ∧ ep+q−t ∧ ẽ, ẽ ∈
∧

t V,

ξ =
∑

λ∈Λ(n,p) xλeλ, xλ ∈ C,

η =
∑

λ∈Λ(n,q) yλeλ, yλ ∈ C.

Define w = e1 ∧ . . . ∧ ep+q−t. Then

(ξ ∧ η) • (ξ ∧ η) =
∑

µ∈Λ(n+t−p−q,t)

(
∑

eλ∧eκ=±w∧eµ+p+q−t

±xλyκ)(
∑

eλ∧eκ=±w∧eµ+p+q−t

±xλyκ)

≤
∑

µ∈Λ(n+t−p−q,t)

(
∑

eλ∧eκ=±w∧eµ+p+q−t

|xλ||yκ|)2 ≤ by the Schwartz inequality

≤
∑

µ∈Λ(n+t−p−q,t)

(
∑

eλ∧eκ=±w∧eµ+p+q−t

xλxλ)(
∑

eλ∧eκ=±w∧eµ+p+q−t

yκyκ)

≤
∑

µ∈Λ(n+t−p−q,t)

(
∑

λ∈Λ(n,p)

xλxλ)(
∑

κ∈Λ(n,q)

yκyκ) =
(
n+t−p−q

t

)
(ξ • ξ)(η • η).
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