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ABHYANKAR-MOH PROPERTY AND UNIQUE AFFINE

EMBEDDINGS

by Jerzy Gurycz

Abstract. In this paper we analyze some examples of affine varieties with
non-unique embeddings and compare the Abhyankar-Moh Property and
unique embedding property for affine varieties.

1. Introduction. The aim of this paper is to study some examples of
affine varieties with nonunique embeddings in Cn. Abhyankar and Sathaye
have shown in [2] a family of affine plane curves which have the unique em-
bedding in affine plane and also gave a family of curves with (at least) two
different embeddings. Shpilrain and Yu in their paper [8] presented a simple
procedure which produces all possible varieties isomorphic to a given one and
in the case of hypersurfaces they proposed the number of zeros of the gradient
as an invariant of equivalent hypersurfaces. The procedure and the invariant
can be combined to get some examples of isomorphic but non-equivalent vari-
eties. We give an explanation of why it is possible to construct such examples
and compare the unique embedding property defined by the authors (in [8]
and [9]) and Abhyankar-Moh property of affine varieties.

2. Terminology. Throughout this paper we fix the field of complex num-
bers C as a ground field. Pn denotes C–algebra C[x1, . . . , xn].

If p, p1, . . . , pr ∈ Pn and a ∈ Cn then by J(p1, . . . , pr) and Ja(p1, . . . , pr) we
denote jacobian matrices

(
∂pi

∂xj

)
and

(
∂pi

∂xj
(a)

)
, respectively, and by grad(p) =

( ∂p
∂x1

, . . . , ∂p
∂xn

), grada(p)=( ∂p
∂x1

(a), . . . , ∂p
∂xn

(a)) we denote gradients.
If Y ⊂ Cn, we denote I(Y ) = {f ∈ Pn : f |Y = 0}. If I is an ideal of An we

denote X(I) =
⋂

f∈I f
−1(0). By f I we denote the residue class of an element
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f ∈ Pn (f I is an element of the quotient ring Pn/I) and by Aut(Pn) the group
of automorphisms of Pn.

3. Equivalence and isomorphism of varieties. We follow [8] and [9]
in definitions. By a variety we mean a collection of polynomials p1, . . . , pr in
the polynomial algebra Pn. It can be seen as the ideal 〈p1, . . . , pr〉 or as a
set of equations {p1=0, . . . , pr=0}. Such variety we denote by Ṽ (p1, . . . , pr)
or 〈x1, . . . , xn; p1=0, . . . , pr=0〉 when we need to refer explicitly to the list of
variables. We write Ṽ instead of V in order to distinguish between varieties
defined in this way and affine closed sets defined as subsets (in Cn) of solutions
of sets of polynomial equations. The set of all varieties in Pn will be denoted
by V(Pn). In the language of schemes our varieties are closed subschemes of
an affine scheme SpecPn (see Chapter II, Corollary 5.10 in [3]).

Two varieties Ṽ (p1, . . . , pr) and Ṽ (q1, . . . , qs) are considered the same if
they have equal ideals 〈p1, . . . , pr〉 = 〈q1, . . . , qs〉 (after possibly renaming and
permuting their lists of variables) but we will sometimes distinguish their pre-
sentations in computations.

Note that the unique presentation of a variety can be achieved by the
Gröbner basis algorithm after choosing some order in Nn. It is natural to
associate, with each variety Ṽ=〈x1, . . . , xn; p1=0, . . . , pr=0〉, C–algebra C[Ṽ ] =
Pn/〈p1, . . . , pr〉 (it’s coordinate ring) and the zero-set X(Ṽ ) = ∩r

i=1p
−1
i (0) (a

closed affine algebraic subset of Cn). It should be noted that there is no
assumption that the variety is reduced (it can have multiples of components;
equivalently ideal is not assumed to be radical) nor is it irreducible (ideal is
not necessarily prime).

Definition 3.1. By an isomorphism of two varieties Ṽ1 and Ṽ2 we mean
a C–isomorphism of their coordinate rings. If Ṽ1 and Ṽ2 are isomorphic, we
write Ṽ1

∼= Ṽ2.

Let Ṽ1, Ṽ2 be varieties in Pn. They are called equivalent if there exists a
polynomial automorphism which takes one of them onto the other; we write
Ṽ1 ≡ Ṽ2 if it is so. Hence the following

Definition 3.2. Two varieties Ṽ1 = Ṽ (p1, . . . , pr), Ṽ2 = Ṽ (q1, . . . , qs)
in Pn are equivalent if there exists an isomorphism φ : Pn → Pn such that
φ(〈p1, . . . , pr〉) = 〈q1, . . . , qs〉 or, equivalently, 〈φ(p1), . . ., φ(pr)〉 = 〈q1, . . . , qs〉.

This definition is motivated by the equivalence of curves and hypersurfaces.
Plane curves p, q are called equivalent if q = φ(p) for some automorphism φ

of C[x, y]. In the case of hypersurfaces Ṽ (p) ≡ Ṽ (q) is the same as φ(p) = q
for some automorphism φ of Pn because 〈p〉 = 〈q〉 iff p = cq for some nonzero
constant c ∈ C∗.



101

For a variety Ṽ=Ṽ (p1, . . . , pr) we denote by Isom(Ṽ ) the set of all varieties
in Pn isomorphic with Ṽ and by Equiv(Ṽ ) the set of all varieties equivalent to
Ṽ . It should be noted that Equiv(Ṽ ) ⊂ Isom(Ṽ ). In the case of hypersurfaces
(or curves for n = 2) we simply write Isom(p) and Equiv(p).

Definition 3.3. A variety Ṽ is said to have the unique embedding in Pn

if any variety isomorphic to Ṽ is equivalent to Ṽ .

This means Isom(Ṽ ) ⊂ Equiv(Ṽ ) and hence Isom(Ṽ ) = Equiv(Ṽ ). Equiva-
lently this means that Isom(Ṽ ) contains only one orbit of the action of Aut(Pn)
on V(Pn).

When we fix the variety Ṽ we can consider Isom(Ṽ ) and Equiv(Ṽ ). Some-
times we want to restrict considerations to some subclass K of varieties in
Pn (for example hypersurfaces, nonsingular curves, varieties from birational
equivalence class of some fixed variety etc.). We say that we found ∼=–models
for class K if we can split K into a disjoint union K = ∪Kα (each Kα is a set
of varieties) and for each Kα we have a representant Ṽα ∈ Kα (hopefully with
some nice description) such that all other members Ṽ ∈ Kα are isomorphic to
Ṽα. In a similar manner we define ≡–models. Now we can restate our defi-
nition: a variety Ṽ has the unique embedding if for this variety ∼=–class of Ṽ
coincides with ≡–class of Ṽ .

Several natural (and rather hard) classification questions arise when we try
to find ∼=–models and ≡–models. Remarkable results were obtained in the case
of affine curves: Abhyankar-Moh theorem states that a line in C2 has unique
embedding [1], theorem of Lin and Zaidenberg [7] gives a list of ≡–models for
irreducible simply connected curves (they are just xn − ym with (n,m) = 1).

4. Gradients and jacobians. For a variety Ṽ=Ṽ (p1, . . . , pr) in Pn it
may happen that the deletion of some of the generators p1, . . . , pr from the
generating set does not change the ideal. We shall say that p1, . . . , pr is a
reduced set of generators of Ṽ if any proper subset of {p1, . . . , pr} generates a
proper subideal of 〈p1, . . . , pr〉. For a variety with a reduced set of generators
we define

Z(Ṽ ) = {a ∈ Cn : rankJa(p1, . . . , pr) < n− dimV }

and z(Ṽ ) the cardinality of the set Z(Ṽ ). If Ṽ is a hypersurface Ṽ (p) then
Z(Ṽ ) = {a ∈ Cn : grada(p) = 0}. In general, Z and z depend on the
choice of ideal generators but not in the case of hypersurfaces. Note that
if φ : C[Ṽ1] → C[Ṽ2] is an isomorphism of Ṽ1 and Ṽ2 then φ∗(Z(Ṽ2)) = Z(Ṽ1).

Since hypersurfaces Ṽ (p), Ṽ (q) are equivalent if and only if p = φ(q) for
some polynomial automorphism φ of Pn, chain rule for derivatives implies
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that the number of zeroes of the gradient is an invariant of equivalence. We
can distinguish non-equivalent varieties using this invariant. Examples can be
found in [8] and in the section Non-equivalence of this paper.

5. Elementary transformations. Let Ṽ=〈p1, . . . , pr〉. Then for each
polynomial p ∈ Pn the graph map y=p(x1, . . . , xn) induces an isomorphism
φp : C[Ṽ ] → C[W̃ ] where W̃ = 〈x1, . . . , xn, y; p1, . . . , pr, y− p〉. We call such an
isomorphism an elementary transformation of type (P1) or introducing a new
variable. Inverses of transformations of type (P1) are called (P2) or cancelling
a variable. Transformations which permute and rename variables are called
(P3). Each isomorphism of varieties is a composition of transformations of
type (P1), (P2) and (P3) (see theorem 1.1 in [8]).

6. Non-equivalence. The aim of this section is to give an insight into
constructions of non-equivalent isomorphic hyperurfaces which have different
gradient invariant.

Examples of isomorphic but non-equivalent varieties in [8] are obtained in
the following way: Start with a hypersurface Ṽ1, apply a sequence of elementary
transformations and get another hypersurface Ṽ2 such that z(Ṽ1) and z(Ṽ2)
differ.

We answer the following question: In which of elementary transformations
is this equivalence invariant broken?

It is worth considering a simple example of two isomorphic but non-equiva-
lent curves in C[x, y]. Take p = x2y−1 and q = uv−1 (q is just x2+y2−1 after
linear change of coordinates u = x + iy, v = x − iy). Explicit isomorphisms
φ : C[x, y]/〈x2y−1〉→C[u, v]/〈uv−1〉 and ψ : C[u, v]/〈uv−1〉→C[x, y]/〈x2y−1〉
are given by φ(x̄) = ū, φ(ȳ) = v̄2 and ψ(ū) = x̄, ψ(v̄) = xy. φ and ψ are
well defined C–algebra homomorphisms. To see that φ is well defined we
need to check if from f ∈ 〈xy2 − 1〉 there follows f(u, v2) ∈ 〈uv − 1〉. Let
f = p(x, y)(x2y − 1). Then f(u, v2) = p(u, v2)(u2v2 − 1) = p(u, v2)(uv −
1)(uv + 1) ∈ 〈uv − 1〉. In the same manner, to check if ψ is well defined we
need to check if from g(u, v) ∈ 〈uv− 1〉 there follows that g(x, xy) ∈ 〈x2y− 1〉.
It is so, because if g(u, v) = q(u, v)(uv − 1) then g(x, xy) = q(x, xy)(x2y − 1).
One sees that φ and ψ are inverses of each other so they are isomorphisms.

We can decompose φ into a sequence of elementary transformations:
Ṽ1 = 〈x, y;x2y − 1〉 ∼=T1

Ṽ2〈x, y, u, v;u− x, v − xy, x2y − 1〉 ∼=T2

Ṽ3〈x, y, u, v;u− x, v − xy, xv − 1〉 ∼=T3

Ṽ4〈x, y, u, v;u− x, y − v2, xv − 1〉 ∼=T4

Ṽ5〈x, y, u, v;u− x, y − v2, uv − 1〉 ∼=T5

Ṽ6〈u, v;uv − 1〉.
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Transformation T1 is (P1) simultaneously for u and v, T2, T3 and T4 are
identities (we change ideal generators), T5 is (P3) for x and y simultaneously.

Now we look at Z in each step of decomposition. In the computations
below J(Ṽ ) denotes the jacobian matrix of the generators of the ideal of Ṽ .

J(Ṽ1) = J(〈x, y : x2 − y = 1〉) = [2x,−1]

and Z(Ṽ1) = 0× C.

J(Ṽ2) = J(〈x, y, u, v : x = u, xy = v, x2y = 1〉) =

 1 0 −1 0
y x 0 −1

2xy x2 0 0


and Z(Ṽ2) = 0× C3.

J(Ṽ3) = J(〈x, y, u, v : x = u, xy = v, xv = 1〉) =

 1 0 −1 0
y x 0 −1
v 0 0 x


and Z(Ṽ3) = 0× C× C× 0.

J(Ṽ4) = J(〈x, y, u, v : x = u, y = v2, xv = 1〉) =

 1 0 −1 0
0 1 0 −2v
v 0 0 x


and Z(Ṽ4) = 0× C× C× 0.

J(Ṽ5) = J(〈x, y, u, v : u = x, y = v2, uv = 1〉) =

 1 0 −1 0
0 1 0 −2v
0 0 v u


and Z(Ṽ5) = C× C× 0× 0. Finally

J(Ṽ6) = J(〈u, v : uv = 1〉) = [v, u]

and Z(Ṽ6) = 0× 0.
Z(Ṽ1) is just πuv(Z(Ṽ2)) and Z(Ṽ6) = πxy(Z(Ṽ5)). Note the difference

between Z(Ṽ2) and Z(Ṽ3). Ṽ2 and Ṽ3 is the same variety. From the geometric
point of view it is an intersection of v = xy with two different cylinders, for
V2 for intersection we take the cylinder x2y = 1 (along v, u) and for V3 the
cylinder xv − 1 (along y, u). This suggests that breaking Z is possible if there
exists a suitable change of ideal generators.
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7. Extension property (Abhyankar-Moh Property) and unique
embeddings. The aim of this section is to compare the Abhyankar-Moh Prop-
erty and the unique embedding property.

Let Ṽ=Ṽ (p1, . . . , pr) be a variety in Pn. Let Y=X(Ṽ )= ∩ p−1
i (0) (it is a

closed affine algebraic subset of Cn). Recall that a regular mapping φ : Y → Cn

is called an embedding if the induced map of coordinate rings φ∗ : Pn → C[Y ]
is an epimorphism. If F : X → Y is a regular mapping of closed affine sets
X ⊂ Cm, Y ⊂ Cn then the induced map F ∗ is defined as F ∗ : Pn/I(Y ) 3 u →
u ◦ F ∈ Pn/I(X).

Definition 7.1. We say that a closed affine algebraic subset Y has the
Abhyankar-Moh Property (embedding extension property or A.M.P. for short)
if for any polynomial embedding F : Y → Cn there exists a polynomial auto-
morphism F of Cn such that F is a restriction of F .

Several results ([5], [6]) show that if a variety Y is of a small dimension
compared to n then it has A.M.P. For example in the smooth case each em-
bedding of Y in the ambient space of dimension n = 2dimY + 2 (and higher
of course) extends to an automorphism of Cn. The exact connection between
A.M.P. of Y and the unique embedding property (see definition 3.3) is clarified
by the following

Proposition 7.2. Let I be a radical ideal in Pn and Ṽ = Ṽ (I), Y =⋂
f∈I f

−1(0). If Y has A.M.P. then Ṽ has unique embedding.

Proof. We will need Hilbert’s Nullstellensatz (see [3] p. 4). Let φ : Pn/J →
Pn/I be an isomorphism, i.e. Ṽ (I) ∼= Ṽ (J), I be radical. Note that then J
is radical. Assume Y = ∩f∈If

−1(0) has A.M.P., i.e. for any polynomial em-
bedding F : Y → Cn there exists an isomorphism G : Cn → Cn such that
G|Y = F . We need to show that there exists an isomorphism ψ : Pn → Pn

such that ψ(J) = I.
Let us take polynomials φk ∈ φ(xk

J) and let F be the polynomial map
F (x) = (φ1(x), . . . , φn(x)) from Y to Cn. Then for F ∗ : Pn 3 p→ p ◦ F I(Y ) ∈
Pn/I(Y ) elements F ∗(xk) = φk

I(Y ) generate Pn/I(Y ), because φk
I generate

Pn/I and I ⊂ I(Y ). Hence F is an embedding and by the assumption there
exists a polynomial automorphism G : Cn → Cn such that G|Y = F |Y . Let
ψ := G∗ be the induced automorphism of Pn.

First we check that ψ(q) ∈ I for q ∈ J . For any g ∈ Pn, ψ(g) =
g ◦ G and ψ(g)|Y = g ◦ F |Y and hence ψ(g)|Y = g ◦ (φ1, . . . , φn)|Y . But
q J = 0 J gives 0 I = φ(q J) = φ(q(x1

J , . . . , xn
J)) = q(φ(x1

J), . . . φ(xn
J)) =

q(φ1
I
, . . . , φn

I) = q ◦ (φ1, . . . , φn)
I
. Hence we have q ◦ (φ1, . . . , φn) ∈ I

and ψ(q) − q ◦ (φ1, . . . , φn)|Y = 0 so ψ(q) − q ◦ (φ1, . . . , φn) ∈ I(Y ). By
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Hilbert’s Nullstellensatz this means that ψ(q) − q ◦ (φ1, . . . , φn) ∈
√
I and

hence ψ(q) ∈
√
I = I.

Now we need to show that for f ∈ I there exists a polynomial g ∈ J such
that ψ(g) = f . Let us take g := f ◦ G−1 then ψ(g) = g ◦ G = f . Observe
that g|F (Y ) = 0 so g ∈ I(F (Y )). Observe also that X(J) = F (Y ). But J is a
radical ideal and hence I(F (Y )) = I(X(J)) = J so we have g ∈ J .

It is not clear to the author if the converse implication of proposition 7.2
is true (i.e. if the zero-set of a reduced affine variety which has the unique
embedding has A.M.P.).

The problem is in the fact that the definition of unique embedding (i.e.
definition 3.3) is stated in a slightly different manner than the Abhyankar-
Moh Property. In A.M.P. we require that for each embedding φ : X → Cn there
exists an extension of this embedding. On the other hand, in the definition of
unique embedding of the variety Ṽ (I) we require only that if Ṽ (J) ∼= Ṽ (I) (i.e.
there exists an isomorphism φ : Pn/I → Pn/J) then I and J are equivalent by
some automorphism Φ of Pn (i.e Φ(I) = J) and do not require any relation
between Φ and φ. This suggests another definition of the unique embedding.

Before we state the new definition we introduce two simple notations.
Let I and J be ideals of Pn. Let us denote by πI the canonical epimorphism

Pn 3 f f
I ∈ Pn/I

-πI

Let us denote an endomorphism F of Pn such that F (I) ⊂ J by

(Pn, I) (Pn, J)-F

and an automorphism G of Pn such that G(I) = J and H = G−1 by

(Pn, I) (Pn, J).-�G

H

The letter above the arrow denotes the map from left to right and the one
below the arrow denotes the inverse of this map.

Definition 7.3. A variety Ṽ (I) in Pn is said to have the extendible em-
beddings property if for each isomorphism of affine varieties φ : Pn/I → Pn/J
there exists an automorphism Φ ∈ Aut(Pn) such that the following diagram
commutes
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(Pn, I) (Pn, J)

Pn/I Pn/J

-Φ

?

πI

?

πJ

-φ

i.e. πJ ◦ Φ = φ ◦ πI .

Note that if a variety Ṽ (I) has the extendible embeddings property then
it automatically has the unique embedding.

Proposition 7.4. Let I be an ideal in Pn, Ṽ=Ṽ (I) and Y = ∩f∈If
−1(0).

If Ṽ has extendible embedding property then Y has Abhyankar-Moh Property.

Proof. Let F =(F1, . . . , Fn) : Y →Cn be a regular embedding of Y=X(I),
i.e. regular map such that the induced map F ∗ : Pn 3 p→ p ◦ F I ∈ Pn/I is an
epimorphism. Let J = KerF ∗ (observe that J = I(F (Y ))). Then we have a
canonical map F ∗ : Pn/J → Pn/I, which is an isomorphism of Ṽ (I) and Ṽ (J).
Since Ṽ has the extendible embeddings property, there exists Φ ∈ Aut(Pn)
such that I = Φ(J) and the following diagram commutes

(Pn, J) (Pn, I)

Pn/J Pn/I
?

πJ

-�Φ

Ψ

?

πI

-F ∗

Let G := (φ1, . . . , φn) be an automorphism of Cn induced by Φ (i.e. φk =
Φ(xk), k = 1, . . . , n). We need to check that G|Y = F . It is enough to check
that φk|Y = Fk for k = 1, . . . , n. By the definitions

φk
I = Φ(xk)

I
= F ∗(xk

J) = xk ◦ F
I = Fk

I

This clearly implies φk|Y = Fk and hence G|Y = F .

Definitions 3.3 and 7.3 raise new questions: (1) Is it true that each vari-
ety which has the unique embedding has the extendible embedding property?
(2) What are the varieties for which the notions of the unique embedding and
extendible embedding property coincide?
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From propositions 7.4 and 7.2 we know when and how we can safely switch
between the geometric language of A.M.P. and the algebraic language of unique
embeddings.

It is worth noting that although the number of zeroes of the gradient is
a simple and powerful invariant of equivalent hypersurfaces, there are also
other algebraic and geometric methods to check that certain algebraic sets
admit different affine embeddings. For example Jelonek in [4] showed that for
any n > 1 the hypersurface Γn={x ∈ Cn : x1 · . . . · xn = 1} has infinitely many
regular embeddings. Kaliman in [6] gave an example of two isomorphic curves
in C3 which cannot be mapped to each other by an automorphism of C3.
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