A FIBRE CRITERION FOR A POLYNOMIAL TO BELONG TO AN IDEAL

by Marcin Dumnicki

Abstract

In the paper we generalize a fibre criterion for a polynomial f to belong to a primary ideal I in the polynomial ring $\mathbb{K}[X, Y]$. We also investigate the general case where the ideal I is not primary.

Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be any set of variables. We shall write $\mathbb{K}[X]$ instead of $\mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$. If $f \in \mathbb{K}[X, Y]$, where X and Y are sets of variables, \mathbb{K} is an algebraically closed field, $Y=\left\{Y_{1}, \ldots, Y_{m}\right\}, a \in \mathbb{K}^{m}$, then $f_{a}:=$ $f\left(X_{1}, \ldots, X_{n}, a_{1}, \ldots, a_{m}\right)$. For a subset I of $\mathbb{K}[X, Y]$ we define $I_{a}=\left\{f_{a} \mid f \in\right.$ $I\}$. Of course, if I is an ideal then is I_{a}. We shall also write I_{Y} for $I \cap \mathbb{K}[Y]$.

The following theorem was proved by Jarnicki-O'Carroll-Winiarski [2] (see also preprint, proposition 12):

Let I be an ideal in $\mathbb{K}[X, Y]$ such that $I \cap \mathbb{K}[Y]=(0)$, where \mathbb{K} is an algebraically closed field. Assume that for all $a \in \mathbb{K}^{m}$ the ideal I_{a} is proper and zero-dimentional. Then the following holds true:

$$
\forall f \in \mathbb{K}[X, Y] \quad \forall a \in \mathbb{K}^{m} f_{a} \in I_{a} \Longrightarrow f \in I
$$

We generalize the above to the following:
TheOrem. Let \mathbb{K} be an algebraically closed field, I be a primary ideal in $\mathbb{K}[X, Y]$. Then the following conditions are equivalent:

$$
\begin{equation*}
\forall f \in \mathbb{K}[X, Y] \quad \forall a \in \mathbb{K}^{m} f_{a} \in I_{a} \Longrightarrow f \in I \tag{1}
\end{equation*}
$$ I_{Y} is radical.

We also investigate the case where the ideal I is not primary. The original proof by W. Jarnicki, L. O'Carroll and T. Winiarski uses comprehensive Gröbner bases and cannot be carried over to the general case. Our approach
makes use of reduced Gröbner bases, and is essentially based on a lemma on specialization for a Gröbner basis. Although this lemma is well known, we give its proof for the reader's convenience. Another, purely algebraic proof of the fibre criterion is presented by K. J. Nowak [3], who does not use the theory of Gröbner bases.

We begin by recalling some basic definitions and facts concerning Gröbner bases, which are used in the proof of the main result of this paper. For a thorough introduction to the theory of Gröbner bases, we refer the reader to [1].

Definition. A term is a product of the form $X_{1}^{e_{1}} \cdots X_{n}^{e_{n}}$, with $e_{i} \in \mathbb{N}$ for $1 \leq i \leq n$. We denote by $T(X)$, or simply by T the set of all terms in these variables.

Definition. A term order (denoted by \preceq) is a linear order on T that satisfies the following conditions:
(1) $\forall t \in T$ $1 \preceq t$,
(2) $\forall s, t_{1}, t_{2} \in T \quad t_{1} \preceq t_{2} \Longrightarrow t_{1} s \preceq t_{2} s$.

Definition. Let $1 \leq i<n, T_{1}=T\left(X_{1}, \ldots, X_{i}\right), T_{2}=T\left(X_{i+1}, \ldots, X_{n}\right)$, and let \preceq_{1} and \preceq_{2} be term orders on T_{1} and T_{2} respectively. Any $t \in T$ may be written uniquely as $t=t_{1} t_{2}$ with $t_{i} \in T_{i}$ for $i=1,2$. Then term order \preceq on T defined as follows: $s \preceq t$ if
$s_{1} \prec_{1} t_{1}$, or
($s_{1}=t_{1}$ and $s_{2} \preceq_{2} t_{2}$)
is called a block order on T where $T_{1} \ll T_{2}$.
Definition. Let $f \in \mathbb{K}[X], f \neq 0$, and let \preceq be a term order on T. Write the polynomial f in the following form:

$$
f(X)=\sum_{\alpha} c_{\alpha} X^{\alpha} .
$$

We define the support, leading term and leading coefficient of f as follows:

$$
\begin{gathered}
\operatorname{supp}(f)=\left\{X^{\alpha} \mid c_{\alpha} \neq 0\right\} \\
\operatorname{LT}(f)=\max (f) \\
\mathrm{LC}(f)=\text { the coefficient of } \operatorname{LT}(f) \text { in } f,
\end{gathered}
$$

where $\max (f)$ denotes the maximal element, with respect to \preceq, among terms of f with non-zero coefficients. For $f, g \in \mathbb{K}[X]$ we say that $f \leq g$ if $\operatorname{LT}(f) \preceq$ $\mathrm{LT}(g)$.

Definition. Let P be a finite subset of $\mathbb{K}[X], f \in \mathbb{K}[X]$. We say that f is reducible $\bmod P$ if $\exists p \in P$ and $t \in \operatorname{supp}(f)$ such that $\operatorname{LT}(p) \mid t$. If f is not
reducible $\bmod P$ then we say that f is in normal form mod P. Assume that f is reducible $\bmod P, \operatorname{LT}(p) \mid t$ for some $t \in \operatorname{supp}(f)$, and

$$
g=\mathrm{LC}(p) f-a s p,
$$

where $s \in T$ satisfies $\operatorname{LT}(p) s=\operatorname{LT}(f)$, and a is the coefficient of the term t in the polynomial f. Than we say that f reduces to $g \bmod P($ notation $f \longrightarrow g)$.

Definition. Let P be a finite subset of $\mathbb{K}[X], f \in \mathbb{K}[X]$. We say, that f is top-reducible $\bmod P$ if $\exists p \in P$ such that $\operatorname{LT}(p) \mid \operatorname{LT}(f)$.

Definition. For any polynomials g and f we say, that g is a normal form of $f \bmod P$ if g is in normal form $\bmod P$, and there exists g_{1}, \ldots, g_{r} for some $r \in \mathbb{N}$ such that $g_{1}=f, g_{r}=g$, and

$$
\forall i \in\{1, \ldots, r-1\} \quad g_{i} \longrightarrow g_{i+1} .
$$

Definition. Let $0 \neq f \in \mathbb{K}[X], G$ a finite subset of $\mathbb{K}[X], 0 \notin G$. A representation

$$
f=\sum_{i=1}^{k} q_{i} g_{i}
$$

with polynomials $0 \neq q_{i} \in \mathbb{K}[X]$ and $g_{i} \in G(1 \leq i \leq k)$ is called a standard representation of f with respect to (w.r.t) G if

$$
\max \left\{\operatorname{LT}\left(q_{i} g_{i}\right) \mid 1 \leq i \leq k\right\} \preceq \operatorname{LT}(f) .
$$

Definition. By a Gröbner basis G (with respect to a term order \preceq) we mean a finite set of polynomials that satisfies one of the following equivalent conditions: (cf. [1])
(1) $\forall f \in I \quad f \neq 0 \Longrightarrow f$ is reducible $\bmod G$
(2) $\forall f \in I \quad f \neq 0 \Longrightarrow f$ is top-reducible $\bmod G$
(3) $\forall f \in \mathbb{K}[X] \quad f \in I \Longleftrightarrow$ some normal form of $f=0$
(4) $\forall f \in \mathbb{K}[X] \quad f \in I \Longleftrightarrow$ the unique normal form of $f=0$
(5) $\forall f \in I \quad f \neq 0 \Longrightarrow f$ has a standard representation w.r.t. G,
where I is the ideal generated by G.
We say that a Gröbner basis is reduced if for all $1 \leq i \leq r, g_{i}$ is in normal form $\bmod G \backslash\left\{g_{i}\right\}$, and $\mathrm{LC}\left(g_{i}\right)=1$.

Remark. Since the conditions (1) and (2) in the above definition are equivalent, whenether we write that the polynomial is reducible we mean that is top-reducible.

Now let I be an ideal in $\mathbb{K}[X]$, and let \preceq be a term order on T. Then there exists (exactly one) reduced Gröbner basis of I with respect to \preceq (cf. [1]).

Definition. Let f and g be in $\mathbb{K}[X], q$ be the least common multiple (lcm) of $\operatorname{LT}(f)$ and $\operatorname{LT}(g)$ in T, and let $s, t \in T$ such that $\operatorname{LT}(f) s=q, \operatorname{LT}(g) t=q$, then we define the S-polynomial of f and g :

$$
S-\operatorname{poly}(f, g)=\mathrm{LC}(g) s f-\mathrm{LC}(f) t g .
$$

The idea of the S-poly is to multiply leading terms of f and g by some terms and coefficients in order to "cancel" them.

We will make use of the following well known theorem (cf. [1): Let G be a finite subset of $\mathbb{K}[X], 0 \notin G$, and let \preceq be a term order on T. Assume that for all $g_{1}, g_{2} \in G, S$-poly $\left(g_{1}, g_{2}\right)$ equals 0 or has a standard representation with respect to G. Then G is a Gröbner basis.

All above definitions and theorems are classical and can be found in any book about Gröbner bases. The next lemma is known, however is not so classical.

We shall use the following notation to deal with Gröbner bases in $\mathbb{K}[X, Y]$. Every $f \in \mathbb{K}[X, Y]$ can be written in the following form:

$$
f=\sum_{\alpha \in \mathbb{N}^{n}} W_{\alpha}(Y) X^{\alpha} .
$$

If $\operatorname{LT}(f)=X^{\beta} Y^{\delta}$, then we define

$$
\operatorname{LT}_{X}(f)=X^{\beta}, \quad \mathrm{LC}_{X}(f)=W_{\beta}(Y)
$$

For $G \subset \mathbb{K}[X, Y]$ we shall write $G_{X \backslash Y}=G \backslash(G \cap \mathbb{K}[Y])$.
To prove the main theorem we need the following
Lemma. Let \mathbb{K} be an algebraically closed field, I an ideal in $\mathbb{K}[X, Y]$, and let \preceq be any block order on $T(X, Y)$ where $Y \ll X$. Let G be the reduced Gröbner basis ${ }^{1}$ of I with respect to \preceq. We denote by $V\left(I_{Y}\right)$ the algebraic set generated by I_{Y} in \mathbb{K}^{m}, where m is the number of variables Y. If I_{Y} is prime, then there exists an non-empty, open (in Zariski topology) set $U \subset V\left(I_{Y}\right)$, such that if $a \in U$ then $\left(G_{X \backslash Y}\right)_{a}$ is a Gröbner basis of I_{a} with respect to the restriction \preceq_{X} of \preceq to $T(X)$.

Remark. In the above lemma we take $\left(G_{X \backslash Y}\right)_{a}$ instead of G_{a} to avoid a situation when $0 \in G_{a}$. We recall the fact, that $G_{Y}=G \cap \mathbb{K}[Y]$ is a Gröbner basis of I_{Y}. We shall also write \preceq instead of \preceq_{X} and \preceq_{Y}, because these restrictions have only formal meaning.

[^0]Proof. We want to prove the condition concerning the S-polynomials. First observe that in our case $V\left(I_{Y}\right)$ is irreducible, and if we take an $f \in \mathbb{K}[Y]$, $f \notin I_{Y}$, than there exists an open, non-empty dense subset $U_{f} \subset V\left(I_{Y}\right)$ such that for $a \in U_{f} f(a) \neq 0$.
For g_{i} and g_{j} in $G_{X \backslash Y}$, define

$$
\widetilde{S}-\text { poly }\left(g_{i}, g_{j}\right)=\operatorname{LC}_{X}\left(g_{j}\right) X^{\alpha} g_{i}-\mathrm{LC}_{X}\left(g_{j}\right) X^{\beta} g_{i},
$$

where

$$
\operatorname{LT}_{X}\left(g_{i}\right) X^{\alpha}=\operatorname{LT}_{X}\left(g_{j}\right) X^{\beta}=\operatorname{lcm}\left(\operatorname{LT}_{X}\left(g_{i}\right), \operatorname{LT}_{X}\left(g_{j}\right)\right)
$$

We want to know that for a generic a

$$
\begin{equation*}
\widetilde{S}-\operatorname{poly}\left(g_{i}, g_{j}\right)_{a}=S-\operatorname{poly}\left(g_{i_{a}}, g_{j_{a}}\right) \tag{1}
\end{equation*}
$$

First observe that $\mathrm{LC}_{X}\left(g_{i}\right) \notin I_{Y}$. Otherwise $\mathrm{LC}_{X}\left(g_{i}\right)$ would be reducible mod G_{Y} and, in fact, g_{i} would be reducible $\bmod G \backslash\left\{g_{i}\right\}$. Now, if we take a belonging to $U_{g_{i}}:=U_{\mathrm{LC}_{X}\left(g_{i}\right)}$ and $U_{g_{j}}:=U_{\mathrm{LC}_{X}\left(g_{j}\right)}$ we have

$$
\operatorname{LT}\left(g_{i a}\right)=\operatorname{LT}_{X}\left(g_{i}\right), \quad \operatorname{LT}\left(g_{j_{a}}\right)=\operatorname{LT}_{X}\left(g_{j}\right),
$$

because $\mathrm{LC}_{X}\left(g_{i}\right)(a) \neq 0$ and $\mathrm{LC}_{X}\left(g_{j}\right)(a) \neq 0$. Then the equality (1) holds for $a \in U_{g_{i}} \cap U_{g_{j}}$.

Reducing an \widetilde{S}-poly $\left(g_{i}, g_{j}\right) \bmod G_{Y}$ we obtain a polynomial $S_{i, j}$ which is either 0 or not reducible $\bmod G_{Y}$, and

$$
S_{i, j}=\widetilde{S}-\operatorname{poly}\left(g_{i}, g_{j}\right)+q,
$$

where $q \in I_{Y}$. From the above equality we have, for an $a \in V\left(I_{Y}\right)$

$$
S_{i, j_{a}}=\widetilde{S}-\operatorname{poly}\left(g_{i}, g_{j}\right)_{a}
$$

Because $S_{i, j}$ is not reducible $\bmod G_{Y}, \operatorname{LC}_{X}\left(S_{i, j}\right) \notin G_{Y}$ and for $a \in U_{S_{i, j}}=$ $U_{\mathrm{LC}_{X}\left(S_{i, j}\right)}$ we have $\mathrm{LC}_{X}\left(S_{i, j}\right)(a) \neq 0 . S_{i, j} \in I$, so it has the standard representation

$$
S_{i, j}=\sum_{\ell=1}^{r} h_{\ell} g_{\ell},
$$

where for $1 \leq \ell \leq r$

$$
\operatorname{LT}\left(h_{\ell} g_{\ell}\right) \preceq \operatorname{LT}\left(S_{i, j}\right) .
$$

For $a \in U_{S_{i, j}}$ we have

$$
\operatorname{LT}\left(h_{\ell a} g_{\ell a}\right) \preceq \operatorname{LT}_{X}\left(h_{\ell} g_{\ell}\right) \preceq \operatorname{LT}_{X}\left(S_{i, j}\right)=\operatorname{LT}\left(S_{i, j_{a}}\right),
$$

and thus the representation

$$
S_{i, j_{a}}=\sum_{\ell=1}^{r} h_{\ell a} g_{\ell a}
$$

(after deleting the components which become 0) is a standard representation. Therefore

$$
U=\bigcap_{\left(g_{i}, g_{j}\right) \in\left(G_{X \backslash Y}\right)^{2}} U_{S_{i, j}} \cap \bigcap_{g_{i} \in G_{X \backslash Y}} U_{g_{i}}
$$

is a non-empty open set, required in the Lemma.
Now we state the following main theorem
Theorem 1. Let \mathbb{K} be an algebraically closed field, I be a primary ideal in $\mathbb{K}[X, Y]$. Then the following conditions are equivalent:
(1) $\quad \forall f \in \mathbb{K}[X, Y] \quad \forall a \in \mathbb{K}^{m} f_{a} \in I_{a} \Longrightarrow f \in I$,
I_{Y} is radical.
Proof. To show $(2) \Longrightarrow(1)$, we assume that it is not true. Let G be a reduced Gröbner basis of I with respect to a block order \preceq, like in the Lemma. Define the set

$$
M:=\left\{f \in \mathbb{K}[X, Y] \mid f \notin I, \forall a \in \mathbb{K}^{m} f_{a} \in I_{a}\right\}
$$

Then $M \neq \emptyset$, and we can choose a minimal element f_{0} of M with respect to \leq (that means that $\operatorname{LT}\left(f_{0}\right)$ is smaller or equal to leading term of any other element in M with respect to \preceq). Moreover, we take f_{0} which is in normal form mod G. Take U from the previous Lemma (I_{Y} is prime because it is primary and radical).

We have two cases:
Case 1. $f_{0} \notin \mathbb{K}[Y]$. Take an $a \in U$ such that $\mathrm{LC}_{X}\left(f_{0}\right)(a) \neq 0\left(f_{0}\right.$ is in normal form $\bmod G$, so $\operatorname{LC}_{X}\left(f_{0}\right)$ is not reducible $\left.\bmod G_{Y}\right)$. Then $\left(f_{0}\right)_{a} \in I_{a},\left(G_{X \backslash Y}\right)_{a}$ is a Gröbner basis of I_{a}, so for some i and some α we have the following:

$$
\operatorname{LT}\left(\left(f_{0}\right)_{a}\right)=\operatorname{LT}\left(g_{i a}\right) X^{\alpha}
$$

But we can also see that

$$
\operatorname{LT}_{X}\left(f_{0}\right)=\operatorname{LT}_{X}\left(g_{i}\right) X^{\alpha}
$$

and take

$$
f^{\prime}=\mathrm{LC}_{X}\left(g_{i}\right) f_{0}-\mathrm{LC}_{X}\left(f_{0}\right) X^{\alpha} g_{i}
$$

Then $f^{\prime}<f_{0}$ (the leading term of f_{0} is cancelled), $\forall a \in \mathbb{K}^{m} f^{\prime}{ }_{a} \in I_{a}$, hence $f^{\prime} \in I$ (from the minimal choice of f_{0}), and $\mathrm{LC}_{X}\left(g_{i}\right) f_{0} \in I$. Now $\mathrm{LC}_{X}\left(g_{i}\right)^{d} \in I$, for some natural d (because I is primary) and $\mathrm{LC}_{X}\left(g_{i}\right) \in I_{Y}$ (because I_{Y} is radical), a contradiction.
Case 2. $f_{0} \in \mathbb{K}[Y]$. For $a \in U$ the ideal I_{a} is proper (1 is not reducible mod $\left(G_{X \backslash Y}\right)_{a}$ since none of the $g_{i} \in G_{X \backslash Y}$ becomes a non-zero constant). Then $f_{a} \in I_{a}$ means that for all $a \in U f_{a}=f(a)$ is zero. Hence f is zero on the open, non-empty set in $V\left(I_{Y}\right)$, and then $f \in \operatorname{rad}\left(I_{Y}\right)=I_{Y} \subset I$, a contradiction.

The proof of the converse implication is easy. Take any $f \notin I_{Y}, f \in \operatorname{rad}\left(I_{Y}\right)$. Then
if $f(a)=0$, then $f_{a}=f(a) \in I_{a}$,
if $f(a) \neq 0$, then $0 \neq f_{a}{ }^{d} \in I_{a}$ for some d, so $I_{a}=(1)$, and $f_{a} \in I_{a}$,
but $f \notin I$.
The case of an arbitrary (possibly non-primary) ideal will be considered in the following theorem

Theorem 2. Let \mathbb{K} be an algebraically closed field, I any ideal in $\mathbb{K}[X, Y]$, $I=\bigcap_{k=1}^{r} I_{k}$ a primary decomposition of I. Then
(1) if $\forall k 1 \leq k \leq r I_{k Y}$ is radical, then I has property (*).
(2) if $\exists k 1 \leq k \leq r$, such that $I_{k Y}$ is not radical, and I_{k} is the isolated component of I, then I has not property (*).

Proof. (1) Take an $f \in \mathbb{K}[X, Y], \forall a f_{a} \in I_{a}$. Then we have

$$
I_{a} \subset \bigcap_{k=1}^{r}\left(I_{k}\right)_{a}
$$

so $\forall a, \forall k f_{a} \in\left(I_{k}\right)_{a}$. From Theorem 1 we have $\forall k f \in I_{k}$, and consequently $f \in I$.
(2) Take $f \in \mathbb{K}[Y]$ such that $f \notin I_{k}, f \in \operatorname{rad}\left(I_{k}\right)$. For all $i \in\{1, \ldots, r\} i \neq k$ take $g_{i} \in I_{i}$ such that $g_{i} \notin \operatorname{rad}\left(I_{k}\right)$. (This is possible since I_{k} is isolated.) Let $g=g_{1} \ldots g_{k-1} g_{k+1} \ldots g_{r}$. Then $g \notin \operatorname{rad} I_{k}$. Now if $g f \in I$ then $g f \in I_{k}, f \notin I_{k}$ $\Longrightarrow \exists d g^{d} \in I_{k} \Longrightarrow g \in \operatorname{rad}\left(I_{k}\right)$, which is false. But $f^{d} \in I_{k}$ for some d, hence $g f^{d} \in I$. Now the theorem follows from the following lemma:

Lemma. Let I be an ideal in $\mathbb{K}[X, Y]$ which has property (*). Then

$$
\forall g \in \mathbb{K}[X, Y], \forall f \in \mathbb{K}[Y], \forall d \in \mathbb{N}, d \neq 0 \quad g f^{d} \in I \Longrightarrow g f \in I
$$

Proof. Take any $a \in \mathbb{K}^{m}$. Then

$$
g_{a} f^{d}{ }_{a}=g_{a} f(a)^{d} \in I_{a} .
$$

If $f(a)=0$ then $g_{a} f_{a}=g_{a} f(a)=0 \in I_{a}$, and otherwise $\frac{1}{f(a)} \in K$ gives $g_{a} f(a) \in I_{a}$. Property (*) gives $g f \in I$, since we can do the same for an arbitrary a.

We can look at some simple examples in $\mathbb{K}\left[X, Y_{1}, Y_{2}\right]$:
$I=(X)$ has the property, is primary, $I_{Y}=(0)$,
$I=\left(X, Y_{1}\right) \quad$ has the property, is primary, but $I_{Y}=\left(Y_{1}\right)$,
$I=\left(X Y_{1}^{2}\right) \quad$ has not the property, is not primary,
$I=\left(X Y_{1}\right) \quad$ has the property, but is not primary,
$I=\left(X, Y_{1}^{2}\right) \quad$ has not the property, is primary, but $I_{Y}=\left(Y_{1}^{2}\right)$,
$I=\left(X, Y_{1}{ }^{2}-Y_{2}\right)$ has the property, is primary, but $I_{Y}=\left(Y_{1}{ }^{2}-Y_{2}\right)$.
To observe that the assumption that the primary component is isolated cannot be dropped, consider the following example of primary decomposition $\mathbb{K}[X, Y]:$

$$
\left(X^{2}, X Y\right)=(X) \cap\left(X^{2}, X Y, Y^{2}\right)
$$

and the second component, which is embedded, contracted to $\mathbb{K}[Y]$ is not radical. However the decomposition

$$
\left(X^{2}, X Y\right)=(X) \cap\left(X^{2}, Y\right)
$$

shows that the ideal $\left(X^{2}, X Y\right)$ has property $(*)$.

References

1. Becker T., Weispfenning V., Gröbner bases, Springer-Verlag, (1993).
2. Jarnicki W., O'Carroll L., Winiarski T., Ideal as an intersection of zero-dimensional ideals and the noether exponent, Univ. Iagel. Acta Math. (to appear).
3. Nowak K.J., A short proof of a fibre criterion for polynomials to belong to an ideal, Univ. Iagel. Acta Math. (to appear).

Received March 12, 2001
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: dumnicki@omega.im.uj.edu.pl

[^0]: ${ }^{1}$ In fact, we do not need a reduced Gröbner basis, it is enough to have a minimal one.

