HOLOMORPHIC FUNCTIONS WITH SINGULARITIES ON ALGEBRAIC SETS

By Józef Siciak

Abstract

The aim of the paper is to prove the following Theorem: Let P be a non-zero polynomial of two complex variables. Put $A:=$ $\left\{\left(z_{1}, z_{2}\right) ; P\left(z_{1}, z_{2}\right)=0\right\}, A_{z_{2}}^{1}:=\left\{z_{1} ; P\left(z_{1}, z_{2}\right)=0\right\}, A_{z_{1}}^{2}:=\left\{z_{2} ; P\left(z_{1}, z_{2}\right)=\right.$ $0\}$. Let E_{1}, E_{2} be two closed subsets of \mathbb{C} with positive logarithmic capacities. Put $X:=\left(E_{1} \times \mathbb{C}\right) \cup\left(\mathbb{C} \times E_{2}\right)$. Let $f: X \backslash A \ni\left(z_{1}, z_{2}\right) \mapsto f\left(z_{1}, z_{2}\right) \in \mathbb{C}$ be a function separately holomorphic on $X \backslash A$, i.e. $f\left(z_{1}, \cdot\right) \in \mathcal{O}\left(\mathbb{C} \backslash A_{z_{1}}^{2}\right)$ for every $z_{1} \in E_{1}$, and $f\left(\cdot, z_{2}\right) \in \mathcal{O}\left(\mathbb{C} \backslash A_{z_{2}}^{1}\right)$ for every $z_{2} \in E_{2}$.

Then there exists a unique function $\tilde{f} \in \mathcal{O}\left(\mathbb{C}^{2} \backslash A\right)$ with $\tilde{f}=f$ on $X \backslash A$. Theorem remains true for all $n \geq 2$.

If $E_{1}=E_{2}=\mathbb{R}$ and $P\left(z_{1}, z_{2}\right)=z_{1}-z_{2}$, we get the result due to O . Öktem 5].

1. Introduction. The aim of this paper is to prove the following theorem.

TheOrem 1.1. Given $n \geq 2$, let $E_{j}(j=1, \ldots, n)$ be a closed subset of the complex plane \mathbb{C} of the positive logarithmic capacity. Put
$\left(^{*}\right) X:=\left(\mathbb{C} \times E_{2} \times \cdots \times E_{n}\right) \cup\left(E_{1} \times \mathbb{C} \times E_{3} \times \cdots \times E_{n}\right) \cup \cdots \cup\left(E_{1} \times \cdots \times E_{n-1} \times \mathbb{C}\right)$.
Let P be a non-zero polynomial of n complex variables. Put
$\left.{ }^{* *}\right) \quad A:=\left\{z \in \mathbb{C}^{n} ; P(z)=0\right\}, \quad A_{z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}}^{j}:=\left\{z_{j} \in \mathbb{C} ; z \in A\right\}$
for $\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right) \in \mathbb{C}^{n-1}, \quad j=1, \ldots, n$. Let $f: X \backslash A \mapsto \mathbb{C}$ be a function separately holomorphic on $X \backslash A$ in the sense that

$$
f\left(z_{1}, \ldots, z_{j-1}, \cdot, z_{j+1}, \ldots, z_{n}\right) \in \mathcal{O}\left(\mathbb{C} \backslash A_{z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}}^{j}\right)
$$

if $z_{k} \in E_{k}(k \neq j), \quad j=1, \ldots, n$.
1991 Mathematics Subject Classification. 32A10,32A99, 32D15, 32D10.
Key words and phrases. Algebraic set, separately holomomorphic function with singularities on algebraic set, analytic continuation, envelopes of holomorphy, plurisubharmonic functions, pluripotential theory.

Research supported by KBN grant 2 PO3A 04514.

Then $f \in \mathcal{O}\left(\mathbb{C}^{n} \backslash A\right)$, i.e. there exists a unique function $\tilde{f} \in \mathcal{O}\left(\mathbb{C}^{n} \backslash A\right)$ with $\tilde{f}=f$ on $X \backslash A$.

If $n=2, E_{1}=E_{2}=\mathbb{R}$ and $P\left(z_{1}, z_{2}\right)=z_{1}-z_{2}$, we get the result due to O. Öktem [5]. Properties of separately holomorphic functions of the above type were used by O. Öktem ($\mathbf{5}, \mathbf{6} \mathbf{6}$) to characterize the range of the exponential Radon transform (which in turn is of interest for mathematical tomography). Theorem 1.1 shows that the Main conjecture of paper [6] is true at least for a class of special cases interesting for applications in mathematical tomography

Let D_{1} and D_{2} be two domains in \mathbb{C}^{n} with $D_{1} \subset D_{2}$. In the sequel we shall say that a function f defined and holomorphic on D_{1} is holomorphic on D_{2}, if there exists a unique function \tilde{f} holomorphic on D_{2} such that $\tilde{f}=f$ on D_{1}.

We shall need the following three known theorems.
Theorem 1.2. Let F_{j} be a nonpolar relatively closed subset of a domain D_{j} on the complex z_{j}-plane, $j=1, \ldots, n$. Let $f: X \mapsto \mathbb{C}$ be a function of n complex variables separately holomorphic on the set $X:=D_{1} \times F_{2} \times \cdots \times F_{n} \cup$ $\ldots \cup F_{1} \times \cdots \times F_{n-1} \times D_{n}$.

Then the function f is holomorphic on a neighborhood of the set $D_{1} \times\left(F_{2}\right)_{\text {reg }} \times \cdots \times\left(F_{n}\right)_{\text {reg }} \quad \cup \quad \cdots \quad \cup \quad\left(F_{1}\right)_{\text {reg }} \times \cdots \times\left(F_{n-1}\right)_{\text {reg }} \times D_{n}$, where $\left(F_{j}\right)_{\text {reg }}$ is the set of points a of F_{j} such that F_{j} is locally regular (in the sense of the logarithmic potential theory) at a.

Theorem 1.3. Let $D \subset \mathbb{C}^{m}$ (resp. $G \subset \mathbb{C}^{n}$) be a domain with a pluripolar boundary. Let E (resp. F) be a non-pluripolar relatively closed subset of D (resp. G).

Then every function $f: X \mapsto \mathbb{C}$ separately holomorphic on the set $X:=$ $E \times G \cup D \times F$ is holomorphic on $D \times G$.

Theorems 1.2 and 1.3 are direct consequences of (e.g.) the main result of 4$]$.

Theorem 1.4. [1 Let A be an analytic subset (of pure codimension 1) of the envelope of holomorphy \hat{D} of a domain $D \subset \mathbb{C}^{n}$.

Then $\hat{D} \backslash A$ is the envelope of holomorphy of $D \backslash A$.
2. Proof of Theorem 1.1, We shall show that our theorem follows from the following Lemma.

Lemma 2.1. There exists a function g holomorphic on the domain $\mathbb{C}^{n} \backslash A$ such that $g=f$ on $F_{1} \times \cdots \times F_{n}$, where $F_{1} \times \cdots \times F_{n} \subset \mathbb{C}^{n} \backslash A$ and F_{j} is a non-polar subset of $E_{j}(j=1, \ldots, n)$.

[^0]In order to prove Theorem 1.1 it is sufficient to show that $g=f$ on $X \backslash A$.
First we shall consider the case of $n=2$. Fix $\left(a_{1}, a_{2}\right) \in X \backslash A$. We need to show that $g\left(a_{1}, a_{2}\right)=f\left(a_{1}, a_{2}\right)$. Without loss of generality we may assume that $a_{1} \in E_{1}$.

For a fixed $z_{2} \in F_{2}$ the functions $f\left(\cdot, z_{2}\right)$ and $g\left(\cdot, z_{2}\right)$ are holomorphic in the domain $\mathbb{C} \backslash A_{z_{2}}^{1}$ and identical on the nonpolar subset F_{1}. Therefore

$$
f\left(z_{1}, z_{2}\right)=g\left(z_{1}, z_{2}\right), \quad z_{1} \in \mathbb{C} \backslash A_{z_{2}}^{1}, \quad z_{2} \in F_{2}
$$

Let G_{2} be a non-polar subset of F_{2} such that $P\left(a_{1}, z_{2}\right) \neq 0$ for all $z_{2} \in$ G_{2}. Then $a_{1} \in \mathbb{C} \backslash A_{z_{2}}$ for all $z_{2} \in G_{2}$. Hence $f\left(a_{1}, z_{2}\right)=g\left(a_{1}, z_{2}\right)$ for all $z_{2} \in G_{2}$. The functions $f\left(a_{1}, \cdot\right)$ and $g\left(a_{1}, \cdot\right)$ are holomorphic on the domain $\mathbb{C} \backslash A_{a_{1}}^{2}$ and identical on the nonpolar subset G_{2} of the domain. Therefore $f\left(a_{1}, z_{2}\right)=g\left(a_{1}, z_{2}\right)$ for all $z_{2} \in \mathbb{C} \backslash A_{a_{1}}^{2}$. In particular, $f\left(a_{1}, a_{2}\right)=g\left(a_{1}, a_{2}\right)$ because $a_{2} \in \mathbb{C} \backslash A_{a_{1}}^{2}$.

Now consider the case of $n>2$ and assume that Theorem 1.1 is true in \mathbb{C}^{k} with $2 \leq k \leq n-1$. Fix $a=\left(a_{1}, \ldots, a_{n}\right) \in X \backslash A$. Without loss of generality we may assume that $a_{1} \in E_{1}$. Put $a=\left(a_{1}, a^{\prime}\right)$ with $a^{\prime}=\left(a_{2}, \ldots, a_{n}\right)$. Observe that $A_{a_{1}}^{(2, \ldots, n)}:=\left\{z^{\prime} \in \mathbb{C}^{n-1} ; P\left(a_{1}, z^{\prime}\right)=0\right\} \neq \mathbb{C}^{n-1}$.

It is clear that $f\left(z_{1}, z^{\prime}\right)=g\left(z_{1}, z^{\prime}\right)$ if $z_{1} \in \mathbb{C} \backslash A_{z^{\prime}}^{1}$ and $z^{\prime} \in F_{2} \times \cdots \times F_{n}$. Let $G_{j}(j=2, \ldots, n)$ be a non-polar subset of F_{j} such that $P\left(a_{1}, z^{\prime}\right) \neq 0$ for all $z^{\prime}=\left(z_{2}, \ldots, z_{n}\right) \in G_{2} \times \cdots \times G_{n}$. Then the function $g\left(a_{1}, \cdot\right)$ is holomorphic in $\mathbb{C}^{n-1} \backslash A_{a_{1}}^{(2, \ldots, n)}$, and

$$
f\left(a_{1}, z^{\prime}\right)=g\left(a_{1}, z^{\prime}\right), \quad z^{\prime} \in G_{2} \times \cdots \times G_{n} \subset E_{2} \times \cdots \times E_{n} \backslash A_{a_{1}}^{(2, \ldots, n)}
$$

Put

$$
X^{\prime}:=\mathbb{C} \times E_{3} \times \cdots \times E_{n} \cup \cdots \cup E_{2} \times \cdots \times E_{n-1} \times \mathbb{C} .
$$

Then the function $f\left(a_{1}, \cdot\right)$ is separately analytic on $X^{\prime} \backslash A_{a_{1}}^{(2, \ldots, n)}$, and the function $g\left(a_{1}, \cdot\right)$ is holomorphic on

$$
\mathbb{C}^{n-1} \backslash A_{a_{1}}^{(2, \ldots, n)}
$$

Moreover, $f\left(a_{1}, z^{\prime}\right)=g\left(a_{1}, z^{\prime}\right)$ for all $z^{\prime} \in G_{2} \times \cdots \times G_{n}$. By the induction assumption we have $f\left(a_{1}, z^{\prime}\right)=g\left(a_{1}, z^{\prime}\right)$ for all $z^{\prime} \in \mathbb{C}^{n-1} \backslash A_{a_{1}}^{(2, \ldots, n)}$. It is clear that $a^{\prime} \in \mathbb{C}^{n-1} \backslash A_{a_{1}}^{(2, \ldots, n)}$. Therefore $f(a)=g(a)$. The proof is concluded.
3. Proof of Lemma 2.1. For each k with $1 \leq k \leq n$ the polynomial P can be written in the form

$$
P(z)=\sum_{j=0}^{d_{k}} p_{k j}\left(z_{1}, \ldots, z_{k-1}, z_{k+1}, \ldots, z_{n}\right) z_{k}^{j}
$$

where $d_{k} \geq 0$ and $p_{k d_{k}} \neq 0(k=1, \ldots, n)$. It is clear that $d_{k}=0$ iff P does not depend on z_{k}. If $P=$ const $\neq 0$ then $A=\emptyset$.

$$
\begin{aligned}
& \text { Put } \\
& A^{k} \quad:=\left\{z \in \mathbb{C}^{n} ; p_{k d_{k}}\left(z_{1}, \ldots, z_{k-1}, z_{k+1}, \ldots, z_{n}\right)=0\right\}, \quad k=1, \ldots, n .
\end{aligned}
$$

Then the set

$$
B \quad:=A \cup A^{1} \cup \cdots \cup A^{n}
$$

is pluripolar. We know that the set $\left(E_{j}\right)_{\text {reg }}$ is not polar. Therefore the cartesian product $\left(E_{1}\right)_{\text {reg }} \times \cdots \times\left(E_{n}\right)_{\text {reg }}$ is not pluripolar, and hence

$$
\left(E_{1}\right)_{r e g} \times \cdots \times\left(E_{n}\right)_{r e g} \backslash B \neq \emptyset .
$$

Fix

$$
z^{o}=\left(z_{1}^{o}, \ldots, z_{n}^{o}\right) \in\left(E_{1}\right)_{\text {reg }} \times \cdots \times\left(E_{n}\right)_{\text {reg }} \backslash\left(A \cup A^{1} \cup \cdots \cup A^{n}\right) .
$$

Then there exists $r_{o}>0$ such that
(**) $\quad\left(\bar{B}\left(z_{1}^{o}, 2 r_{o}\right) \times \cdots \times \bar{B}\left(z_{n}^{o}, 2 r_{o}\right)\right) \cap\left(A \cup A^{1} \cup \cdots \cup A^{n}\right)=\emptyset$,
where $B\left(z_{j}^{o}, 2 r_{o}\right):=\left\{z_{j} \in \mathbb{C} ;\left|z_{j}-z_{j}^{o}\right|<2 r_{o}\right\}$. In particular, $p_{k d_{k}}\left(z_{1}, \ldots, z_{k-1}\right.$, $\left.z_{k+1}, \ldots, z_{n}\right) \neq 0$ on $\bar{B}\left(z_{1}^{o}, 2 r_{o}\right) \times \cdots \times \bar{B}\left(z_{k-1}^{o}, 2 r_{o}\right) \times B\left(z_{k+1}^{o}, 2 r_{o}\right) \times \cdots \times$ $\bar{B}\left(z_{n}^{o}, 2 r_{o}\right)$.

We shall show that Lemma 2.1 follows from the following Main Lemma.
Main Lemma 3.1. Given δ with $0<\delta<\min \left\{1, r_{0}\right\}$, put
$\Omega_{k}:=B\left(z_{1}^{o}, \delta\right) \times \cdots \times B\left(z_{k-1}^{o}, \delta\right) \times \mathbb{C} \times B\left(z_{k+1}^{o}, \delta\right) \times \cdots \times B\left(z_{n}^{o}, \delta\right) \quad 1 \leq k \leq n$. If δ is sufficiently small then for each $k=1, \ldots, n$ there exists a function f_{k} holomorphic on $\Omega_{k} \backslash A$ such that $f_{k}(z)=f(z)$ on the set $F_{1} \times \cdots \times F_{n}$, where

$$
F_{j}:=E_{j} \cap B\left(z_{j}^{o}, \delta\right), \quad j=1, \ldots, n
$$

In order to prove Lemma 2.1 let us observe that by ($\star \star$) $f_{j}=f_{k}=f$ on the non-pluripolar subset $F_{1} \times \cdots \times F_{n}$ of the domain $\left(\Omega_{j} \cap \Omega_{k}\right) \backslash A$. Therefore the function

$$
f_{o}:=f_{1} \cup \cdots \cup f_{n}
$$

is well defined and holomorphic on $\Omega \backslash A$ with $\Omega:=\Omega_{1} \cup \cdots \cup \Omega_{n}$. Moreover $f_{o}=f$ on $F_{1} \times \cdots \times F_{n}$. The set Ω is a Reinhardt domain with centre z^{o} whose envelope of holomorphy is \mathbb{C}^{n}. Therefore by the Grauert-Remmert Theorem 1.4 there exists a function g holomorphic on $\mathbb{C}^{n} \backslash A$ such that $g=f_{o}$ on $\Omega \backslash A$; in particular $g=f$ on $F_{1} \times \cdots \times F_{n}$. The proof of Lemma 2.1 is finished.
4. Proof of the Main Lemma. Fix integer k with $1 \leq k \leq n$. We shall consider two cases.

Case 1°. The polynomial P depends on z_{k}, i.e. $d_{k} \geq 1$.
Without loss of generality we may assume that $k=1$. Let $\left\{a_{1}, \ldots, a_{s}\right\}:=$ $\left\{z_{1} \in \mathbb{C} ; P\left(z_{1}, z_{2}^{o}, \ldots, z_{n}^{o}\right)=0\right\}$ be the zero set of the polynomial $P\left(\cdot, z_{2}^{o}, \ldots, z_{n}^{o}\right)$. By (**) the number m given by

$$
2 m:=\min \left\{\left|p_{1 d_{1}}\left(z^{\prime}\right)\right| ;\left|z_{j}-z_{j}^{o}\right| \leq r_{o}(j=2, \ldots, n)\right\}
$$

is positive.

Let $R_{o}>\max \left\{1, r_{o}\right\}$ be so large that $B\left(a_{j}, 2\right) \subset B\left(0, R_{o}\right) \quad(j=1, \ldots, s)$ and

$$
\begin{equation*}
|P(z)| \geq m\left|z_{1}\right|^{d_{1}} \quad \text { for all } \quad\left|z_{1}\right| \geq R_{o}, \quad\left|z_{j}-z_{j}^{o}\right| \leq r_{o}(j=2, \ldots, n) \tag{4.0}
\end{equation*}
$$

Fix ϵ with $0<\epsilon<1$ so small that

$$
\bar{B}\left(z_{1}^{o}, r_{o}\right) \cap\left(\cup_{j=1}^{s} \bar{B}\left(a_{j}, \epsilon\right)\right)=\emptyset, \quad \bar{B}\left(a_{j}, \epsilon\right) \cap \bar{B}\left(a_{l}, \epsilon\right)=\emptyset \quad(j \neq l)
$$

Without loss of generality we may assume that r_{o} is so small that $P(z) \neq 0$ for all z with $\left|z_{1}-a_{j}\right| \geq \frac{\epsilon}{4} \quad(j=1, \ldots, s), \quad\left|z_{j}-z_{j}^{o}\right| \leq r_{o} \quad(j=2, \ldots, n)$. Now given $R>R_{o}$ there exists δ such that $0<2 \delta<r_{o}$ and f is bounded and holomorphic on the set

$$
\left\{z \in \mathbb{C}^{n} ; \epsilon<\left|z_{1}-a_{j}\right|<\frac{3}{2} R \quad(j=1, \ldots, s), \quad\left|z_{l}-z_{l}^{o}\right|<\delta(l=2, \ldots, n)\right\} .
$$

Indeed, f is separately holomorphic on the set

$$
\begin{equation*}
D_{1} \times F_{2} \times \cdots \times F_{n} \cup \cdots \cup F_{1} \times \cdots \times F_{n-1} \times D_{n} \tag{দ}
\end{equation*}
$$

with $F_{1}:=E_{1} \cap \bar{B}\left(z_{1}^{o}, r_{o}\right), F_{j}:=E_{j} \cap B\left(z_{j}^{o}, r_{o}\right) \quad(j=2, \ldots, n), D_{1}:=\mathbb{C} \backslash$ $\left(\bar{B}\left(a_{1}, \frac{\epsilon}{4}\right) \cup \cdots \cup \bar{B}\left(a_{s}, \frac{\epsilon}{4}\right)\right), D_{j}:=B\left(z_{j}^{o}, r_{o}\right) \quad(j=2, \ldots, n)$. For each j the set F_{j} is locally regular at z_{j}^{o}. Hence by Theorem 1.2 there exists δ such that $O<2 \delta<r_{o}$ and f is holomorphic on the domain
(\dagger) $\left\{z \in \mathbb{C}^{n} ; \frac{\epsilon}{2}<\left|z_{1}-a_{j}\right|<2 R(j=1, \ldots, s), \quad\left|z_{\ell}-z_{\ell}^{o}\right|<2 \delta(\ell=2, \ldots, n)\right\}$.
Observe that the function

$$
W(\omega, z):=\frac{P\left(\omega, z^{\prime}\right)-P\left(z_{1}, z^{\prime}\right)}{\omega-z_{1}} \equiv \sum_{l=1}^{d_{1}} p_{1 l}\left(z^{\prime}\right)\left[\omega^{l-1}+\omega^{l-2} z_{1}+\cdots+z_{1}^{l-1}\right]
$$

is a polynomial of $n+1$ variables $\omega, z_{1}, \ldots, z_{n}$.
It is clear that for every $j \in \mathbb{Z}$ the function

$$
\Phi_{j}(\omega, z):=W(\omega, z) \frac{f\left(\omega, z^{\prime}\right)}{P\left(\omega, z^{\prime}\right)^{j+1}}
$$

is holomorphic on the set $\left\{(\omega, z) \in \mathbb{C}^{n+1} ; \frac{\epsilon}{2}<\left|\omega-a_{j}\right|<2 R(j=1, \ldots, s), z_{1} \in\right.$ $\left.\mathbb{C}, z^{\prime} \in B\left(z_{2}^{o}, 2 \delta\right) \times \cdots \times B\left(z_{n}^{o}, 2 \delta\right)\right\}$.

Therefore the function

$$
\begin{equation*}
c_{1 j}(z):=\frac{1}{2 \pi i} \int_{C(0, R)} \Phi_{j}(\omega, z) d \omega \tag{4.1}
\end{equation*}
$$

is holomorphic on the set $\mathbb{C} \times B\left(z_{2}^{o}, 2 \delta\right) \times \cdots \times B\left(z_{n}^{o}, 2 \delta\right)$; here $C(0, R)$ denotes the positively oriented circle of centre 0 and radius R. Moreover, by (4.0) for every compact subset K of \mathbb{C} there exists a positive constant $M=M(K, R)$ such that

$$
\begin{equation*}
\left|c_{1 j}(z)\right| \leq M^{|j|} \tag{4.2}
\end{equation*}
$$

for all $j \in \mathbb{Z}$ and $z \in K \times B\left(z_{2}^{o}, \delta\right) \times \cdots \times B\left(z_{n}^{o}, \delta\right)$.

For a fixed $z^{\prime} \in F_{2} \times \cdots \times F_{n}$ with $F_{j}:=E_{j} \cap B\left(z_{j}^{o}, \delta\right)$ the function $\Phi_{j}\left(\cdot, \cdot, z^{\prime}\right)$ is holomorphic on $\left\{\omega \in \mathbb{C} ; P\left(\omega, z^{\prime}\right) \neq 0\right\} \times \mathbb{C}$. Hence, by the Cauchy residue theorem,

$$
\begin{equation*}
c_{1 j}(z)=\frac{1}{2 \pi i} \int_{\partial D_{+}\left(z^{\prime}, \rho\right)} \Phi_{j}(\omega, z) d \omega, \quad z \in \mathbb{C} \times\left(F_{2} \times \cdots \times F_{n}\right), \tag{4.3}
\end{equation*}
$$

where ρ is any positive real number and

$$
D_{+}\left(z^{\prime}, \rho\right):=\left\{z_{1} \in \mathbb{C} ;\left|P\left(z_{1}, z^{\prime}\right)\right|<\rho\right\} .
$$

In the formula (4.3) the integration is taken over the positively oriented boundary of the open set $D_{+}\left(z^{\prime}, \rho\right)$ (the interior of the lemniscate on the z_{1}-plane).

We claim that the required function f_{1} may be given by the formula (a generalized Laurent series)

$$
f_{1}(z):=\sum_{-\infty}^{\infty} c_{1 j}(z) P(z)^{j}, \quad z \in \Omega_{1} \backslash A,
$$

where $c_{1 j}$ is defined by 4.1). It remains to show that the series is convergent locally uniformly in $\Omega_{1} \backslash A$, and $f_{1}=f$ on $F_{1} \times \cdots \times F_{n}$.

We already know that the functions $c_{1 j}$ are holomorphic on $\Omega_{1}:=\mathbb{C} \times$ $B\left(z_{2}^{o}, \delta\right) \times \cdots \times B\left(z_{n}^{o}, \delta\right)$. Passing to the proof of our claim let us observe that, given $z^{\prime} \in F_{2} \times \cdots \times F_{n}$ and $0<r<1$, we have
$f(z)=\frac{1}{2 \pi i} \int_{\partial D\left(z^{\prime}, r\right)} \frac{f\left(\omega, z^{\prime}\right)}{\omega-z_{1}} d \omega, \quad z_{1} \in D\left(z^{\prime}, r\right):=\left\{z_{1} \in \mathbb{C} ; r<\left|P\left(z_{1}, z^{\prime}\right)\right|<\frac{1}{r}\right\}$.
Hence

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial D_{+}\left(z^{\prime}, \frac{1}{r}\right)} \frac{f\left(\omega, z^{\prime}\right)}{\omega-z_{1}} d \omega-\frac{1}{2 \pi i} \int_{\partial D_{-}\left(z^{\prime}, r\right)} \frac{f\left(\omega, z^{\prime}\right)}{\omega-z_{1}} d \omega
$$

for all $z_{1} \in D\left(z^{\prime}, r\right)$, where $D_{+}\left(z^{\prime}, \frac{1}{r}\right):=\left\{z_{1} \in \mathbb{C} ;\left|P\left(z_{1}, z^{\prime}\right)\right|<\frac{1}{r}\right\}, D_{-}\left(z^{\prime}, r\right):=$ $\left\{z_{1} \in \mathbb{C} ;\left|P\left(z_{1}, z^{\prime}\right)\right|>r\right\}$.

Observe that

$$
\frac{f\left(\omega, z^{\prime}\right)}{\omega-z_{1}}=\frac{P\left(\omega, z^{\prime}\right)-P\left(z_{1}, z^{\prime}\right)}{\omega-z_{1}} \cdot \frac{f\left(\omega, z^{\prime}\right)}{P\left(\omega, z^{\prime}\right)-P\left(z_{1}, z^{\prime}\right)}=\sum_{j=0}^{\infty} \Phi_{j}(\omega, z) P(z)^{j}
$$

for all $\omega \in \mathbb{C}$ with $\left|P\left(\omega, z^{\prime}\right)\right|=\frac{1}{r}$ and all $z_{1} \in D_{+}\left(z^{\prime}, \frac{1}{r}\right)$, the series being uniformly convergent with respect to $\omega \in \partial D_{+}\left(z^{\prime}, \frac{1}{r}\right)$.

Similarly,

$$
\frac{f\left(\omega, z^{\prime}\right)}{\omega-z_{1}}=-\sum_{j=1}^{\infty} \Phi_{j}(\omega, z) P(z)^{-j}
$$

for all $\omega \in \partial D_{-}\left(z^{\prime}, r\right)$ and all $z_{1} \in D_{-}\left(z^{\prime}, r\right)$, the series being uniformly convergent with respect to $\omega \in \partial D_{-}\left(z^{\prime}, r\right)$.

By (4.3) it follows that

$$
\begin{equation*}
f(z)=\sum_{j=-\infty}^{\infty} c_{1 j}(z) P(z)^{j}, \quad z_{1} \in D\left(z^{\prime}, 0\right), \quad z^{\prime} \in F_{2} \times \cdots \times F_{n} \tag{4.4}
\end{equation*}
$$

Moreover, for every $\rho>0$, for every $z^{\prime} \in F_{2} \times \cdots \times F_{n}$, and for every compact subset K of \mathbb{C} there exists $M=M\left(\rho, z^{\prime}, K\right)>0$ such that

$$
\left|c_{1 j}(z)\right| \leq M \rho^{-j}, \quad j \in \mathbb{Z}, \quad z_{1} \in K, \quad z^{\prime} \in F_{2} \times \cdots \times F_{n}
$$

Hence for all $r>0, \quad z_{1} \in \mathbb{C}, \quad z^{\prime} \in F_{2} \times \cdots \times F_{n}$ one gets the inequalities

$$
\begin{array}{ll}
\left|c_{1 j}\left(z_{1}, z^{\prime}\right)\right| \leq M\left(\frac{1}{r}, z^{\prime},\left\{z_{1}\right\}\right) r^{j}, & j \geq 0 \\
\left|c_{1 j}\left(z_{1}, z^{\prime}\right)\right| \leq M\left(r, z^{\prime},\left\{z_{1}\right\}\right) r^{|j|}, & j \leq 1
\end{array}
$$

By the arbitrary nature of $r>0$ it follows that

$$
\limsup _{|j| \rightarrow \infty} \frac{1}{|j|} \log \left|c_{1 j}(z)\right|=-\infty, \quad z_{1} \in C, \quad z^{\prime} \in F_{2} \times \cdots \times F_{n}
$$

By 4.2 the sequence $\left\{\frac{1}{|j|} \log \left|c_{1 j}\right|\right\}$ is locally uniformly upper bounded on Ω_{1}. Put $u(z):=\lim \sup \frac{1}{|j|} \log \left|c_{1 j}(z)\right|, z \in \Omega_{1}$. Then the upper semicontinuous regularization u^{*} of u is plurisubharmonic in Ω_{1}, and by the Bedford-Taylor theorem [3] on negligible sets the set $\left\{z \in F_{1} \times \cdots \times F_{n} ;-\infty=u(z)=u^{*}(z)\right\}$ is non-pluripolar. Therefore $u^{*} \equiv-\infty$ in Ω_{1}.

Given a compact subset K of $\Omega_{1} \backslash A$, there exists $r=r(K)$ with $0<r<1$ such that $r<|P(z)|<\frac{1}{r}$ for all $z \in K$. Fix $k>0$ so large that $\frac{1}{r} e^{-k}<\frac{1}{2}$. By the Hartogs Lemma there exists $j_{o}=j_{o}(k, K)$ such that

$$
\frac{1}{|j|} \log \left|c_{1 j}(z) P(z)^{j}\right| \leq-k+\log \frac{1}{r}, \quad z \in K, \quad|j|>j_{o}
$$

i.e.

$$
\left|c_{1 j}(z)\right| P(z)^{j}\left|\leq 2^{-|j|}, \quad z \in K, \quad\right| j \mid>j_{o}
$$

It follows that the series $\sum_{j=-\infty}^{\infty} c_{1 j}(z) P(z)^{j}$ is uniformly convergent on every compact subset of $\Omega_{1} \backslash A$. Its sum f_{1} is holomorphic on $\Omega_{1} \backslash A$. By (4.4) $f_{1}=f$ on $F_{1} \times \cdots \times F_{n}$. The proof of Case 1^{o} is completed.

Case 2^{o}. The polynomial P does not depend on z_{k}.
Without loss of generality we may assume that $k=n$. Now the function f is separately holomorphic on the set (四) with $D_{j}:=B\left(z_{j}^{o}, r_{o}\right), F_{j}:=E_{j} \cap B\left(z_{j}^{o}, r_{o}\right)$ $\left(j=1, \ldots, n-1, D_{n}:=\mathbb{C}, F_{n}:=E_{n} \cap \bar{B}\left(z_{n}^{o}, r_{o}\right)\right.$. Given $R>0$, by Theorem 1.2 there exists sufficiently small $\delta>0$ such that f is holomorphic on the domain

$$
\left\{z \in \mathbb{C}^{n} ;\left|z_{j}-z_{j}^{o}\right|<2 \delta \quad(j=1, \ldots, n-1),\left|z_{n}\right|<2 R\right.
$$

The function
(a)

$$
c_{n j}(z) \equiv c_{n j}\left(z^{\prime}\right):=\frac{1}{2 \pi i} \int_{C(0, R)} \frac{f\left(z^{\prime}, \omega\right)}{\omega^{j+1}} d \omega, \quad j \geq 0
$$

with $z^{\prime}:=\left(z_{1}, \ldots, z_{n-1}\right)$, is holomorphic on the set $B\left(z_{1}^{o}, 2 \delta\right) \times \cdots \times B\left(z_{n-1}^{o}, 2 \delta\right) \times$ \mathbb{C}. Moreover, for every compact subset K of \mathbb{C} there exists a positive constant $M=M(K, R)$ such that
(b) $\quad\left|c_{n j}(z)\right| \leq M R^{-j}, \quad j \geq 0, \quad z \in \Omega_{n}:=B\left(z_{1}^{o}, \delta\right) \times \ldots B\left(z_{n-1}^{o}, \delta\right) \times K$.

It is clear that for every $\rho>0$

$$
\begin{equation*}
c_{n j}(z)=\frac{1}{2 \pi i} \int_{C(0, \rho)} \frac{f\left(z^{\prime}, \omega\right)}{\omega^{j+1}} d \omega, \quad z \in F_{1} \times \cdots \times F_{n-1} \times \mathbb{C} \tag{c}
\end{equation*}
$$

where $F_{j}:=E_{j} \cap B\left(z_{j}^{o}, \delta\right)$. Moreover,

$$
\begin{equation*}
f(z)=\sum_{j=0}^{\infty} c_{n j}(z) z_{n}^{j}, \quad z \in F_{1} \times \cdots \times F_{n-1} \times \mathbb{C} \tag{d}
\end{equation*}
$$

Put $u_{j}(z):=\frac{1}{j} \log \left|c_{n j}(z)\right|$. The sequence $\left\{u_{j}\right\}$ is locally uniformly upper bounded on Ω_{n}, and $\lim \sup _{j \rightarrow \infty} u_{j}(z)=-\infty$ for all $z \in F_{1} \times \cdots \times F_{n-1} \times \mathbb{C}$. Hence by the Hartogs Lemma and by the Bedford-Taylor theorem on negligible sets, the series $\sum_{j=0}^{\infty} c_{n j}(z) z_{n}^{j}$ is locally uniformly convergent on Ω_{n}, and its sum f_{n} is identical with f on $F_{1} \times \cdots \times F_{n}$. The proof of case 2^{o} is finished, and so is the proof of the Main Lemma.

References

1. Grauert H., Remmert R., Konvexität in der komplexen Analysis, Comment. Math.Helv. 31 (1976), 152-160, 161-183.
2. Jarnicki M., Pflug P., Cross Theorem, Ann. Polon. Math., (to appear).
3. Klimek M., Pluripotential Theory, The Clarendon Press 1991.
4. Nguyen Thanh Van, Zeriahi A., Une extension du théorème de Hartogs sur les fonctions séparément analytiques, In Analyse complexe multivariable (Guadeluppe, 1988), EditEl, Rende, 1991, 183-194.
5. Öktem Ozan, Extension of separately analytic functions and applications to range characterization of the exponential Radon transform, Ann. Polon. Math. 70 (1998), 195-213.
6. \qquad , Extension of separately analytic functions and applications to mathematical tomography, Department of Mathematics, Stockholm University 1999 (Thesis).

Received April 27, 2001
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: siciak@im.uj.edu.pl

[^0]: ${ }^{1}$ M. Janicki and P. Pflug [2] have shown that for $n=2$ the Main Conjecture is true with no additional assumptions.

