LINEAR FORMS ON MODULES OF PROJECTIVE DIMENSION ONE

by Udo Vetter

Let R be a noetherian ring and M an R-module which has a presentation

$$
0 \rightarrow F \xrightarrow{\psi} G \rightarrow M \rightarrow 0
$$

with finite free R-modules F and G of rank m and n. In [2] we proved:
Proposition 1. Assume that $r=n-m>1$ and that the first nonvanishing Fitting ideal of M has grade $r+1$. Then the following conditions are equivalent.
(1) There is a $\chi \in M^{*}=\operatorname{Hom}_{R}(M, R)$ such that the ideal $\operatorname{Im} \chi$ has grade $r+1$.
(2) There exists a submodule U of M with the following properties:
(i) $\operatorname{rank} U=r-1$;
(ii) U is reflexive, orientable, and $U_{\mathfrak{p}}$ is a free direct summand of $M_{\mathfrak{p}}$ for all primes \mathfrak{p} of R such that grade $\mathfrak{p} \leq r$.
(3) $m=1$ and r is odd.

The equivalence (1) $\Leftrightarrow(2)$ can easily be proved directly (see Proof of Proposition 7 in [2]) while the equivalence $(1) \Leftrightarrow(3)$ results from a description of the homology of the Koszul complex associated to a linear form on M (see Theorem 5 in [2]).

With the assumptions of Proposition 1, let $m=1$ and $n \geq 4$ be even (which means that the rank r of M is odd). Fix a basis e_{1}, \ldots, e_{n} of G and let $\psi(1)=\sum_{i=1}^{n}(-1)^{i} x_{i} e_{n+1-i}$. The map $\varphi: \sum_{i=1}^{n} a_{i} e_{i} \mapsto \sum_{i=1}^{n} a_{i} x_{i}$ then obviously induces a linear form χ on M such that grade $\operatorname{Im} \chi=n$. The submodule $U=\operatorname{Ker} \chi$ has properties (i) and (ii) of Proposition 1, and the (skewsymmetric) map $\rho: G \rightarrow G^{*}$ given by $\rho\left(e_{i}\right)=(-1)^{i} e_{n+1-i}^{*}, i=1, \ldots, n$, induces an
isomorphism $\bar{\rho}: U \rightarrow U^{*}$. (Here as in the following $e_{1}^{*}, \ldots, e_{n}^{*}$ denotes the basis of G^{*} dual to e_{1}, \ldots, e_{n}.) So condition (2) in Proposition 1 may be replaced by
(2') There exists a submodule U of M with the following properties:
(i) $\operatorname{rank} U=r-1$;
(ii) U is orientable, and $U_{\mathfrak{p}}$ is a free direct summand of $M_{\mathfrak{p}}$ for all primes \mathfrak{p} of R such that grade $\mathfrak{p} \leq r$;
(iii) U is selfdual in a skewsymmetric way, i.e. there is an isomorphism $\rho: U \rightarrow U^{*}$ such that $\rho^{*} \circ h=-\rho, h: U \rightarrow U^{* *}$ being the natural map.
The Koszul complex associated to φ induces an exact sequence

$$
\begin{equation*}
\bigwedge^{3} G \xrightarrow{\tau} \bigwedge^{2} G \xrightarrow{\sigma} \operatorname{Ker} \varphi \rightarrow 0 \tag{1}
\end{equation*}
$$

and there is a map p from $\operatorname{Ker} \varphi$ onto U which has the kernel $\psi(1)$. So, in particular, U is minimally generated by $\binom{n}{2}-1$ elements. The aim of this note is to give an explicit construction of U as a submodule of the free module $R^{\binom{n}{2}-1}$. Since

$$
\operatorname{Ker}(p \circ \sigma)=R \cdot \sum_{i=1}^{n / 2}(-1)^{i-1} e_{i} \wedge e_{n+1-i}+\operatorname{Ker} \sigma,
$$

in view of (11) we obtain an exact sequence

$$
R \oplus \bigwedge^{3} G \xrightarrow{\tilde{\tau}} \Lambda^{2} G \xrightarrow{p \circ \sigma} U \rightarrow 0,
$$

where

$$
\widetilde{\tau}(1,0)=\sum_{i=1}^{n / 2}(-1)^{i-1} e_{i} \wedge e_{n+1-i} \quad \text { and } \quad \widetilde{\tau}(0, y)=\tau(y)
$$

for all $y \in \bigwedge^{3} G$. Dualizing yields the exact sequence

$$
0 \rightarrow U^{*} \rightarrow \bigwedge^{2} G^{*} \xrightarrow{\tilde{\tau}^{*}} R \oplus \bigwedge^{3} G^{*},
$$

where we used the natural isomorphims $\bigwedge^{k} G^{*} \cong\left(\bigwedge^{k} G\right)^{*}$. We shall explicitly represent $U^{*}=\operatorname{Ker} \widetilde{\tau}^{*}$ as a submodule of $\bigwedge^{2} G^{*}$.

Proposition 2. The elements

$$
r_{i j}=\varphi \wedge\left((-1)^{j} x_{i} e_{n-j+1}^{*}+(-1)^{i+1} x_{j} e_{n-i+1}^{*}\right),
$$

$i, j=1, \ldots, n$, generate U^{*}.
Proof. Since $\varphi \wedge \eta$ vanishes on $\operatorname{Im} \tau$ for all $\eta \in G^{*}$, we have $r_{i j} \circ \tau=0$. Moreover,

$$
r_{i j}(\widetilde{\tau}(1,0))=\left(x_{j} x_{i}(-1)^{j} e_{j}^{*} \wedge e_{n-j+1}^{*}+(-1)^{i+1} x_{i} x_{j} e_{i}^{*} \wedge e_{n-i+1}^{*}\right)(\widetilde{\tau}(1,0))=0 .
$$

So $r_{i j} \in U^{*}$ for all i, j.

Let $\alpha=\sum_{1 \leq k<l \leq n} a_{k l} e_{k}^{*} \wedge e_{l}^{*} \in U^{*}$. Then, in particular,

$$
\begin{equation*}
a_{1 n}-a_{2, n-1}+\ldots+(-1)^{\frac{n}{2}+1} a_{\frac{n}{2}, \frac{n}{2}+1}=0 . \tag{2}
\end{equation*}
$$

Since $\alpha \circ \tau\left(e_{k} \wedge e_{l} \wedge e_{m}\right)=0$ for all k, l, m, we have in addition, that $a_{k l} \in$ $R x_{k}+R x_{l}$ for all k, l.

Next we claim that there is an element $\beta=\sum_{1 \leq k<l \leq n} b_{k l} e_{k}^{*} \wedge e_{l}^{*} \in \sum_{i, j} R$. $r_{i j}$, such that $a_{k l}=b_{k l}$ for $k+l=n+1$. To prove this let $1 \leq k<n / 2, k+l=$ $n+1$, and $a_{s t}=0$ if $s<k, s+t=n+1$. We show that there is a β which satisfies $b_{s t}=0$ for $s<k, s+t=n+1$, and $b_{k l}=a_{k l}$. Because of (2) this will prove our claim. First we deduce

$$
\begin{aligned}
a_{k l} & \in\left(R x_{k}+R x_{l}\right) \cap\left(R x_{k+1}+\ldots+R x_{l-1}\right) \\
& =R x_{k} x_{k+1}+\ldots+R x_{k} x_{l-1}+R x_{l} x_{k+1}+\ldots+R x_{l} x_{l-1},
\end{aligned}
$$

since x_{1}, \ldots, x_{n} is a regular sequence in R. Consider $r_{k j}, r_{j l}$ for $j=k+$ $1, \ldots, l-1$. Using the canonical isomorphism $G \rightarrow G^{* *}$, we get

$$
\left(e_{s} \wedge e_{t}\right)\left(r_{k j}\right)=\left\{\begin{array}{cl}
0 & \text { if } 1 \leq s<k, s+t=n+1 \\
\pm x_{k} x_{j} & \text { if }(s, t)=(k, l)
\end{array}\right.
$$

and

$$
\left(e_{s} \wedge e_{t}\right)\left(r_{j l}\right)=\left\{\begin{array}{cl}
0 & \text { if } 1 \leq s<k, s+t=n+1 \\
\pm x_{j} x_{l} & \text { if }(s, t)=(k, l)
\end{array}\right.
$$

So we can find an appropriate $b \in \sum_{i, j} R \cdot r_{i j}$.
In proving the proposition, namely $\alpha \in \sum_{i, j} R \cdot r_{i j}$, we may now assume that $a_{k l}=0$ whenever $k+l=n+1$. We then show that there is an element $\gamma=\sum c_{k l} e_{k}^{*} \wedge e_{l}^{*} \in \sum_{i, j} R \cdot r_{i j}$ with $c_{k l}=0$ for $k+l=n+1$ and $c_{1 l}=a_{1 l}$ for $l=2, \ldots, n / 2$. Since

$$
\begin{equation*}
x_{1} a_{l n}-x_{l} a_{1 n}+x_{n} a_{1 l}=0=x_{1} a_{l, n-l+1}-x_{l} a_{1, n-l+1}+x_{n-l+1} a_{1 l} \tag{3}
\end{equation*}
$$

(which follows from $\left.\alpha \circ \tau\left(e_{1} \wedge e_{l} \wedge e_{n}\right)=0=\alpha \circ \tau\left(e_{1} \wedge e_{l} \wedge e_{n-l+1}\right)\right)$, we obtain $a_{1 l} \in R x_{1} x_{l}$. Obviously

$$
\left(e_{s} \wedge e_{t}\right)\left(r_{l, n-l+1}\right)=\left\{\begin{array}{cl}
0 & \text { if } s+t=n+1 \text { or } s=1, t<l \\
(-1)^{l+1} x_{1} x_{l} & \text { if } s=1, t=l
\end{array}\right.
$$

So there is an appropriate $c \in \sum_{i, j} R \cdot r_{i j}$.
Finally suppose that $a_{k l}=0$ for $k+l=n+1$ and $a_{1 l}=0$ for $l=2, \ldots, n / 2$. Then, because of (3), $a_{1 j}=0$ for $j=2, \ldots, n$. Let $1<i<j \leq n$. Since $x_{1} a_{i j}-x_{i} a_{1 j}+x_{j} a_{1 i}=0$, we get $a_{i j}=0$. The proof is complete now.

Proposition 3. With the above notation, for $i, j=1, \ldots, n$ and $1 \leq k<$ $l \leq n$
(*)

$$
\left(e_{k} \wedge e_{l}\right)\left(r_{i j}\right)=-\left(e_{i} \wedge e_{j}\right)\left(r_{k l}\right)
$$

holds. Furthermore, $r_{i i}=0, r_{i j}=-r_{j i}$, and

$$
\begin{equation*}
r_{1 n}-r_{2 n-1}+\ldots+(-1)^{\frac{n}{2}+1} r_{\frac{n}{2}, \frac{n}{2}+1}=0 . \tag{**}
\end{equation*}
$$

Consequently, U^{*} is minimally generated by the elements $r_{i j}$ for which $i<j$ and $(i, j) \neq(1, n)$, and is represented by the skewsymmetric matrix

$$
\left(\left(e_{k} \wedge e_{l}\right)\left(r_{i j}\right)\right), \quad 1 \leq k<l \leq n, 1 \leq i<j \leq n,(k, l) \neq(1, n) \neq(i, j) .
$$

Proof. Equation (*) is obtained by a straightforward computation, and $(* *)$ is a direct consequence of $(*)$ since for all $k, l, k<l$:

$$
\begin{array}{r}
\left(e_{k} \wedge e_{l}\right) \sum_{\substack{i<j \\
i+j=n+1}}(-1)^{i+1} r_{i j}=-\left(\sum_{\substack{i<j \\
i+j=n+1}}(-1)^{i+1} e_{i} \wedge e_{j}\right)\left(r_{k l}\right) \\
=r_{k l}(\widetilde{\tau}(1,0))=0
\end{array}
$$

The remaining assertions follow from Proposition 2, the definition of the $r_{i j}$, and equations $(*),(* *)$.

In the simplest case $n=4$, the matrix representing $U^{*} \cong U$ is

$$
\left(\begin{array}{ccccc}
0 & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} & -x_{1} x_{4}+x_{2} x_{3} \\
-x_{1}^{2} & 0 & x_{1} x_{3} & x_{1} x_{4}+x_{2} x_{3} & x_{3}^{2} \\
-x_{1} x_{2} & -x_{1} x_{3} & 0 & x_{2} x_{4} & x_{3} x_{4} \\
-x_{2}^{2} & -x_{1} x_{4}-x_{2} x_{3} & -x_{2} x_{4} & 0 & x_{4}^{2} \\
x_{1} x_{4}-x_{2} x_{3} & -x_{3}^{2} & -x_{3} x_{4} & -x_{4}^{2} & 0
\end{array}\right) .
$$

Remarks 4. Suppose that $R=K\left[X_{1}, \ldots, X_{n}\right]$ is the polynomial ring in n indeterminates over a field K. In case $x_{i}=X_{i}$, the module U considered above seems to have already been studied in [4]; this is definitely true for $n=4$. In this case it also coincides with the rank $n-2$ module M_{n} constructed in (5) which likewise satisfies conditions (i) and (ii) of Proposition 11. For $n>4$, the two modules are definitely different: from [2] we know that projdim $U=$ (projdim $U^{*}=$) $n-2$, while projdim $M_{n}^{*}=2$ for all n.

Besides the fact that M_{n} is defined for arbitrary $n \geq 2$, its dual has, in contrast to U, the remarkable property to be "optimal" in view of the EvansGriffith syzygy theorem (cf. [1], 9.5.6 for example) because M_{n}^{*} is an $(n-2)$-th syzygy of rank $n-2$. A concrete description of M_{n}^{*} similar to that we gave for U
in Proposition 3, seems to be more complicated. An attempt with SINGULAR [3] for $n=5,6$ leads to the supposition that the entries of a representing matrix are homogeneous of degree $n-2$ if the characteristic of K is $\neq 2$.

References

1. Bruns W., Herzog J., Cohen-Macaulay rings, Revised edition, Cambridge University Press, 1998.
2. Bruns W., Vetter U., The Koszul complex in projective dimension one, In: Geometric and Combinatorial Aspects of Commutative Algebra, J. Herzog and G. Restuccia eds., Marcel Dekker 2001, 89-98.
3. Greuel G.-M., Pfister G., Schönemann H., Singular version 1.2, University of Kaiserslautern, Centre for Computer Algebra 1986-1998.
4. Trautmann G., Darstellung von Vektorraumbündeln über $\mathcal{C}^{n} \backslash\{0\}$, Arch. Math. 24 (1973), 303-313.
5. Vetter U., Zu einem Satz von G. Trautmann über den Rang gewisser kohärenter analytischer Garben, Arch. Math. 24 (1973), 158-161.

Received March 15, 2001

