LINEAR FORMS ON MODULES OF PROJECTIVE DIMENSION ONE

by UDO Vetter

Let R be a noetherian ring and M an R-module which has a presentation

$$0 \to F \xrightarrow{\psi} G \to M \to 0$$

with finite free R-modules F and G of rank m and n. In [2] we proved:

PROPOSITION 1. Assume that r = n - m > 1 and that the first nonvanishing Fitting ideal of M has grade r + 1. Then the following conditions are equivalent.

- (1) There is a $\chi \in M^* = \operatorname{Hom}_R(M, R)$ such that the ideal $\operatorname{Im} \chi$ has grade r+1.
- (2) There exists a submodule U of M with the following properties: (i) rank U = r - 1;
 - (ii) U is reflexive, orientable, and U_p is a free direct summand of M_p for all primes p of R such that grade p ≤ r.
- (3) m = 1 and r is odd.

The equivalence $(1) \Leftrightarrow (2)$ can easily be proved directly (see Proof of Proposition 7 in [2]) while the equivalence $(1) \Leftrightarrow (3)$ results from a description of the homology of the Koszul complex associated to a linear form on M (see Theorem 5 in [2]).

With the assumptions of Proposition 1, let m = 1 and $n \ge 4$ be even (which means that the rank r of M is odd). Fix a basis e_1, \ldots, e_n of G and let $\psi(1) = \sum_{i=1}^n (-1)^i x_i e_{n+1-i}$. The map $\varphi : \sum_{i=1}^n a_i e_i \mapsto \sum_{i=1}^n a_i x_i$ then obviously induces a linear form χ on M such that grade Im $\chi = n$. The submodule $U = \text{Ker } \chi$ has properties (i) and (ii) of Proposition 1, and the (skewsymmetric) map $\rho : G \to G^*$ given by $\rho(e_i) = (-1)^i e_{n+1-i}^*$, $i = 1, \ldots, n$, induces an isomorphism $\bar{\rho}: U \to U^*$. (Here as in the following e_1^*, \ldots, e_n^* denotes the basis of G^* dual to e_1, \ldots, e_n .) So condition (2) in Proposition 1 may be replaced by

- (2) There exists a submodule U of M with the following properties:
 - (i) rank U = r 1;
 - (ii) U is orientable, and $U_{\mathfrak{p}}$ is a free direct summand of $M_{\mathfrak{p}}$ for all primes \mathfrak{p} of R such that grade $\mathfrak{p} \leq r$;
 - (iii) U is selfdual in a skewsymmetric way, i.e. there is an isomorphism $\rho: U \to U^*$ such that $\rho^* \circ h = -\rho$, $h: U \to U^{**}$ being the natural map.

The Koszul complex associated to φ induces an exact sequence

(1)
$$\bigwedge^{3} G \xrightarrow{\tau} \bigwedge^{2} G \xrightarrow{\sigma} \operatorname{Ker} \varphi \to 0,$$

and there is a map p from Ker φ onto U which has the kernel $\psi(1)$. So, in particular, U is minimally generated by $\binom{n}{2} - 1$ elements. The aim of this note is to give an explicit construction of U as a submodule of the free module $R^{\binom{n}{2}-1}$. Since

$$\operatorname{Ker}(p \circ \sigma) = R \cdot \sum_{i=1}^{n/2} (-1)^{i-1} e_i \wedge e_{n+1-i} + \operatorname{Ker} \sigma,$$

in view of (1) we obtain an exact sequence

10

$$R \oplus \bigwedge^3 G \xrightarrow{\tilde{\tau}} \bigwedge^2 G \xrightarrow{p \circ \sigma} U \to 0,$$

where

$$\widetilde{\tau}(1,0) = \sum_{i=1}^{n/2} (-1)^{i-1} e_i \wedge e_{n+1-i} \text{ and } \widetilde{\tau}(0,y) = \tau(y)$$

for all $y \in \bigwedge^3 G$. Dualizing yields the exact sequence

$$0 \to U^* \to \bigwedge^2 G^* \xrightarrow{\widetilde{\tau}^*} R \oplus \bigwedge^3 G^*,$$

where we used the natural isomorphims $\bigwedge^k G^* \cong (\bigwedge^k G)^*$. We shall explicitly represent $U^* = \operatorname{Ker} \tilde{\tau}^*$ as a submodule of $\bigwedge^2 G^*$.

PROPOSITION 2. The elements

$$r_{ij} = \varphi \wedge ((-1)^j x_i e_{n-j+1}^* + (-1)^{i+1} x_j e_{n-i+1}^*),$$

 $i, j = 1, \ldots, n$, generate U^* .

PROOF. Since $\varphi \wedge \eta$ vanishes on $\operatorname{Im} \tau$ for all $\eta \in G^*$, we have $r_{ij} \circ \tau = 0$. Moreover,

$$r_{ij}(\tilde{\tau}(1,0)) = (x_j x_i (-1)^j e_j^* \wedge e_{n-j+1}^* + (-1)^{i+1} x_i x_j e_i^* \wedge e_{n-i+1}^*) (\tilde{\tau}(1,0)) = 0.$$

So $r_{ij} \in U^*$ for all i, j .

312

Let $\alpha = \sum_{1 \le k \le l \le n} a_{kl} e_k^* \wedge e_l^* \in U^*$. Then, in particular,

(2)
$$a_{1n} - a_{2,n-1} + \ldots + (-1)^{\frac{n}{2}+1} a_{\frac{n}{2},\frac{n}{2}+1} = 0$$

Since $\alpha \circ \tau(e_k \wedge e_l \wedge e_m) = 0$ for all k, l, m, we have in addition, that $a_{kl} \in Rx_k + Rx_l$ for all k, l.

Next we claim that there is an element $\beta = \sum_{1 \leq k < l \leq n} b_{kl} e_k^* \wedge e_l^* \in \sum_{i,j} R \cdot r_{ij}$, such that $a_{kl} = b_{kl}$ for k+l = n+1. To prove this let $1 \leq k < n/2$, k+l = n+1, and $a_{st} = 0$ if s < k, s+t = n+1. We show that there is a β which satisfies $b_{st} = 0$ for s < k, s+t = n+1, and $b_{kl} = a_{kl}$. Because of (2) this will prove our claim. First we deduce

$$a_{kl} \in (Rx_k + Rx_l) \cap (Rx_{k+1} + \ldots + Rx_{l-1}) = Rx_k x_{k+1} + \ldots + Rx_k x_{l-1} + Rx_l x_{k+1} + \ldots + Rx_l x_{l-1},$$

since x_1, \ldots, x_n is a regular sequence in R. Consider r_{kj} , r_{jl} for $j = k + 1, \ldots, l-1$. Using the canonical isomorphism $G \to G^{**}$, we get

$$(e_s \wedge e_t)(r_{kj}) = \begin{cases} 0 & \text{if } 1 \le s < k, \ s+t = n+1, \\ \pm x_k x_j & \text{if } (s,t) = (k,l), \end{cases}$$

and

$$(e_s \wedge e_t)(r_{jl}) = \begin{cases} 0 & \text{if } 1 \le s < k, \ s+t = n+1, \\ \pm x_j x_l & \text{if } (s,t) = (k,l). \end{cases}$$

So we can find an appropriate $b \in \sum_{i,j} R \cdot r_{ij}$.

In proving the proposition, namely $\alpha \in \sum_{i,j} R \cdot r_{ij}$, we may now assume that $a_{kl} = 0$ whenever k + l = n + 1. We then show that there is an element $\gamma = \sum c_{kl} e_k^* \wedge e_l^* \in \sum_{i,j} R \cdot r_{ij}$ with $c_{kl} = 0$ for k + l = n + 1 and $c_{1l} = a_{1l}$ for $l = 2, \ldots, n/2$. Since

(3)
$$x_1a_{ln} - x_la_{1n} + x_na_{1l} = 0 = x_1a_{l,n-l+1} - x_la_{1,n-l+1} + x_{n-l+1}a_{1l}$$

(which follows from $\alpha \circ \tau(e_1 \wedge e_l \wedge e_n) = 0 = \alpha \circ \tau(e_1 \wedge e_l \wedge e_{n-l+1})$), we obtain $a_{1l} \in Rx_1x_l$. Obviously

$$(e_s \wedge e_t)(r_{l,n-l+1}) = \begin{cases} 0 & \text{if } s+t = n+1 \text{ or } s = 1, t < l, \\ (-1)^{l+1} x_1 x_l & \text{if } s = 1, t = l. \end{cases}$$

So there is an appropriate $c \in \sum_{i,j} R \cdot r_{ij}$.

Finally suppose that $a_{kl} = 0$ for k+l = n+1 and $a_{1l} = 0$ for $l = 2, \ldots, n/2$. Then, because of (3), $a_{1j} = 0$ for $j = 2, \ldots, n$. Let $1 < i < j \leq n$. Since $x_1a_{ij} - x_ia_{1j} + x_ja_{1i} = 0$, we get $a_{ij} = 0$. The proof is complete now. PROPOSITION 3. With the above notation, for i, j = 1, ..., n and $1 \le k < l \le n$

$$(*) \qquad (e_k \wedge e_l)(r_{ij}) = -(e_i \wedge e_j)(r_{kl})$$

holds. Furthermore, $r_{ii} = 0$, $r_{ij} = -r_{ji}$, and

(**)
$$r_{1n} - r_{2n-1} + \ldots + (-1)^{\frac{n}{2}+1} r_{\frac{n}{2},\frac{n}{2}+1} = 0.$$

Consequently, U^* is minimally generated by the elements r_{ij} for which i < jand $(i, j) \neq (1, n)$, and is represented by the skewsymmetric matrix

$$((e_k \wedge e_l)(r_{ij})), \quad 1 \le k < l \le n, 1 \le i < j \le n, \ (k,l) \ne (1,n) \ne (i,j).$$

PROOF. Equation (*) is obtained by a straightforward computation, and (**) is a direct consequence of (*) since for all k, l, k < l:

$$(e_k \wedge e_l) \sum_{\substack{i < j \\ i+j=n+1}} (-1)^{i+1} r_{ij} = -\left(\sum_{\substack{i < j \\ i+j=n+1}} (-1)^{i+1} e_i \wedge e_j\right) (r_{kl}) = r_{kl}(\widetilde{\tau}(1,0)) = 0.$$

The remaining assertions follow from Proposition 2, the definition of the r_{ij} , and equations (*), (**).

In the simplest case n = 4, the matrix representing $U^* \cong U$ is $\begin{pmatrix} 0 & x_1^2 & x_1x_2 & x_2^2 & -x_1x_4 + x_2x_3 \\ -x_1^2 & 0 & x_1x_3 & x_1x_4 + x_2x_3 & x_3^2 \\ -x_1x_2 & -x_1x_3 & 0 & x_2x_4 & x_3x_4 \\ -x_2^2 & -x_1x_4 - x_2x_3 & -x_2x_4 & 0 & x_4^2 \\ x_1x_4 - x_2x_3 & -x_3^2 & -x_3x_4 & -x_4^2 & 0 \end{pmatrix}.$

REMARKS 4. Suppose that $R = K[X_1, \ldots, X_n]$ is the polynomial ring in n indeterminates over a field K. In case $x_i = X_i$, the module U considered above seems to have already been studied in [4]; this is definitely true for n = 4. In this case it also coincides with the rank n - 2 module M_n constructed in [5] which likewise satisfies conditions (i) and (ii) of Proposition 1. For n > 4, the two modules are definitely different: from [2] we know that projdim $U = (\text{projdim } U^* =) n - 2$, while projdim $M_n^* = 2$ for all n.

Besides the fact that M_n is defined for arbitrary $n \ge 2$, its dual has, in contrast to U, the remarkable property to be "optimal" in view of the Evans-Griffith syzygy theorem (cf. [1], 9.5.6 for example) because M_n^* is an (n-2)-th syzygy of rank n-2. A concrete description of M_n^* similar to that we gave for U

314

in Proposition 3, seems to be more complicated. An attempt with SINGULAR [3] for n = 5, 6 leads to the supposition that the entries of a representing matrix are homogeneous of degree n - 2 if the characteristic of K is $\neq 2$.

References

- 1. Bruns W., Herzog J., *Cohen-Macaulay rings*, Revised edition, Cambridge University Press, 1998.
- Bruns W., Vetter U., The Koszul complex in projective dimension one, In: Geometric and Combinatorial Aspects of Commutative Algebra, J. Herzog and G. Restuccia eds., Marcel Dekker 2001, 89–98.
- Greuel G.-M., Pfister G., Schönemann H., Singular version 1.2, University of Kaiserslautern, Centre for Computer Algebra 1986–1998.
- 4. Trautmann G., Darstellung von Vektorraumbündeln über $\mathcal{C}^n \setminus \{0\}$, Arch. Math. 24 (1973), 303–313.
- Vetter U., Zu einem Satz von G. Trautmann über den Rang gewisser kohärenter analytischer Garben, Arch. Math. 24 (1973), 158–161.

Received March 15, 2001

Universität Oldenburg Fachbereich Mathematik D-26111 Oldenburg Germany *e-mail:* vetter@mathematik.uni-oldenburg.de