
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XXXIX

2001

LINEAR FORMS ON MODULES OF PROJECTIVE

DIMENSION ONE

by Udo Vetter

Let R be a noetherian ring and M an R–module which has a presentation

0 → F
ψ→ G→M → 0

with finite free R–modules F and G of rank m and n. In [2] we proved:

Proposition 1. Assume that r = n − m > 1 and that the first non-
vanishing Fitting ideal of M has grade r + 1. Then the following conditions
are equivalent.

(1) There is a χ ∈ M∗ = HomR(M,R) such that the ideal Imχ has grade
r + 1.

(2) There exists a submodule U of M with the following properties:
(i) rankU = r − 1;
(ii) U is reflexive, orientable, and Up is a free direct summand of Mp

for all primes p of R such that grade p ≤ r.
(3) m = 1 and r is odd.

The equivalence (1) ⇔ (2) can easily be proved directly (see Proof of
Proposition 7 in [2]) while the equivalence (1) ⇔ (3) results from a description
of the homology of the Koszul complex associated to a linear form on M (see
Theorem 5 in [2]).

With the assumptions of Proposition 1, let m = 1 and n ≥ 4 be even
(which means that the rank r of M is odd). Fix a basis e1, . . . , en of G and let
ψ(1) =

∑n
i=1(−1)ixien+1−i. The map ϕ :

∑n
i=1 aiei 7→

∑n
i=1 aixi then obvi-

ously induces a linear form χ on M such that grade Imχ = n. The submodule
U = Kerχ has properties (i) and (ii) of Proposition 1, and the (skewsymmet-
ric) map ρ : G → G∗ given by ρ(ei) = (−1)ie∗n+1−i, i = 1, . . . , n, induces an
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isomorphism ρ̄ : U → U∗. (Here as in the following e∗1, . . . , e
∗
n denotes the basis

of G∗ dual to e1, . . . , en.) So condition (2) in Proposition 1 may be replaced
by

(2’) There exists a submodule U of M with the following properties:
(i) rankU = r − 1;
(ii) U is orientable, and Up is a free direct summand of Mp for all

primes p of R such that grade p ≤ r;
(iii) U is selfdual in a skewsymmetric way, i.e. there is an isomorphism

ρ : U → U∗ such that ρ∗ ◦h = −ρ, h : U → U∗∗ being the natural
map.

The Koszul complex associated to ϕ induces an exact sequence

(1)
∧3G

τ→
∧2G

σ→ Kerϕ→ 0,

and there is a map p from Kerϕ onto U which has the kernel ψ(1). So, in
particular, U is minimally generated by

(
n
2

)
− 1 elements. The aim of this

note is to give an explicit construction of U as a submodule of the free module
R(n

2)−1. Since

Ker(p ◦ σ) = R ·
n/2∑
i=1

(−1)i−1ei ∧ en+1−i + Kerσ,

in view of (1) we obtain an exact sequence

R⊕
∧3G

τ̃→
∧2G

p◦σ→ U → 0,

where

τ̃(1, 0) =
n/2∑
i=1

(−1)i−1ei ∧ en+1−i and τ̃(0, y) = τ(y)

for all y ∈
∧

3G. Dualizing yields the exact sequence

0 → U∗ →
∧2G∗ τ̃∗→ R⊕

∧3G∗,

where we used the natural isomorphims
∧
kG∗ ∼= (

∧
kG)∗. We shall explicitly

represent U∗ = Ker τ̃∗ as a submodule of
∧

2G∗.

Proposition 2. The elements

rij = ϕ ∧ ((−1)jxie∗n−j+1 + (−1)i+1xje
∗
n−i+1),

i, j = 1, . . . , n, generate U∗.

Proof. Since ϕ ∧ η vanishes on Im τ for all η ∈ G∗, we have rij ◦ τ = 0.
Moreover,

rij(τ̃(1, 0)) = (xjxi(−1)je∗j ∧ e∗n−j+1 + (−1)i+1xixje
∗
i ∧ e∗n−i+1)(τ̃(1, 0)) = 0.

So rij ∈ U∗ for all i, j.
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Let α =
∑

1≤k<l≤n akle
∗
k ∧ e∗l ∈ U∗. Then, in particular,

(2) a1n − a2,n−1 + . . .+ (−1)
n
2
+1an

2
,n
2
+1 = 0.

Since α ◦ τ(ek ∧ el ∧ em) = 0 for all k, l,m, we have in addition, that akl ∈
Rxk +Rxl for all k, l.

Next we claim that there is an element β =
∑

1≤k<l≤n bkle
∗
k ∧ e∗l ∈

∑
i,j R ·

rij , such that akl = bkl for k+ l = n+1. To prove this let 1 ≤ k < n/2, k+ l =
n + 1, and ast = 0 if s < k, s + t = n + 1. We show that there is a β which
satisfies bst = 0 for s < k, s+ t = n+ 1, and bkl = akl. Because of (2) this will
prove our claim. First we deduce

akl ∈ (Rxk +Rxl) ∩ (Rxk+1 + . . .+Rxl−1)
= Rxkxk+1 + . . .+Rxkxl−1 +Rxlxk+1 + . . .+Rxlxl−1,

since x1, . . . , xn is a regular sequence in R. Consider rkj , rjl for j = k +
1, . . . , l − 1. Using the canonical isomorphism G→ G∗∗, we get

(es ∧ et)(rkj) =

{
0 if 1 ≤ s < k, s+ t = n+ 1,

±xkxj if (s, t) = (k, l),

and

(es ∧ et)(rjl) =

{
0 if 1 ≤ s < k, s+ t = n+ 1,

±xjxl if (s, t) = (k, l).

So we can find an appropriate b ∈
∑

i,j R · rij .
In proving the proposition, namely α ∈

∑
i,j R · rij , we may now assume

that akl = 0 whenever k + l = n + 1. We then show that there is an element
γ =

∑
ckle

∗
k ∧ e∗l ∈

∑
i,j R · rij with ckl = 0 for k + l = n+ 1 and c1l = a1l for

l = 2, . . . , n/2. Since

(3) x1aln − xla1n + xna1l = 0 = x1al,n−l+1 − xla1,n−l+1 + xn−l+1a1l

(which follows from α ◦ τ(e1 ∧ el ∧ en) = 0 = α ◦ τ(e1 ∧ el ∧ en−l+1)), we obtain
a1l ∈ Rx1xl. Obviously

(es ∧ et)(rl,n−l+1) =

{
0 if s+ t = n+ 1 or s = 1, t < l,

(−1)l+1x1xl if s = 1, t = l.

So there is an appropriate c ∈
∑

i,j R · rij .
Finally suppose that akl = 0 for k+ l = n+1 and a1l = 0 for l = 2, . . . , n/2.

Then, because of (3), a1j = 0 for j = 2, . . . , n. Let 1 < i < j ≤ n. Since
x1aij − xia1j + xja1i = 0, we get aij = 0. The proof is complete now.
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Proposition 3. With the above notation, for i, j = 1, . . . , n and 1 ≤ k <
l ≤ n

(∗) (ek ∧ el)(rij) = −(ei ∧ ej)(rkl)
holds. Furthermore, rii = 0, rij = −rji, and

(∗∗) r1n − r2n−1 + . . .+ (−1)
n
2
+1rn

2
,n
2
+1 = 0.

Consequently, U∗ is minimally generated by the elements rij for which i < j
and (i, j) 6= (1, n), and is represented by the skewsymmetric matrix(

(ek ∧ el)(rij)
)
, 1 ≤ k < l ≤ n, 1 ≤ i < j ≤ n, (k, l) 6= (1, n) 6= (i, j).

Proof. Equation (∗) is obtained by a straightforward computation, and
(∗∗) is a direct consequence of (∗) since for all k, l, k < l:

(ek ∧ el)
∑

i<j
i+j=n+1

(−1)i+1rij = −
( ∑

i<j
i+j=n+1

(−1)i+1ei ∧ ej
)
(rkl)

= rkl(τ̃(1, 0)) = 0.

The remaining assertions follow from Proposition 2, the definition of the rij ,
and equations (∗),(∗∗).

In the simplest case n = 4, the matrix representing U∗ ∼= U is

0 x2
1 x1x2 x2

2 −x1x4 + x2x3

−x2
1 0 x1x3 x1x4 + x2x3 x2

3

−x1x2 −x1x3 0 x2x4 x3x4

−x2
2 −x1x4 − x2x3 −x2x4 0 x2

4

x1x4 − x2x3 −x2
3 −x3x4 −x2

4 0


.

Remarks 4. Suppose that R = K[X1, . . . , Xn] is the polynomial ring in n
indeterminates over a field K. In case xi = Xi, the module U considered above
seems to have already been studied in [4]; this is definitely true for n = 4. In
this case it also coincides with the rank n − 2 module Mn constructed in [5]
which likewise satisfies conditions (i) and (ii) of Proposition 1. For n > 4,
the two modules are definitely different: from [2] we know that projdimU =
(projdimU∗ =) n− 2, while projdimM∗

n = 2 for all n.
Besides the fact that Mn is defined for arbitrary n ≥ 2, its dual has, in

contrast to U , the remarkable property to be “optimal” in view of the Evans-
Griffith syzygy theorem (cf. [1], 9.5.6 for example) because M∗

n is an (n−2)–th
syzygy of rank n−2. A concrete description ofM∗

n similar to that we gave for U
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in Proposition 3, seems to be more complicated. An attempt with SINGULAR
[3] for n = 5, 6 leads to the supposition that the entries of a representing matrix
are homogeneous of degree n− 2 if the characteristic of K is 6= 2.
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