NONLOCAL PROBLEM FOR THE HYPERBOLIC SYSTEM OF DIFFERENTIAL EQUATION OF THE FIRST ORDER

by Lech Zaręba

Abstract

In the present paper we consider the nonlocal problem for the system of hyperbolic equations of the first order in two independet variables in the case when nonlinear functions satisfy Caratheodory assumptions. Some conditions for uniqueness and existence of a solution are obtained.

Nonlocal problems for hyperbolic equations of the first order describe the dynamic of population [1]-[3]. During the last thirty years the existence and uniqueness of the solution of nonlocal problems for the system of hyperbolic equations have been considered in a number of papers [4]-8]. The authors assumed that the nonlinear functions satisfy the Lipschitz condition with respect to the unknown functions. In this paper we consider the nonlocal problem for the system of hyperbolic equations of the first order in two independent variables in the case when nonlinear functions satisfy Caratheodory conditions.

We shall consider the system of hyperbolic equation of the form

$$
\begin{align*}
& u_{t}(x, t)+A(x) u_{x}(x, t)+C(x, t) u(x, t)+ \\
& \quad+G(x, u)+\int_{a}^{b} Q(\xi, t) u(\xi, t) d \xi=F(x, t) \tag{1}
\end{align*}
$$

in the domain

$$
\Omega_{T}=\{(x, t): 0<x<c, 0<t<T\}, \quad T<\infty
$$

For this system we put the following boundary and initial conditions:

$$
\begin{equation*}
u(0, t)=\Lambda u(c, t) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
u(x, 0)=\Phi(x) \tag{3}
\end{equation*}
$$

where A, C, Q, Λ are square matrices of order n, and

$$
\begin{gathered}
u=\left(u_{1}, \ldots, u_{n}\right)^{T}, \quad G=\left(g_{1}, \ldots, g_{n}\right)^{T}, \\
F=\left(f_{1}, \ldots, f_{n}\right)^{T}, \quad \Phi=\left(\phi_{1}, \ldots, \phi_{n}\right)^{T}, \quad 0 \leq a<b \leq c .
\end{gathered}
$$

For equation (11), we consider the following conditions:
(A) $\quad A \in C_{n^{2}}^{1}([0, c]) ; \quad \operatorname{det} A(x) \neq 0, \quad A(x)=A^{t}(x)$ for every $\xi \in R^{n}$ and $x \in[0, c]$; $A(c)-\Lambda^{t} A(0) \Lambda=0$.
(G) The function G is continous with respect to ξ for almost all $x \in(0, c)$ and measurable with respect to x for every $\xi \in R^{n}$ and satisfies the following inequalities:

$$
(G(x, \xi)-G(x, \mu), \xi-\mu) \geq G_{0}|\xi-\mu|^{p},
$$

$$
\text { where } 2<p<\infty, G_{0} \geq 0
$$

$$
\left|g_{i}\left(x, \xi_{1}, \ldots, \xi_{n}\right)\right| \leq G_{1} \sum_{j=1}^{n}\left|\xi_{j}\right|^{p-1}, \quad G_{1}>0
$$

for $i=1, \ldots, n$ and for every $\xi \in R^{n}$ and almost all $x \in(0, c)$.
By (\cdot, \cdot) we denote the scalar product in R^{n}.
Definition 1. We call a function u a solution of problem (1)-(3) if

$$
u \in W_{n}^{1,2}\left((0, T) ; L^{2}(0, c)\right), \quad u_{x} \in L_{n}^{2}\left(\Omega_{T}\right)+L_{n}^{q}\left(\Omega_{T}\right), \quad \frac{1}{p}+\frac{1}{q}=1
$$

and u satisfies (1), (2), (3) for almost all $(x, t) \in \Omega_{T}$.
Denote

$$
Q_{0}:=\sup _{a<x<b, 0<t<T}\|Q(x, t)\|
$$

where $\|\cdot\|$ is the Euclidean norm of the matrix Q.
Theorem 1. If the conditions $\sqrt{\mathrm{A}}$, (G) hold and $C, Q \in L_{n^{2}}^{\infty}\left(\Omega_{T}\right)$ then the problem (1)-(3) has at most one solution.

Proof. To obtain a contradiction, suppose that there exist two solutions u^{1}, u^{2} of the problem (1)-(3) such that $u^{1} \neq u^{2}$. Denote $u=u^{1}-u^{2}$. It is easy to show that for every $\tau \in(0, T]$ the following equality is satisfied

$$
\begin{align*}
\int_{\Omega_{\tau}}[& \left(u_{t}(x, t), u(x, t)\right)+\left(A(x) u_{x}(x, t), u(x, t)\right)+ \\
& +(C(x, t) u(x, t), u(x, t))+\left(\left(G\left(x, u^{1}\right)-G\left(x, u^{2}\right), u(x, t)\right)+\right. \tag{4}\\
& \left.+\int_{a}^{b}(Q(\xi, t) u(\xi, t), u(x, t)) d \xi\right] e^{-\lambda t} d x d t=0
\end{align*}
$$

where $\lambda>0$ and $u(x, 0)=0$. Hence if we consider the respective components of the last equality we will have

$$
\begin{aligned}
I_{1}= & \int_{\Omega_{\tau}}\left(u_{t}(x, t), u(x, t)\right) e^{-\lambda t} d x d t= \\
& \frac{\lambda}{2} \int_{\Omega_{\tau}}|u(x, t)|^{2} e^{-\lambda t} d x d t+\frac{1}{2} \int_{0}^{c}|u(x, \tau)|^{2} e^{-\lambda \tau} d x .
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2}= & \int_{\Omega_{\tau}}\left(A(x) u_{x}(x, t), u(x, t)\right) e^{-\lambda t} d x d t= \\
& =\frac{1}{2} \int_{\Omega_{\tau}}(A(x) u(x, t), u(x, t))_{x} e^{-\lambda t} d x d t \\
& -\frac{1}{2} \int_{\Omega_{\tau}}\left(A_{x}(x) u(x, t), u(x, t)\right) e^{-\lambda t} d x d t
\end{aligned}
$$

From (A) we have

$$
I_{2} \geq-\frac{1}{2} A_{1} \int_{\Omega_{\tau}}|u(x, t)|^{2} e^{-\lambda t} d x d t
$$

where $A_{1}=\sup _{[0, c]}\left\|A_{x}(x)\right\|$. Since $C \in L_{n^{2}}^{\infty}\left(\Omega_{T}\right)$, we obtain

$$
I_{3}=\int_{\Omega_{\tau}}(C(x, t) u(x, t), u(x, t)) e^{-\lambda t} d x d t \geq c_{0} \int_{\Omega_{\tau}}|u(x, t)|^{2} e^{-\lambda t} d x d t
$$

By (G)

$$
I_{4}=\int_{\Omega_{\tau}}\left(G\left(x, u^{1}\right)-G\left(x, u^{2}\right), u(x, t)\right) e^{-\lambda t} d x d t \geq 0
$$

and since $Q \in L_{n^{2}}^{\infty}\left(\Omega_{T}\right)$, we have

$$
\begin{aligned}
I_{5}= & \int_{\Omega_{\tau}} \int_{a}^{b}(Q(\xi, t) u(\xi, t), u(x, t)) d \xi e^{-\lambda t} d x d t \leq \\
& \leq \int_{\Omega_{\tau}} \int_{a}^{b}\|Q(\xi, t)\||u(\xi, t)| d \xi|u(x, t)| e^{-\lambda t} d x d t \leq \\
& \leq \frac{1}{2} Q_{0}(c(b-a)+1) \int_{\Omega_{\tau}}|u(x, t)|^{2} e^{-\lambda t} d x d t
\end{aligned}
$$

Thus we get the following inequality

$$
\begin{align*}
& \int_{0}^{c}|u(x, \tau)|^{2} e^{-\lambda \tau} d x+ \tag{5}\\
& \quad+\left(\lambda+2 c_{0}-A_{1}-Q_{0}(c(b-a)+1)\right) \int_{\Omega_{\tau}}|u(x, t)|^{2} e^{-\lambda t} d x d t \leq 0
\end{align*}
$$

for $\tau \in(0, T]$. We choose λ such that

$$
\lambda+2 c_{0}-A_{1}-Q_{0}(c(b-a)+1) \geq 0
$$

Then

$$
\int_{0}^{c}|u(x, t)|^{2} \leq 0, \quad t \in(0, T)
$$

which means that $u(x, t)=0$ for almost all $(x, t) \in \Omega_{T}$.
This completes the proof of Theorem 1 .
Denote by J the Jacobian matrix of the function $G(x, u)$

$$
J=\left[\frac{\partial g_{i}(x, u)}{\partial u_{j}}\right]_{i, j=1}^{n}
$$

Let $\widehat{W}_{n}^{1,2}$ be the closure of the function space $C_{n}^{1}([0, c])$, satisfying (2) with respect to the norm of the space $W_{n}^{1,2}(0, c)$.

Theorem 2. Suppose that the conditions (A) and (G) hold and $C, C_{t}, Q, Q_{t} \in L_{n^{2}}^{\infty}\left(\Omega_{T}\right) ; F, F_{t} \in L_{n}^{2}\left(\Omega_{T}\right) ; \Phi \in \widehat{W}_{n}^{1,2}(0, c)$. Moreover, assume that

$$
\begin{equation*}
(J(x, \mu) \xi, \xi) \geq 0 \tag{6}
\end{equation*}
$$

for every $\mu, \xi \in R^{n}$ and almost every $x \in(0, c)$. Then there exists a solution of the problem (1)-(3).

Proof. Consider the following problem for eigenfunctions:

$$
\begin{equation*}
y^{\prime \prime}=\lambda y, \tag{7}
\end{equation*}
$$

where $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$. Then there exists an orthogonal system of eigenfunctions $\left\{w^{k}(x)\right\}, w^{k}(x)=\left(w_{1}^{k}(x), \ldots, w_{n}^{k}(x)\right)^{T}$, of the problem (7), (8), which is a basis of the space $L_{n}^{2}(0, c)$. We consider a sequence of functions of the form

$$
u^{N}(x, t)=\sum_{k=1}^{N} C_{k}^{N}(t) w^{k}(x)
$$

for $N=1,2, \ldots$ where the functions $C_{1}^{N}, \ldots, C_{N}^{N}$ constitute the solution of the following Cauchy problem:

$$
\begin{align*}
\int_{0}^{c} & {\left[\left(u_{t}^{N}(x, t), w^{k}(x)\right)+\left(A(x) u_{x}^{N}(x, t), w^{k}(x)\right)+\right.} \\
& +\left(C(x, t) u^{N}(x, t), w^{k}(x)\right)+\left(G\left(x, u^{N}\right), w^{k}(x)\right) \\
& +\int_{a}^{b}\left(Q(\xi, t) u^{N}(\xi, t), w^{k}(x)\right) d \xi- \tag{9}\\
& \left.\quad-\left(F(x, t), w^{k}(x)\right)\right] d x=0 \quad \text { for } \quad k=1, \ldots, N,
\end{align*}
$$

with

$$
\begin{equation*}
C_{k}^{N}(0)=\phi_{k}^{N} \quad \text { for } \quad k=1, \ldots, N, \tag{10}
\end{equation*}
$$

where

$$
\Phi^{N}(x)=\sum_{k=1}^{N} \phi_{k}^{N} w^{k}(x)
$$

and

$$
\left\|\Phi^{N}-\Phi\right\|_{\widehat{W}_{n}^{2,1}(0, c)} \rightarrow 0 \quad \text { if } \quad N \rightarrow \infty
$$

Observe that the assumptions of Theorem 2 guarantee the existence of the solution of the problem (9), (10), which is differentiable in the interval $(0, T)$. Multiplying (9) by the functions $C_{k}^{N}(t) e^{-\lambda t}$, respectively, then summing by k from 1 to N and integrating with respect to t from 0 to $\tau, \tau \in(0, T]$ we obtain

$$
\begin{align*}
\int_{\Omega_{\tau}}[& \left(u_{t}^{N}(x, t), u^{N}(x, t)\right)+\left(A(x) u_{x}^{N}(x, t), u^{N}(x, t)\right)+ \\
& +\left(C(x, t) u^{N}(x, t), u^{N}(x, t)\right)+\left(G\left(x, u^{N}\right), u^{N}(x, t)\right)+ \\
& +\int_{a}^{b}\left(Q(\xi, t) u^{N}(\xi, t), u^{N}(x, t)\right) d \xi \tag{11}\\
& \left.\quad-\left(F(x, t), u^{N}(x, t)\right)\right] e^{-\lambda t} d x d t=0 .
\end{align*}
$$

As in the proof of Theorem 1 we obtain

$$
\begin{aligned}
I_{6}= & \int_{\Omega_{\tau}}\left[\left(u_{t}^{N}(x, t), u^{N}(x, t)\right)+\left(A(x) u_{x}^{N}(x, t), u^{N}(x, t)\right)+\right. \\
& \left.+\left(C(x, t) u^{N}(x, t), u^{N}(x, t)\right)+\int_{a}^{b}\left(Q(\xi, t) u^{N}(\xi, t), u^{N}(x, t)\right) d \xi\right] e^{-\lambda t} d x \geq \\
& \geq \frac{1}{2} \int_{0}^{c}\left|u^{N}(x, \tau)\right|^{2} e^{-\lambda \tau} d x-\frac{1}{2} \int_{0}^{c}\left|\Phi^{N}(x)\right|^{2} d x+ \\
& +\frac{1}{2}\left(\lambda+2 c_{0}-A_{1}-Q_{0}(c(b-a)+1)\right) \int_{\Omega_{\tau}}\left|u^{N}(x, t)\right|^{2} e^{-\lambda t} d x d t .
\end{aligned}
$$

Moreover, from (G) we have

$$
\begin{aligned}
I_{7}= & \int_{\Omega_{\tau}}\left(G\left(x, u^{N}\right), u^{N}(x, t)\right) e^{-\lambda t} d x d t \geq \\
& \geq G_{0} \int_{\Omega_{\tau}}\left(\left|u^{N}(x, t)\right|^{p} e^{-\lambda t} d x d t\right.
\end{aligned}
$$

and

$$
\begin{aligned}
I_{8}= & \int_{\Omega_{\tau}}\left(F(x, t), u^{N}(x, t)\right) e^{-\lambda t} d x d t \leq \\
& \frac{1}{2} \int_{\Omega_{\tau}}|F(x, t)|^{2} e^{-\lambda t} d x d t+\frac{1}{2} \int_{\Omega_{\tau}}\left|u^{N}(x, t)\right|^{2} e^{-\lambda t} d x d t
\end{aligned}
$$

If we choose now

$$
\lambda=\max \left\{A_{1}+Q_{0}(c(b-a)+1)+1-2 c_{0}, 3\right\}
$$

then from the estimates of I_{6}, I_{7}, I_{8} and 11 , for N large enough, we obtain the following inequality

$$
\begin{align*}
& 2 G_{0} \int_{\Omega_{\tau}}\left|u^{N}(x, t)\right|^{p} e^{\lambda t} d x d t+\int_{0}^{c}\left|u^{N}(x, \tau)\right|^{2} d x e^{\lambda \tau} \leq \tag{12}\\
& \quad \leq e^{\lambda \tau}\left(2 \int_{0}^{c}|\Phi(x)|^{2} d x+\int_{\Omega_{\tau}}|F(x, t)|^{2} d x d t\right)
\end{align*}
$$

where $\tau \in[0, T]$. Differentiating (9) with respect to t, then multiplying by functions $C_{k t}^{N}(t) e^{-\lambda t}$, respectively, summing by k from 1 to N and integrating
by t from 0 to τ we obtain

$$
\begin{align*}
\int_{\Omega_{\tau}}[& \left(u_{t t}^{N}(x, t), u_{t}^{N}(x, t)\right)+\left(A(x) u_{x t}^{N}(x, t), u_{t}^{N}(x, t)\right)+ \\
& +\left(C(x, t) u_{t}^{N}(x, t), u_{t}^{N}(x, t)\right)+\int_{a}^{b}\left(Q(\xi, t) u_{t}^{N}(\xi, t), u_{t}^{N}(\xi, t)\right) d \xi- \tag{13}\\
& -\left(F(x, t), u_{t}^{N}(x, t)\right)+\left(C_{t}(x, t) u^{N}(x, t), u_{t}^{N}(x, t)\right)+ \\
& +\left(J\left(x, u^{N}\right) u_{t}^{N}(x, t), u_{t}^{N}(x, t)\right) \\
& \left.+\int_{a}^{b}\left(Q_{t}(\xi, t) u^{N}(\xi, t), u_{t}^{N}(x, t)\right) d \xi\right] e^{-\lambda t} d x d t=0
\end{align*}
$$

Again, it is easy to estimate

$$
\begin{aligned}
I_{9}= & \int_{\Omega_{\tau}}\left[\left(u_{t t}^{N}(x, t), u_{t}^{N}(x, t)\right)+\left(A(x) u_{x t}^{N}(x, t), u_{t}^{N}(x, t)\right)+\right. \\
& +\left(C(x, t) u_{t}^{N}(x, t), u_{t}^{N}(x, t)\right)+\int_{a}^{b}\left(Q(\xi, t) u_{t}^{N}(\xi, t), u_{t}^{N}(x, t)\right) d \xi- \\
& \left.-\left(F_{t}(x, t), u_{t}^{N}(x, t)\right)\right] e^{-\lambda t} d x d t \geq \\
& \geq \frac{1}{2} \int_{0}^{c}\left|u_{t}^{N}(x, \tau)\right|^{2} e^{-\lambda \tau} d x-\frac{1}{2} \int_{0}^{c}\left|u_{t}^{N}(x, 0)\right|^{2} d x- \\
& -\frac{1}{2} \int_{\Omega_{\tau}}\left|F_{t}(x, t)\right|^{2} e^{-\lambda t} d x d t+\frac{1}{2}\left(\lambda+2 c_{0}-A_{1}-1-\right. \\
& \left.-Q_{0}(c(b-a)+1)\right) \int_{\Omega_{\tau}}\left|u_{t}^{N}(x, t)\right|^{2} e^{-\lambda t} d x d t
\end{aligned}
$$

Next, from the assumptions of Theorem 2 we have

$$
\begin{aligned}
I_{10}= & \int_{\Omega_{\tau}}\left(C_{t}(x, t) u^{N}(x, t), u_{t}^{N}(x, t)\right) e^{-\lambda t} d x d t \leq \\
& \leq \frac{1}{2} \int_{\Omega_{\tau}}\left(\left|u_{t}^{N}(x, t)\right|^{2}+\sup _{Q_{T}}\left\|C_{t}(x, t)\right\|^{2}\left|u^{N}(x, t)\right|^{2}\right) e^{-\lambda t} d x d t
\end{aligned}
$$

$$
I_{11}=\int_{\Omega_{\tau}}\left(J\left(x, u^{N}\right) u_{t}^{N}(x, t), u_{t}^{N}(x, t)\right) d x d t \geq 0
$$

and

$$
\begin{aligned}
& I_{12}=\int_{\Omega_{\tau}} \int_{a}^{b}\left(Q_{t}(\xi, t) u^{N}(\xi, t), u_{t}^{N}(x, t)\right) d \xi d x d t \leq \frac{1}{2} \int_{\Omega_{\tau}}\left[\left|u_{t}^{N}(x, t)\right|^{2}+\right. \\
& +\underset{\substack{\Omega_{i} \\
a<x<b, 0<t<T}}{ }\left\|Q_{t}(x, t)\right\|^{2}(c(b-a)+1)\left|u^{N}(x, t)\right|^{2} e^{-\lambda t} d x d t .
\end{aligned}
$$

To estimate the integral

$$
\int_{0}^{c}\left|u_{t}^{N}\right|^{2} d x
$$

we again use (99. Hence we obtain

$$
\begin{align*}
\int_{0}^{c} & {\left[\left|u_{t}^{N}(x, 0)\right|^{2}+\left(A(x) u_{x}^{N}(x, 0), u_{t}^{N}(x, 0)\right)+\right.} \\
& \quad+\left(G\left(x, u^{N}\right), u_{t}^{N}(x, 0)\right)+\int_{a}^{b}\left(Q(\xi, 0) u^{N}(\xi, 0), u_{t}^{N}(x, 0)\right) d \xi+ \tag{14}\\
& \left.\quad+\left(C(x, 0) u^{N}(x, 0), u_{t}^{N}(x, 0)\right)-\left(F(x, 0), u_{t}^{N}(x, 0)\right)\right] d x=0 .
\end{align*}
$$

Thus

$$
\begin{aligned}
I_{13}= & \int_{0}^{c}\left[\left(A(x) u_{x}^{N}(x, 0), u_{t}^{N}(x, 0)\right)+\left(C(x, 0) u^{N}(x, 0), u_{t}^{N}(x, 0)\right)+\right. \\
& +\left(G\left(x, u^{N}\right), u_{t}^{N}(x, 0)\right)+\int_{a}^{b}\left(Q(\xi, 0) u^{N}(\xi, 0), u_{t}^{N}(x, 0)\right) d \xi- \\
& \left.-\left(F(x, 0), u_{t}^{N}(x, 0)\right)\right] d x \leq \frac{1}{2} \int_{0}^{c}\left|u_{t}^{N}(x, 0)\right|^{2} d x+ \\
& +\frac{\mu_{1}}{2} \int_{0}^{c}\left(|\Phi(x)|^{2}+\left|\Phi_{x}(x)\right|^{2}\right) d x
\end{aligned}
$$

where the constant μ_{1} depends on matrices A, C, Q, the function $F(x, 0)$ and constants G_{1}, n, p. From (14) we obtain the following estimation

$$
\begin{equation*}
\int_{0}^{c}\left|u_{t}^{N}(x, 0)\right|^{2} d x \leq \mu_{1} \int_{0}^{c}\left(|\Phi(x)|^{2}+\left|\Phi_{x}(x)\right|^{2}\right) d x \tag{15}
\end{equation*}
$$

From the estimates of the integrals $I_{9}, I_{10}, I_{11}, I_{12}$ and from (12), (15) we obtain the inequality

$$
\begin{align*}
& \int_{0}^{c}\left|u_{t}^{N}(x, \tau)\right|^{2} d x \leq \mu_{2}\left[\int_{0}^{c}\left(|\Phi(x)|^{2}+\left|\Phi_{x}(x)\right|^{2}\right) d x+\right. \tag{16}\\
& \left.\quad+\int_{\Omega_{\tau}}\left(|F(x, t)|^{2}+\left|F_{t}(x, t)\right|^{2}\right) d x d t\right]
\end{align*}
$$

for $\tau \in(0, T]$, where the constanst μ_{2} does not depend on N. Moreover, from the assumptions (G) and (12)

$$
\begin{align*}
& \int_{\Omega_{\tau}}\left|g_{i}\left(x, u^{N}\right)\right|^{q} d x d t \leq \int_{\Omega_{\tau}}\left(G_{1} \sum_{i=1}^{n}\left|u_{i}^{N}\right|^{p-1}\right)^{q} d x d t \leq \tag{17}\\
& \quad \leq \mu_{3} \int_{\Omega_{\tau}}\left(\left|u^{N}(x, t)\right|^{p} d x d t \leq \mu_{4}\right.
\end{align*}
$$

for $\tau \in(0, T], i=1, \ldots, n$. By inequalities (12), (15), (17) there exists a subsequence $\left\{u^{m}(x, t)\right\}$ of the sequence $\left\{u^{N}(x, t)\right\}$ such that

$$
\begin{gathered}
u^{m} \rightarrow u \quad \text { weakly in } \quad L_{n}^{2}\left(\Omega_{T}\right) \\
u_{t}^{m} \rightarrow u_{t} \quad \text { weakly in } \quad L_{n}^{2}\left(\Omega_{T}\right) \\
G\left(x, u^{m}\right) \rightarrow \omega \quad \text { weakly in } \quad L_{n}^{q}\left(\Omega_{T}\right)
\end{gathered}
$$

when $m \rightarrow \infty$.

Now we consider a sequence $\left\{y_{m}\right\}$ defined by the formula

$$
\begin{aligned}
0 \leq y_{m}= & \int_{\Omega_{T}} e^{-\lambda t}\left(G\left(x, u^{m}\right)-G(x, v), u^{m}(x, t)-v(x, t)\right) d x d t+ \\
& +\int_{\Omega_{T}} e^{-\lambda t}\left(G(x, v), u^{m}(x, t)-v(x, t)\right) d x d t- \\
& -\int_{\Omega_{T}} e^{-\lambda t}\left(G\left(x, u^{m}\right), v(x, t)\right) d x d t+ \\
& +\int_{\Omega_{T}} e^{-\lambda t}\left(G\left(x, u^{m}\right), u^{m}(x, t)\right) d x d t=\int_{\Omega_{\tau}} e^{-\lambda t}\left[\left(F(x, t), u^{m}(x, t)\right)+\right. \\
& +\frac{1}{2}\left(A_{x}(x) u^{m}(x, t), u^{m}(x, t)\right)-\left(C(x, t) u^{m}(x, t), u^{m}(x, t)\right)- \\
& \left.-\left(u_{t}^{m}(x, t), u^{m}(x, t)\right)-\int_{a}^{b}\left(Q(\xi, t) u^{m}(\xi, t), u^{m}(x, t)\right) d \xi\right] d x d t- \\
& -\int_{\Omega_{T}} e^{-\lambda t}\left[\left(G(x, v), u^{m}(x, t)-v(x, t)\right)+\left(G\left(x, u^{m}\right), v(x, t)\right)\right] d x d t,
\end{aligned}
$$

where v is an arbitrary function in $L_{n}^{p}\left(\Omega_{T}\right)$. It is easy to prove that for the same λ the following inequality holds

$$
\begin{align*}
0 \leq & y_{m} \leq \int_{\Omega_{T}} e^{-\lambda t}\left[(F(x, t), u(x, t))+\frac{1}{2}\left(A_{x}(x) u(x, t), u(x, t)\right)-\right. \\
& -\frac{\lambda}{2}(u(x, t), u(x, t))-(C(x, t) u(x, t), u(x, t))- \\
& \left.\int_{a}^{b}(Q(\xi, t) u(\xi, t), u(x, t)) d \xi\right] d x d t+\frac{1}{2} \int_{0}^{c}|\Phi(x)|^{2} d x- \tag{18}\\
& -\int_{\Omega_{\tau}} e^{-\lambda t}[(\omega, v)+(G(x, v), u(x, t)-v(x, t))] d x d t \\
& -\frac{1}{2} \int_{0}^{c} e^{-\lambda \tau}|u(x, \tau)|^{2} d x
\end{align*}
$$

On the other hand, from (9) we obtain that for every $v \in \widehat{W}_{n}^{2,1}\left(\Omega_{T}\right)$ the following equality holds

$$
\begin{aligned}
& \int_{\Omega_{T}} e^{-\lambda t}\left[\left(u_{t}(x, t), u(x, t)\right)-\left(A_{x}(x) u(x, t), v(x, t)\right)-\right. \\
&(19)-\left(A(x) u(x, t), v_{x}(x, t)\right)+(C(x, t) u(x, t), v(x, t))- \\
&\left.-\int_{a}^{b}(Q(\xi, t) u(\xi, t), v(x, t)) d \xi+(\omega, v(x, t))-(F(x, t), v(x, t))\right] d x d t=0 .
\end{aligned}
$$

Using (A) and (19) we find that $u_{x} \in L_{n}^{2}\left(\Omega_{T}\right)+L_{n}^{q}\left(\Omega_{T}\right)$. Thus $u \in L_{n}^{\infty}\left(\Omega_{T}\right)$. Then if we put the function u instead of the function v in (19) we obtain

$$
\begin{align*}
& \int_{\Omega_{T}} e^{-\lambda t}\left[\frac{\lambda}{2}(u(x, t), u(x, t))-\frac{1}{2}\left(A_{x}(x) u(x, t), u(x, t)\right)+\right. \\
& \quad+(C(x, t) u(x, t), u(x, t))-\int_{a}^{b}(Q(\xi, t) u(x, t), u(x, t)) d \xi \tag{20}\\
& \quad+(\omega, u(x, t))-(F(x, t), u(x, t))] d x d t+ \\
& \quad+\frac{1}{2} \int_{0}^{c} e^{-\lambda T}|u(x, T)|^{2} d x-\frac{1}{2} \int_{0}^{c}|\Phi(x)|^{2} d x=0
\end{align*}
$$

Adding (19) and 20 we get

$$
\begin{equation*}
\int_{\Omega_{T}}(\omega-G(x, v), u(x, t)-v(x, t)) e^{-\lambda t} d x d t \geq 0 \tag{21}
\end{equation*}
$$

Let $v=u-\alpha w, \alpha>0, w \in \widehat{W}_{n}^{2,1}\left(\Omega_{T}\right)$. Then

$$
\int_{\Omega_{T}}(\omega-G(x, u), w) e^{-\lambda t} d x d t=0
$$

for every $w \in L_{n}^{p}\left(\Omega_{T}\right)$, which means that

$$
\omega=G(x, u)
$$

From (20) we obtain that u is the solution of the problem (1)-(3), which completes the proof of Theorem 2 .

References

1. von Foerster H., Some remarks on changing population, "The kinetics of cellular proliferation" (F. Stohlman Jr. ed.) Grune and Stratton, New-York (1959), 382-407.
2. Ważewska-Czyżewska M., Lasota A., Mathematical problems of the dynamics of a system of red blood celis, Mat. Stos. 6 (3) (1976), 23-40.
3. Nakhushev A.M., On one nonlocal problem for partial differential equations, Differentsialnyye uravneniya 22 N 1 (1986), 171-174 (in Russian).
4. Kyrylych V.M., The problem with nonlocal boundary conditions for hyperbolic system of the first order with two independent variables, Visnyk Lviv university, Ser. mekh-mat. 24 (1984), 90-94 (in Ukrainian).
5. Mel'nyk Z.O., One nonclassical boundary problem for hyperbolic system of the first order with two independent variables, Differentsialnyye uravneniya 17 N 6 (1981), 1096-1104 (in Russian).
6. Mel'nyk Z.O., Kyrylych V.M., Nonlocal problems without initial conditions for hyperbolic equations and systems with two independent variables, Ukrayinskiy matem. zhurnal 35 N 6 (1983), 722-727 (in Russian).
7. Dawidowicz A.L., Haribash N., On the periodic solution on von Foerster tipe equation, Univ. Jagell. Acta Math. 37 (1999), 321-324.
8. Dawidowicz A.L., Forystek E., Haribash N., Zalasiński J., Pewne nowe wyniki dotyczace równań typu Foerstera, Materiały XXXIII Ogólnopolskej Konferencji Zastosowań Matematyki, Zakopane-Kościelisko (1999), 29.

Received March 6, 2000
University in Rzeszów
Department of Mathematics
Rejtana 16A
35-959 Rzeszów
Poland
e-mail: Lzareba@univ.rzeszow.pl

