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PRODUCT INTEGRAL IN A FRÉCHET ALGEBRA

by Margareta Wiciak

Abstract. Product integral of locally summable function in a Fréchet al-
gebra is defined and some of its properties are proved. The main tool is the
Arens-Michael representation of Fréchet algebra which allows us to extend
the notion of the product integral from a Banach to Fréchet algebra.

1. Introduction. Let X be a Fréchet algebra, i.e. X is a complex algebra
which is a Fréchet space with topology induced by an increasing sequence of
seminorms (pn)n∈N such that

pn(xy) ≤ pn(x)pn(y) ∀n ∈ N ∀x, y ∈ X .

and X contains a unit I such that pn(I) = 1 ∀n ∈ N.
A linear mapping h : X → Y, where X , Y are Fréchet algebras, is homo-

morphism of algebras iff h(xy) = h(x)h(y) ∀x, y ∈ X . Obviously, h(IX ) = IY ,
where IX , IY are units in X , Y, respectively.

For example, if Ω ∈ top Cn, B is a complex Banach space, End B denotes
the algebra of linear continuous mappings B → B, then Hol(Ω, End B), the
space of all End B-valued holomorphic functions on Ω, is a Fréchet algebra. In
fact, there is a sequence K1,K2, . . . of compact subsets of Ω such that for each
s ∈ N: Ks ⊂ int Ks+1 and

⋃∞
s=1 Ks = Ω. For any h ∈ Hol(Ω, End B), set

ps(h) := sup{‖h(z)‖End B : z ∈ Ks}.
Then (ps)s∈N is an increasing sequence of seminorms that defines local uniform
convergence topology in Hol(Ω, End B).

Setting, for any h, f ∈ Hol(Ω, End B):

h · f : Ω 3 z
def7−→ h(z) ◦ f(z) ∈ End B,

from the continuity of multiplication in the Banach algebra End B, we get that
the seminorms ps are submultiplicative.
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Obviously, if End B is not commutative then Hol(Ω, End B) is a noncom-
mutative Fréchet algebra.

The aim of this paper is to extend the notion of the product integral to
Fréchet algebras. This kind of integrals have naturally arisen in the algebra
Hol(Cn, End B) while solving distributional Cauchy problem{

d
dtu(t) =

∑
α Aα(t) ◦Dαu(t) + f(t)

u(t0) = u0

(given Aα ∈ End B, f : J → D′temp(Rn;B), u0 ∈ D′temp(Rn;B) – the space
of tempered distributions). Details of this application will be included in a
forthcoming publication.

The basic tool in the study of Fréchet algebras is a representation of X as an
inverse limit of Banach algebras. In order to establish notation, we shall recall
fundamental theorem on Arens-Michael representation of a Fréchet algebra, see
[2], [5], [1] .

Let X be a Fréchet algebra with the increasing sequence (pn)n∈N of sub-
multiplicative seminorms. Let πn : X → Xn := X/{pn=0} be the quotient map
for each n ∈ N. (Xn)n∈N is a family of normed algebras. Let us consider the
family of its completions (Bn)n∈N (Banach algebras) and the family of isomet-
ric homomorphisms Jn : Xn → Bn (n ∈ N) with dense images. For any n ∈ N,
there is the unique mapping ηn : Xn → Xn−1 that commutes the diagram

(1)

X
@

@
@

@RXn−1 ;

-

?

Xn

πn

πn−1

ηn

ηn is a continuous homomorphism of algebras and |ηn| ≤ 1. Since Jn(Xn) is
dense in Bn for any n ∈ N, there is the unique mapping ηn : Bn → Bn−1 that
commutes the diagram

(2)

Xn

-
?

Xn−1

-

?

Bn

Bn−1

Jn

Jn−1

ηn η̄n

and such that ηn is a homomorphism of algebras and |ηn| ≤ 1.
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Theorem 3. The set

B := {(bn)n∈N ∈ ×
n∈N

Bn : ηn(bn) = bn−1 ∀n ∈ N}

is a Fréchet algebra with topology induced by the increasing sequence of semi-
norms

qk((bn)n∈N) := |bk|Bk
for k ∈ N.

Moreover, the mapping

ι : X 3 x
def7−→ ((Jn ◦ πn)(x))n∈N ∈ B

is a topological isomorphism of Fréchet algebras.

Remark 4. If X is a Fréchet algebra, then there is a countable family of
continuous homomorphisms of algebras H ⊂

⋃
Y
Hom (X ,Y), Y being Banach

algebras, that separates points on X .

Proof. Obviously, (πn)n∈N separates points on X . The family of contin-
uous homomorphisms (Jn ◦ πn)n∈N separates points on X .

In the case that a Fréchet space X does not have the structure of algebra,
theorem 3 is still true, but (Bn)n∈N denotes a family of Banach spaces and
Jn : Xn → Bn (n ∈ N) a family of linear isometries with dense images. In
such a case mappings ηn, η̄n are linear continuous, B is a Fréchet space, ι is a
topological isomorphism.

Obviously, when X is a Fréchet space, there is a countable family L ⊂⋃
Y

L(X, Y ), Y being Banach spaces, that separates points on X, for example

(Jn ◦ πn)n∈N separates points on X.

In the sequel, we will use the notions of the absolutely continuous function
with values in a Fréchet space and of its integral. For the reader’s convenience,
we enclose definitions of those notions and some of their properties. The inte-
gral is understood in the generalized Bochner sense. Thanks to K. Holly [4],
differently from [6], we use Arens-Michael representation in our definitions.

2. Absolute continuity and integration in a Fréchet space. If X be
a Fréchet space, let us consider an increasing sequence of seminorms (pn)n∈N
that induces the topology topX. Let πn : X → Xn := X/{pn=0} be the quotient
maps and (Bn)n∈N the family of Banach spaces with corresponding family of
linear isometries Jn : Xn → Bn having dense images in Bn.

Let J be an interval in R and let sn X denote the cone of all continuous
seminorms on X.
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Definition 5. A function f : J → X is absolutely continuous iff for any
p ∈ sn X the function p ◦ f is absolutely continuous.

Theorem 6. The following conditions are equivalent:
(i): f : J → X is absolutely continuous;
(ii): ∀n ∈ N pn ◦ f is absolutely continuous;
(iii): ∀n ∈ N Jn ◦ πn ◦ f : J → Bn is absolutely continuous;
(iv): for any Banach space Y and any map L ∈ L(X, Y ), the function

L ◦ f : J → Y is absolutely continuous.

Proof. It is sufficient to prove (iii) ⇒ (iv). Let Y be a Banach space and
L ∈ L(X, Y ). There is n ∈ N such that L is pn-continuous. Since J−1

n is densely
defined in Bn, there is the unique L̄n ∈ L(Bn, Y ) such that the diagram:

(7)

X

@
@

@
@R

�
�

�
�	

Y

- -

?

Xn Bn

πn Jn

L L̄n

commutes and L ◦ f = L̄n ◦ (Jn ◦ πn ◦ f) is absolutely continuous.

Lemma 8. Let X, Y be Fréchet spaces, L ∈ L(X, Y ), and f : J → X
absolutely continuous. Then the function L◦f : J → Y is absolutely continuous.

Proof. Let L ∈ L(X, Y ) and q ∈ sn Y. There are p ∈ sn X and C > 0
such that q(Lx) ≤ Cp(x) for all x ∈ X. Hence

q(L(f(t))) ≤ C · p(f(t)) for all t ∈ J.

Since p ◦ f is absolutely continuous, so is q ◦ L ◦ f . This means that L ◦ f is
absolutely continuous as q ∈ sn Y was arbitrary.

Lemma 9. Let X, Y be Fréchet spaces. Consider L ∈ L(X, Y ) and a
function f : J → X differentiable almost everywhere. Then the function L ◦ f :
J → Y is differentiable almost everywhere and (L ◦ f)′(t) = L(f ′(t)) for a.e.
t ∈ J .

Proof. Let t ∈ dom f ′ and q ∈ sn Y. There are p ∈ sn X and C > 0 such
that

q

(
(L ◦ f)(t + h)− (L ◦ f)(t)

h
− L(f ′(t))

)
=

= q

(
L

(
f(t + h)− f(t)

h
− f ′(t)

))
≤ C · p

(
f(t + h)− f(t)

h
− f ′(t)

)
.

Letting h → 0 we conclude that L ◦ f is differentiable in the set domf ′ and
(L ◦ f)′(t) = L(f ′(t)) for all t ∈ domf ′.
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Lemma 10. Let X, Y be Fréchet spaces. If f : J → X is absolutely con-
tinuous and g : X → Y satisfies the Lipschitz condition, then g ◦ f : J → Y is
absolutely continuous.

Proof. Let q ∈ sn Y, t, s ∈ J . There are a seminorm p ∈ sn X and a
constant L > 0 such that for all x̃, ỹ ∈ X

q(g(x̃)− g(ỹ)) ≤ L · p(x̃− ỹ).

In particular, q((g◦f)(t)−(g◦f)(s)) ≤ L ·p(f(t)−f(s)) and from the absolute
continuity of f it follows that g ◦ f is absolutely continuous.

Let X be a Fréchet space. Let us denote by M a measurable space with a
nonnegative measure µ.

Definition 11. A function f : M → X is measurable in the sense of
Bochner iff f(M) is separable in X and f is measurable.

Lemma 12. Let us consider a function f : M → X. The following condi-
tions are equivalent:

(i): f : M → X is measurable in the sense of Bochner;
(ii): ∀p ∈ sn X f(M) is p-separable and f is p-measurable;
(iii): ∀n ∈ N f(M) is pn-separable and f is pn-measurable;
(iv): if Y is a Banach space and L ∈ L(X, Y ), then L ◦ f is measurable in

the sense of Bochner.

Proof. Implications (i) ⇒ (ii) ⇒ (iii) and (i) ⇒ (iv) are obvious, so it
suffices to show that (iii) ⇒ (i) and (iv) ⇒ (ii). To deal with the former,
observe that for n ∈ N there exists an at most countable set Qn ⊂ f(M) which
is pn-dense in f(M), so the set Q :=

⋃
n∈N Qn is dense in f(M).

Let O ∈ topX. We prove that f−1(O) is measurable. Let x ∈ O ∩ f(M).
O − x is a neighbourhood of zero, hence there are n ∈ N and r > 0 such
that Kpn(0, r) ⊂ O − x. Therefore (x + Kpn(0, r)) ∩ f(M) ∈ top (O ∩ f(M)).
Consequently, there is a sequence of sets (Ek)k∈N, of type (x + Kpn(0, r)) ∩
f(M), such that

⋃
k∈N

Ek = O ∩ f(M). The function f is pn-measurable, thus

f−1(x + Kpn(0, r)) is measurable for all n ∈ N and r > 0. Finally,

f−1(O) = f−1(O ∩ f(M)) = f−1

(⋃
k∈N

Ek

)
=
⋃
k∈N

f−1(Ek)

is a measurable set. Therefore f : M → X is measurable.
We now turn to (iv) ⇒ (ii). Let p ∈ sn X. Let π : X → X/{p=0} denote

the quotient map. Let us consider a Banach space Y and an isometry J : X/

{p=0} → Y . Obviously, L := J ◦π ∈ L(X, Y ), so by (iv) (L◦f)(M) is separable
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in Y and L ◦ f : M → Y is measurable. Thus L ◦ f : M → imJ is measurable,
thence π ◦ f = J −1 ◦ L ◦ f : M → X/{p=0} is measurable.

Let O ∈ top (X,p). Then π(O) ∈ topX/{p=0} and the set (π ◦ f)−1(π(O))
is measurable. But

(π ◦ f)−1(π(O)) = f−1(O),

hence f : M → X is p-measurable.
Similarly, (π ◦ f)(M) is separable in X/{p=0}. Therefore there exists an

at most countable set Q := {q1, q2, . . .} which is dense in (π ◦ f)(M). For
each i ∈ N there is xi ∈ f(M) such that qi = π(xi). We see at once that
{x1, x2, x3, . . .} is p-dense in f(M).

Definition 13. A function f : M → X is summable iff f is measurable in

the sense of Bochner and ∀p ∈ sn X
∫

M
(p ◦ f)dµ < ∞.

Lemma 14. If X, Y are Fréchet spaces, L ∈ L(X, Y ) and f : M → X is
summable, then L ◦ f is summable.

Proof. It is clear that L ◦ f is measurable in the sense of Bochner. Let
q ∈ sn Y. Then p := q ◦ L ∈ sn X and

∞ >

∫
M

(p ◦ f)dµ =
∫

M
(q ◦ (L ◦ f))dµ.

Therefore L ◦ f is summable.

Lemma 15. Assume that f : M → X is measurable in the sense of Bochner.
Then the following conditions are equivalent:

(i): f is summable;

(ii): ∀n ∈ N
∫

M
(pn ◦ f)dµ < ∞;

(iii): if Y is a Banach space and L ∈ L(X, Y ), then L ◦ f is summable.

Proof. From the definition it follows that (i) ⇒ (ii). Conversely, for every

p ∈ sn X, there are n ∈ N and C > 0 such that p ≤ Cpn. Therefore
∫

M
(p ◦

f)dµ ≤ C

∫
M

(pn ◦ f)dµ < ∞.

By virtue of Lemma 12, (i) ⇒ (iii). We will prove that (iii) ⇒ (i). Let
p ∈ sn X. As in the proof of Lemma 12 ((iv)⇒ (ii)), let us consider the quotient
map π, a Banach space Y , an isometry J , and L := J ◦ π ∈ L(X, Y ). The
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function L ◦ f is summable. Thus

∞ >

∫
M
|(L ◦ f)(t)|Y dµ(t) =

∫
M
|J ((π ◦ f)(t))|Y dµ(t) =

=
∫

M
|π(f(t))|X/{p=0}dµ(t) =

∫
M

p(f(t))dµ(t).

Theorem 16. Let f : M → X be summable. Then there is the unique

vector in X, denoted by
∫

M
f dµ ∈ X, such that if Y is a Banach space and

L ∈ L(X, Y ), then

L

(∫
M

fdµ

)
=
∫

M
(L ◦ f)dµ.

Proof. We shall use the symbols ηn, η̄n, B, ι from Theorem 3. Lemma 15
implies that Jn ◦ πn ◦ f is summable for all n ∈ N. We claim that(∫

M
(Jn ◦ πn ◦ f)dµ

)
n∈N

∈ B. Indeed, for any n ∈ N

η̄n

(∫
M

(Jn ◦ πn ◦ f)dµ

)
=
∫

M
(η̄n ◦ Jn ◦ πn ◦ f)dµ.

Since the diagram (2) commutes, there is η̄n ◦ Jn = Jn−1 ◦ ηn. Moreover, the
diagram (1) commutes, so ηn ◦ πn = πn−1. Consequently,∫

M
(η̄n ◦ Jn ◦ πn ◦ f)dµ =

∫
M

(Jn−1 ◦ ηn ◦ πn ◦ f)dµ =
∫

M
(Jn−1 ◦ πn−1 ◦ f)dµ,

which proves our claim.
According to Theorem 3, ι is an isomorphism and for this reason there is

a ∈ X such that (Jn ◦ πn)(a) =
∫

M
(Jn ◦ πn ◦ f)dµ for every n ∈ N. Applying

now the fact that the diagram (7) commutes, we obtain

L(a) = (L̄n ◦ Jn ◦ πn)(a) = L̄n

(∫
M

(Jn ◦ πn ◦ f)dµ

)
=
∫

M
(L ◦ f)dµ,

which means that a ∈ X is the desired vector.
To prove the uniqueness, it is sufficient to note that the family

⋃
Y L(X, Y ),

Y being a Banach space, seperates points on X.

Lemma 17. Let X, Y be Fréchet spaces and L ∈ L(X, Y ). Assume that a

function f : M → X is summable. Then L

(∫
M

fdµ

)
=
∫

M
(L ◦ f)dµ .
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Proof. If B is a Banach space and T ∈ L(Y, B), then T ◦ L ∈ L(X, B).

Setting y := L

(∫
M

fdµ

)
, we have

T (y) = (T ◦ L)
(∫

M
fdµ

)
=
∫

M
(T ◦ L ◦ f)dµ.

As B and T are arbitrary, Theorem 16 leads to y =
∫

M
(L ◦ f)dµ.

Lemma 18. If p ∈ sn X and a function f : M → X is summable, then

p

(∫
M

fdµ

)
≤
∫

M
(p ◦ f)dµ.

Proof. As in the proof of Lemma 12 ((iv)⇒(ii)), let L := J ◦π ∈ L(X, Y );
from Theorem 16

L

(∫
M

fdµ

)
=
∫

M
(L ◦ f)dµ.

Obviously, |L(x)|Y = p(x) for every x ∈ X. In this way

p

(∫
M

fdµ

)
=

∣∣∣∣L(∫
M

fdµ

)∣∣∣∣
Y

=
∣∣∣∣∫

M
(L ◦ f)dµ

∣∣∣∣
Y

≤

≤
∫

M
|L(f(t))|Y dµ(t) =

∫
M

p(f(t))dµ(t).

In consequence, we have

Remark 19. If f, g : M → X are summable and equal a.e, then∫
M

fdµ =
∫

M
g dµ.

3. Product integral. Let X be a Fréchet algebra and let J be an interval
in R.

Theorem 20. Given t0 ∈ J and x0 ∈ X , suppose that A : J → X is locally
summable. Then the problem

(21)
{

ẋ = A(t)x
x(t0) = x0

has the unique (absolutely continuous) solution.

Proof. Let (pn)n∈N be an increasing sequence of seminorms that induces
the topology in X . Let us consider the family Xn := X/{pn=0} (n ∈ N) of
normed algebras and the family Bn of their respective completions. Consider
the family of quotient maps πn : X → Xn (n ∈ N) and the family of isometric
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homomorphisms Jn : Xn → Bn (n ∈ N) with dense images. Let ηn, η̄n, ι be
homomorphisms of algebras and let B be the Fréchet algebra introduced in
Theorem 3.

Our proof starts with showing the existence of solution. By virtue of The-
orem 18, the function Jn ◦ πn ◦A : J → Bn is locally summable for any n ∈ N.
Thus the problem

(21)n

{
ẏ = (Jn ◦ πn ◦A)(t)y

y(t0) = (Jn ◦ πn)(x0),

in Banach algebra Bn has the unique solution yn : J → Bn for each n ∈ N. Set
y := (yn)n∈N. We first check whether the function y has values in B.

Obviously, η̄n ◦ yn : J → Bn−1 is absolutely continuous and differentiable

a.e. Set Z :=
∞⋃

n=1

Zn, with Zn the subset of J on which ẏn does not exist.

Clearly, µ(Z) = 0. Fix n ∈ N, t ∈ J \ Z. We have
d

dt
(η̄n ◦ yn)(t) = η̄n(ẏn(t))

since η̄n ∈ L(Bn, Bn−1). On the other hand, yn satisfies equation (21)n, so

(22)
d

dt
(η̄n ◦ yn)(t) = (η̄n ◦ Jn ◦ πn ◦A)(t) · (η̄n ◦ yn)(t).

Since diagrams (2), (1) commute, (22) shows that
d

dt
(η̄n ◦ yn)(t) = (Jn−1 ◦ πn−1 ◦A)(t) · (η̄n ◦ yn)(t).

Similarly,

(η̄n ◦ yn)(t0) = (η̄n ◦ Jn ◦ πn)(x0) = (Jn−1 ◦ πn−1)(x0).

Therefore, both η̄n ◦ yn : J → Bn−1 and yn−1 are solutions of (21)n−1. But
(21)n−1 (a problem in Banach algebra Bn) has the unique solution, hence η̄n ◦
yn = yn−1, and finally y : J → B.

It is easy to check that y : J → B is absolutely continuous, differentiable
a.e. and for t ∈ J \ Z, ẏ(t) = (ẏn(t))n∈N.

Set x := ι−1 ◦ y. Lemmas 8 and 9 easily imply that x is absolutely contin-
uous, differentiable a.e. and ẋ = ι−1 ◦ ẏ almost everywhere.

Fix t ∈ J \ Z.

ẋ(t) = ι−1 ((ẏn(t))n∈N) = ι−1 (((Jn ◦ πn ◦A(t)) · yn(t))n∈N) =

= ι−1 (((Jn ◦ πn ◦A(t))n∈N · (yn(t))n∈N) = A(t) · ι−1(y(t)) = A(t)x(t).

In the same manner, x(t0) = x0. Therefore x : J → X is a solution of (21).
To prove the uniqueness, assume that x, x̃ : J → X are two solutions of

(21). Let us consider a Banach algebra Y and a homomorphism h : X → Y .
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Then h ◦ x, h ◦ x̃ are easily seen to be solutions of the problem{
ẏ = (h ◦A(t)) · y

y(t0) = h(x0)

in Banach algebra Y. But this problem has the unique solution, thus h ◦ x =
h ◦ x̃, and finally, by Remark 4, we conclude that x = x̃.

Theorem 23. Fix t0 ∈ J and consider sequences lν → l in X and Aν → A
in L1

loc(J,X ) as ν →∞. Let xν : J → X denote a solution of the problem

(24)
{

ẋ = Aν(t)x
x(t0) = lν

for ν ∈ N, and let x : J → X be a solution of

(25)
{

ẋ = A(t)x
x(t0) = l.

Then xν → x almost uniformly in X as ν →∞.

Proof. Jn ◦ πn ∈ L(X , Bn) so, according to Theorem 18, the functions
Jn ◦ πn ◦ Aν : J → Bn and Jn ◦ πn ◦ A : J → Bn are locally summable
(∀ν, n ∈ N).

Let us denote by yν,n : J → Bn, yn : J → Bn the solutions of the Cauchy
problems{

ẏ = (Jn ◦ πn ◦Aν(t))y
y(t0) = (Jn ◦ πn)(lν),

{
ẏ = (Jn ◦ πn ◦A(t))y

y(t0) = (Jn ◦ πn)(l),

in the Banach algebras Bn. By assumption lν → l in X as ν → ∞, thus
(Jn ◦ πn)(lν) → (Jn ◦ πn)(l) in Bn as ν →∞ (∀n ∈ N).

Let x ∈ X . Then

(26) |(Jn ◦ πn)(x)|Bn = |πn(x)|Xn = pn(x) ∀n ∈ N.

Since Aν
ν→∞−→ A in L1

loc(J,X ), (26) shows that Jn ◦ πn ◦ Aν
ν→∞−→ Jn ◦ πn ◦ A

in L1
loc(J,Bn). In consequence, yν,n → yn almost uniformly in Bn as ν → ∞

(∀n ∈ N).
As in the proof of Theorem 20, xν := ι−1 ◦ yν is the solution of (24), while

x := ι−1 ◦ y is the solution of (25), where yν := (yν,n)n∈N, y := (yn)n∈N. Now
we prove that xν → x almost uniformly as ν →∞.

Let I be a compact subset of J . Let t ∈ I, n ∈ N. There are C > 0 and
k ∈ N such that

(27) pn(xν(t)− x(t)) ≤ C qk(yν(t)− y(t)) = C |yν,k(t)− yk(t)|Bk
.

Since, in particular, yν,k → yk uniformly in I as ν →∞, (27) shows, (as n ∈ N
is arbitrary) that also xν → x uniformly in I as ν →∞.
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We are now in a position to define the product integral in a Fréchet algebra.
Let X be a Fréchet algebra with unit I. Consider a locally summable

function A : J → X .

Definition 28. Let a, b ∈ J . Assume that x : J → X is a solution of the
Cauchy problem

(29)
{

ẋ = A(t)x
x(a) = I.

The element x(b) ∈ X is called the product integral of A and is denoted by
b∏
a

eA(s)ds.

The following properties are straightforward

Remark 30. i):
a∏
a

eA(s)ds = I;

ii):
d

dt

t∏
a

eA(s)ds = A(t)
t∏
a

eA(s)ds for a.e. t ∈ J ;

iii): if A = Ã a.e. then
b∏
a

eÃ(s)ds =
b∏
a

eA(s)ds

Remark 31. Fix t0 ∈ J , x0 ∈ X . The function x : J 3 t 7→
t∏
t0

eA(s)ds ·x0 ∈

X is the unique solution of the Cauchy problem{
ẋ = A(t)x

x(t0) = x0.

Remark 32. For all a, b, c ∈ J

c∏
a

eA(s)ds =
c∏
b

eA(s)ds ·
b∏
a

eA(s)ds and

(
b∏
a

eA(s)ds

)−1

=
a∏
b

eA(s)ds.

Remark 33. For all n ∈ N

pn

(
b∏
a

eA(s)ds

)
≤ exp

(∫
[a,b]

pn(A(s))ds

)
and

pn

(
b∏
a

eA(s)ds − I

)
≤ exp

(∫
[a,b]

pn(A(s))ds

)
− 1.
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Proof. Denoting by ϕ(t) :=
t∏
a

eA(s)ds, we have ϕ(t) = I +
∫ t
a A(τ)ϕ(τ)dτ .

Thus

pn(ϕ(t)) ≤ 1 + pn

(∫ t

a
A(τ)ϕ(τ)dτ

)
≤ 1 +

∫
[a,t]

pn(A(τ))pn(ϕ(τ))dτ

and from the Gronwall inequality

pn(ϕ(b)) ≤ exp

(∫
[a,b]

pn(A(s))ds

)
.

The proof of the second inequality is similar.

Let X be a Fréchet algebra with unit I. Setting x0 = I for x ∈ X , we define

expx :=
∞∑

n=0

xn

n!
.

Obviously, exp 0 = I and ps(expx) ≤ exp(ps(x)) ∀x ∈ X ∀s ∈ N.
Moreover, if X , Y are Fréchet algebras and L : X → Y is a continuous

homomorphism of algebras, then

(34) exp ◦L = L ◦ exp .

Lemma 35. If for a.e. t, s ∈ J A(t)A(s) = A(s)A(t) then
b∏
a

eA(s)ds = exp
(∫ b

a
A(s)ds

)
.

Proof. Let ϕ(t) :=
t∏
a

eA(τ)dτ ∈ X , yn(t) :=
t∏
a

e(Jn◦πn◦A)(τ)dτ ∈ Bn for

n ∈ N. According to the assumption,

(Jn ◦ πn ◦A)(t) · (Jn ◦ πn ◦A)(s) = (Jn ◦ πn ◦A)(s) · (Jn ◦ πn ◦A)(t)

for almost all t, s ∈ J and for all n ∈ N. But in the case of product integral in
Banach algebra Bn (see [3], Cor. 3.5.1.3) we have

yn(b) = exp
(∫ b

a
(Jn ◦ πn ◦A)(τ)dτ

)
and by virtue of Theorem 18 and (34) we obtain

yn(b) = (Jn ◦ πn)
(
e
∫ b

a A(τ)dτ
)

.

As in the proof of Theorem 20, we finally get

ϕ(b) = ι−1 ((yn(b))n∈N) = ι−1
((

(Jn ◦ πn)
(
e
∫ b

a A(τ)dτ
))

n∈N

)
= e

∫ b
a A(τ)dτ .
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Lemma 36. Suppose that Aν → A in L1
loc(J,X ), aν → a, bν → b in J as

ν →∞. Then
bν∏
aν

eAν(s)ds −→
b∏
a

eA(s)ds in X as ν →∞.

Proof. Let xν(t) =
t∏
a

eAν(s)ds, x(t) =
t∏
a

eA(s)ds. By virtue of Theorem

23, xν → x almost uniformly in X . The set K := {b, b1, b2, . . .} is compact in
J . Hence xν → x uniformly in K. Let n ∈ N.

pn(xν(bν)− x(b)) ≤ pn(xν(bν)− x(bν)) + pn(x(bν)− x(b)) → 0

as ν →∞. According to Remark 33 also pn

(
a∏
aν

eAν(s)ds − I

)
converges to 0,

as ν →∞. As n ∈ N is arbitrary,

(37)
bν∏
a

eAν(s)ds →
b∏
a

eA(s)ds,
a∏
aν

eAν(s)ds → I

in X as ν →∞. Finally, note that
bν∏
aν

eAν(s)ds =
bν∏
a

eAν(s)ds ·
a∏
aν

eAν(s)ds,

which by (37) and the continuity of multiplication in X completes the proof.

Lemma 38. Given are a1, . . . , an ∈ X , real numbers t0 < t1 < . . . < tn and

the function A : [t0, tn] → X such that A :=
n∑

i=1

χ[ti−1,ti[ · ai. Then

tn∏
t0

eA(s)ds = e(tn−tn−1)an · e(tn−1−tn−2)an−1 · . . . · e(t1−t0)a1 .

Proof. Obviously,
tn∏
t0

eA(s)ds =
tn∏

tn−1

eA(s)ds ·
tn−1∏
tn−2

eA(s)ds · . . . ·
t1∏
t0

eA(s)ds.

Since for all s, t ∈ [tj−1, tj [ A(s) = A(t) = aj , Remark 35 leads to
tj∏

tj−1

eA(s)ds = e
∫ j

tj−1
A(s)ds

= eaj(tj−tj−1).
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Lemma 39. For a.e. t ∈ J :
d

dt

b∏
t

eA(s)ds = −
b∏
t

eA(s)ds ·A(t).

Proof. Set ϕ(t, b) :=
b∏
t

eA(s)ds, yn(t, b) :=
b∏
t

e(Jn◦πn◦A)(s)ds for each

n ∈ N. As in the proof of Theorem 20,

(yn(t, b))n∈N = ι(ϕ(t, b)).

It is well known (see for example [3], Cor. 3.5.3.1 ) that

d

dt

b∏
t

eA(s)ds = −
b∏
t

eA(s)ds ·A(t)

for almost all t ∈ J , when A : J → A is locally summable as a function with
values in a Banach algebra A. In particular,

d

dt
yn(t, b) = −yn(t, b) · (Jn ◦ πn ◦A)(t)

for all n ∈ N and a.e. t ∈ J . Therefore,

(40) ι−1

((
d

dt
yn(t, b)

)
n∈N

)
= −ι−1

(
(yn(t, b) · (Jn ◦ πn ◦A)(t))n∈N

)
.

Again, as in the proof of Theorem 20, we have

d

dt
((yn(t, b))n∈N) =

(
d

dt
yn(t, b)

)
n∈N

.

But ι−1 is a continuous homomorphism of algebras, so

ι−1

((
d

dt
yn(t, b)

)
n∈N

)
=

d

dt
(ι−1((yn(t, b))n∈N)) =

d

dt
ϕ(t, b).

On the other hand

ι−1 ((yn(t, b) · (Jn ◦ πn ◦A)(t))n∈N) = ϕ(t, b) ·A(t),

and finally (40) gives our claim.

Let us consider a Fréchet space M being a module over a Fréchet algebra
X and a continuous external multiplication X ×M → M .
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Theorem 41. Fix x0 ∈ M , t0 ∈ J and let A : J → X , B : J → M

be locally summable. Set ϕ(t) :=
t∏
t0

eA(s)ds. Then the function J 3 t 7→

ϕ(t)
(

x0 +
∫ t

t0

ϕ(τ)−1B(τ) dτ

)
is the unique solution of the problem

(42)
{

ẋ = A(t)x + B(t)
x(t0) = x0.

Proof. Let g(t) := ϕ(t)−1f(t), f being a solution of (42). By Lemma 39,

g′(t) = −ϕ(t)−1A(t)f(t) + ϕ(t)−1f ′(t) =

= −ϕ(t)−1A(t)f(t) + ϕ(t)−1(A(t)f(t) + B(t)) = ϕ(t)−1B(t).

But g : J → M is absolutely continuous, thus

g(t) = g(t0) +
∫ t

t0

g′(τ)dτ = g(t0) +
∫ t

t0

ϕ(τ)−1B(τ)dτ.

Consequently,

(43) f(t) = ϕ(t)
(

x0 +
∫ t

t0

ϕ(τ)−1B(τ) dτ

)
.

We have thus proved that every solution of (42) is of the form (43). Conversely,
the function f : J → M given by (43) is a solution of (42). Indeed,

f ′(t) = ϕ′(t)x0 + ϕ′(t)
∫ t

t0

ϕ(τ)−1B(τ) dτ + ϕ(t)ϕ(t)−1B(t) =

= A(t)ϕ(t)x0 + A(t)ϕ(t)
∫ t

t0

ϕ(τ)−1B(τ) dτ + B(t) = A(t)f(t) + B(t)

and

f(t0) = ϕ(t0)
(

x0 +
∫ t0

t0

ϕ(τ)−1B(τ) dτ

)
= x0.

Lemma 44. Let X ,Y be Fréchet algebras and h : X → Y a continuous
homomorphism. Assume that A : J → X is locally summable. Then for all
t1, t2 ∈ J :

h

(
t2∏
t1

eA(s)ds

)
=

t2∏
t1

e(h◦A)(s)ds.
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Proof. Let t1, t2 ∈ J , x(t) :=
t∏
t1

eA(s)ds and h ∈ L(X ,Y). By Lemmas 8

and 9, the function h ◦ x : J → Y is absolutely continuous and

(h ◦ x)′(t) = h(ẋ(t)) = h(A(t)x(t)) = (h ◦A)(t) · (h ◦ x)(t)

a.e. in J . Due to Lemma 14 h ◦A : J → Y is locally summable. Furthermore,

(h ◦ x)(t1) = h(x(t1)) = h(IX ) = IY ,

where IX , IY are units in X , Y, respectively. Thus h ◦ x is a solution of{
ẏ = (h ◦A)(t)y

y(t1) = IY

in Y. But the only solution of the above problem is
t∏
t1

e(h◦A)(s)ds. In particular,

for t = t2

h

(
t2∏
t1

eA(s)ds

)
=

t2∏
t1

e(h◦A)(s)ds.

Here follow two theorems on the differentation of the product integral with
respect to a parameter. The obtained formulas are similar to that of Duhamel
type (see [3]) and, in the case of a Banach algebra, were proved by K. Holly
[4].

Theorem 45. Let G ⊂ Y be an open subset of a normed space Y and X
a Fréchet algebra. Fix a, b ∈ R. Consider A : [a, b] × G → X such that for all
x ∈ G the function A(·, x) is summable and for all t ∈ [a, b] the mapping A(t, ·)
is differentiable in direction u ∈ Y . Assume that for every p ∈ snX there is
a function ϕ : [a, b] → [0,∞] summable and such that p(∂uA(t, x)) ≤ ϕ(t),

∀(t, x) ∈ [a, b]×G. Then the function G 3 x 7→
b∏
a

eA(s,x)ds is differentiable in

direction u and

(46) ∂u
b∏
a

eA(s,x)ds =
∫ b

a

b∏
τ

eA(s,x)ds · ∂uA(τ, x) ·
τ∏
a

eA(s,x)ds dτ.
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Proof. The right-hand side of (46) makes sense since functions τ 7→
b∏
τ

eA(s,x)ds, τ 7→
τ∏
a

eA(s,x)ds are continuous and τ 7→ ∂uA(τ, x) is summa-

ble. Set f(t, x) :=
t∏
a

eA(s,x)ds. An easy computation shows that the function

t 7→ 1
r
(f(t, x + ru)− f(t, x)) is a solution of the problem

{
ẏ(t) = A(t, x)y(t) +

A(t, x + ru)−A(t, x)
r

f(t, x + ru)
y(a) = 0.

According to Theorem 41 we obtain

(47)

f(b, x + ru)− f(b, x)
r

=

=
∫ b

a

b∏
τ

eA(s,x)ds A(τ, x + ru)−A(τ, x)
r

τ∏
a

eA(s,x+ru)dsdτ.

The function κ(r) := A(τ, x + ru) is differentiable for small r and κ̇(r) =
∂uA(τ, x + ru).

Fix p ∈ snX . There is a summable ϕ : [a, b] → [0,∞] such that p(κ̇(r)) ≤
ϕ(τ). Following the notations of the proof of Lemma 18, by the mean value
theorem we have
(48)

p(A(τ, x + ru)−A(τ, x)) = p(κ(r)− κ(0)) = |(L ◦ κ)(r)− (L ◦ κ)(0)|Y ≤
≤ |r| · sup

s∈]0,r[
|L(κ̇(s))|Y = |r| · sup

s∈]0,r[
p(κ̇(s)) ≤ |r|ϕ(τ).

In particular for |r| ≤ 1

p(A(τ, x + ru)) ≤ p(A(τ, x)) + ϕ(τ)

and by Remark 33 we have

p

(
τ∏
a

eA(s,x+ru)ds

)
≤ exp

(∫
[a,b]

(p(A(s, x)) + ϕ(s))ds

)
< ∞.

In this way each seminorm p ∈ snX of the integrand of the right-hand side of
(47) is dominated by a summable function. On the other hand,
A(τ, x + ru)−A(τ, x)

r
−→ ∂uA(τ, x) as r → 0. Simultaneously, by (48)
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A(·, x + ru) −→ A(·, x) in L1(a, b;X ) as r → 0 and by Lemma 36
τ∏
a

eA(s,x+ru)ds −→
τ∏
a

eA(s,x)ds

as r → 0. Letting r → 0 in (47) by virtue of the dominated convergence
theorem we obtain our assertion.

Theorem 49. Let G ∈ top Rn. Let X be a Fréchet algebra. Fix a, b ∈ R.
Consider A : [a, b] × G → X such that for all x ∈ G the function A(·, x) is
summable and for all t ∈ [a, b] the mapping A(t, ·) is of class Ck (k ≥ 1).
Assume that for every p ∈ snX and α ∈ Nn (1 ≤ |α| ≤ k) there is a function
ϕα : [a, b] → [0,∞] summable and such that p(Dα

xA(t, x)) ≤ ϕα(t), ∀(t, x) ∈

[a, b] × G. Then the function G 3 x 7→
b∏
a

eA(s,x)ds is of class Ck, for every

|β| ≤ k the mapping (t, x) 7−→ Dβ
x

t∏
a

eA(s,x)ds is continuous and ∀1 ≤ |α| ≤ k

Dα
x

b∏
a

eA(s,x)ds =
∑

α 6=β≤α

(
α

β

)∫ b

a

b∏
τ

eA(s,x)ds ·Dα−β
x A(τ, x) ·Dβ

x

τ∏
a

eA(s,x)ds dτ

Proof. To prove the theorem, one may use induction with respect to k.
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