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AN EXTENSION OF MARKOV PARTITIONS FOR A CERTAIN

TORAL ENDOMORPHISM

by Kinga Stolot

Abstract. We define and construct Markov partition for a certain toral
endomorphism and then we use it to obtain a symbolic representation of
the semidynamical system induced by the endomorphism.

1. Introduction. The increasing interest in the theory of symbolic dy-
namics is stimulated by the need of a simple tool for investigating complicated
dynamical systems. Quite often it is much easier to prove that a given subshift
of finite type has some dynamical property, than to show it directly for the
considered dynamical system. By finding a semi-conjugacy between an appro-
priate subshift of finite type and a given dynamical system we often can draw
conclusions about dynamical properties of the latter.

Markov partitions provide a way of constructing such semi-conjugaces. The
method is based on a division of a space into a finite number of parts. As long
as the partition is properly chosen it establishes a correspondence between an
orbit and its itinerary, which records the parts visited by the successive points of
the orbit. To construct an appropriate partition, stable and unstable manifolds
are used to indicate the boundaries of these parts.

Markov partitions were first introduced by Adler and Weiss [2] for the
hyperbolic automorphisms of the two-dimensional torus and the obtained sym-
bolic model was used to investigate some measure theory problems.

The aim of this paper is to generalize the concept of Markov partitions for
certain toral endomorphism. We search for the partition that gives a symbolic
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representation of the discrete semi-dynamical system induced by the endomor-
phism on a torus. It is natural to expect our representation to be a one-sided
subshift of finite type, because in the case of the toral automorphism it is a
subshift of finite type. Unfortunately the construction of Adler and Weiss does
not apply in the non-invertible case. It is impossible to obtain in this way any
symbolic representation, which will be explained in Chapter 8.

Our result is a construction of an extended Markov partition for the given
toral endomorphism, which raises the expected symbolic representation of the
semi-dynamical system of interest.

To reach our aim we generalize the concept of the good intersection prop-
erty (Definition 3.6), which has so far been described (in a restricted way)
geometrically only with pictures (compare Lind, Marcus [14]).

This provides a new method of obtaining the transition rule (Section 7),
what is significant for the definition of the extended Markov matrix (Definition
3.9) and the extended Markov partition (Definition 3.10).

One of the most interesting problems which we approach is finding two suit-
able partitions such that there is a factor map between the one-sided subshifts
of finite type associated with them.

Finally we would like to mention other generalizations of Markov partitions.
Adler and Weiss’s construction was first extended by Sinai [21], [22] for the
Anosov diffeomorphisms. Then Bowen [5] constructed Markov partitions for
Axiom A diffeomorphisms, using Smale’s Spectral Decomposition Theorem.
The detailed description of Bowen’s construction is given by Shub [19] under
slightly more general assumptions.

The recent generalizations of Markov condition is the weak local Markov
condition (Blank [4], 1997).

Bowen’s method, although applicable to a broaden class of maps, does not
provide any useful information when an explicit dynamical system is considered.

Firstly, the rectangles that form the space division are too small and there-
fore the subshift of finite type which we obtain as a symbolic model for the
considered dynamical system, acts on a very large number of symbols.

Secondly, at no boundary point of the rectangles is there a tangent space, so
they have a fractal structure, [7] and it causes serious difficulties in constructing
these sets in the higher-dimensional spaces (significant problems appear already
in dimension three).

One can find more information on the topic in [1].
In spite of the fact that Markov partitions were created for the hyperbolic

systems, similar methods are used for the systems that lack this property, [13].
It is worth mentioning that there are also some attempts to construct Markov
partitions with the use of computer methods [9].
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3. Definition of the extended Markov partition. Let us consider the
toral endomorphism given by the matrix

A =
[
3 1
1 1

]
.

All the definitions and results are stated for this matrix A.
Matrix A induces a map on T2, because it has integer entries, but it is not

invertible because det A = 2. We will denote a map induced on the torus with
A, too.

Matrix A has the following eigenvalues and corresponding eigenvectors

λu = 2 +
√

2, λs = 2−
√

2,

xu = [1 +
√

2, 1],

xs = [1−
√

2, 1].

It is a hyperbolic matrix, because its eigenvalues are not on the unit circle.
Let Eu be a linear subspace of R2 spanned by the vector xu and Es respectively
– by the vector xs.

Let us denote by W s and W u projections of Es and Eu respectively, onto
the torus. By W s(x) and W u(x) we mean projections of the subspaces x + Es

and x + Eu on the torus.
Let us introduce some preliminary definitions.

Definition 3.1. By the interval in T2 we mean the projection of an interval
in R2.

Definition 3.2. By the rectangle in T2 we mean the projection of a rec-
tangle in R2.

We consider only such rectangles whose sides are parallel to the stable and
unstable direction.
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Observation 3.3. Let R be a rectangle on T2. Then A(R) is also a
rectangle and A−1(R) is a union of two congruent rectangles P and Q, such
that P = Q + [12 , 1

2 ].

Definition 3.4. An interval Ju is called an unstable section of the rectan-
gle P , if there exists an x ∈ Ju, such that Ju is the maximal interval included
in W u(x) ∩ P .

By the partition of the torus we mean a finite set of open disjoint rectangles
(with the sides parallel to the stable and unstable directions), such that the
closure of their union is the whole torus.

Let us now define the notion of good intersections for a toral automorphism
M , that captures the idea illustrated in the pictures in [14].

Definition 3.5. Let P and R be two open rectangles in T 2 with the sides
parallel to the stable and unstable directions (these sides are denoted respec-
tively by ∂s(R), ∂s(P ) and ∂u(R), ∂u(P )). We say that P and M(R) satisfy
the good intersection property if M(R) ∩ P = ∅ or M(R) ∩ P is a rectangle
and M(R) ∩ ∂u(P ) = ∅ and ∂s(M(R)) ∩ P = ∅.

Unfortunately, following Adler and Weiss’s method in the case of the en-
domorphism we obtain a partition which lacks the good intersection property
(Section 8).

As we said in the introduction, we want to generalize the concept of the
good intersection property in such a way that it would lead us to a partition
which satisfies transition rule (Definition 3.8), because only such partitions can
give a symbolic representation.

Let us define a new notion of a good intersection property, which uses
preimages instead of images of rectangles and therefore it is suitable for our
purpose.

Definition 3.6. Let R be a partition of the torus. We say that rectangles
P ∈ R and A−1(R), where R ∈ R, satisfy the good intersection property if for
any unstable section Ju of the rectangle P the set Ju ∩ A−1(R) is an interval
or for any unstable section Ju of the rectangle P we have Ju ∩A−1(R) = ∅.

Definition 3.6 is correct by virtue of Observation 3.3.

Definition 3.7. LetR be a partition of the torus. We say thatR satisfies a
good intersection property for the preimages if for any two rectangles P,R ∈ R,
the sets P and A−1(R) satisfy the good intersection property in the meaning
of Definition 3.6.

One can easily check that the partition P constructed in Section 5 satis-
fies Definition 3.7, but does not satisfy Definition 3.5, which proves that the
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generalization is substantial and therefore gives a new method of obtaining the
transition rule (the appropriate theorem is stated in Section 7).

Let us generalize the concept of the transition rule, [1].

Definition 3.8. Let R = {Ri : 1 ≤ i ≤ n} be a partition of the torus.
We say that R satisfies the transition rule for A if for any m ∈ N, m ≥ 3, the
following condition is satisfied:

Rak
∩A−1(Rak+1

) 6= ∅, 0 ≤ k ≤ m− 1 ⇒
⋂m

k=0 A−k(Rak
) 6= ∅

for any Rak
∈ R, 0 ≤ k ≤ m.

Let us generalize the concept of a Markov matrix, corresponding to the new
notion of a good intersection property. By ST we denote the transpose of a
matrix S.

Definition 3.9. Let P = {P1, P2, . . . , Pn} be a partition of the torus,
satisfying a good intersection property for the preimages.

Let us define a matrix T = ST , where S = [sij ]ni,j=1, sij = 1 if A−1(Pi) ∩
Ju 6= ∅ for all Ju unstable sections of the rectangle Pj , 1 ≤ i, j ≤ n and sij = 0
otherwise. The matrix T is called the extended Markov matrix.

Let us remind that the topological Cantor set is a topological space home-
omorphic to the classic Cantor set.

Definition 3.10. An extended Markov partition for the endomorphism A
is a pair of the partitions of the torus (P,R) satisfying the following conditions

1. Partition P satisfies the transition rule.
2. Partition R satisfies the following condition

(∗) ∀(an)n≥0 ∈ Σ+
T ′ :

+∞⋂
n=0

A−n(Ran) = I(an) × C,

where I(an) ⊂ W s(x) ∩ Ra0 , for some x ∈ T2, C is a topological Cantor
set, and T ′ is the extended Markov matrix associated with the partition
R.

3. There exists a factor map F : Σ+
T ′ → Σ+

T , where T ′ and T are extended
Markov matrices associated with the partitions R and P respectively.

4. Main results. Let A : T2 → T2 be an endomorphism of the torus
induced by the matrix

A =
[
3 1
1 1

]
.

Theorem 4.1. There exists an extended Markov partition for the endomor-
phism A.
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Theorem 4.2. There exists a one-sided subshift of finite type Σ+
T and a

factor map Φ : T2 \B → Σ+
T such that the following diagram commutes

Σ+
T

σT−−−−→ Σ+
T

Φ

x xΦ

T2 \B −−−−→
A

T2 \B

B = {x ∈ T2 : Anx ∈ ∂R for some n ≥ 0}.

5. Proof of the existence of the extended Markov partition.
CONSTRUCTION:

STEP 1.
We start by repeating the first step of Adler and Weiss’s construction (compare
[2]), which gives us two rectangles. Let us denote the larger one by R∗

1 and the
smaller one by R2.

STEP 2. (Partition A)
Let us divide rectangle R∗

1 into two pieces, named R1 and R3, by cutting the
original rectangle along the unstable manifold of 0.

STEP 2a. (Partition A’)
Let us construct the partition consisting of the preimages of the rectangles
from the previous step. By Corollary 3.3 each of the preimages consists of two
rectangles. Let us call them R1′ and R1” respectively for the preimage of R1,
R2′ and R2” in a case of R2 and R3′ , R3” when R3 is considered.

They will be used to modify the partition obtained in Step 2.
STEP 3. (Partition B)

We want to rebuild Partition A, using Partition A’ in order to get a partition
satisfying the good intersection property for the preimages.

Rd = R1” ∩R1.
The rectangle R2 remains unchanged.
Re = (R1′ ∪R2′ ∪R3′) ∩R3

Rf = R3” ∩R3

Rg = (R1′ ∪R2” ∪R3′ ∪R3”) ∩R1

The partition which we obtained satisfies the good intersection property for
the preimages and therefore satisfies also the transition rule, by Theorem 7.1.

This is the partition P required in the definition of the extended Markov
partition.

STEP 3a. (Partition C)
Let us build a new partition by taking the preimages of the rectangles Rd, R2,
Re, Rf and Rg.

The apostrophe or double apostrophe are added to the symbol of the rec-
tangle when the preimage is taken.
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Picture 1. Partition A’
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Picture 2. Partition B

This is the partition R required in the definition of the extended Markov
partition.
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Picture 3. Partition C

This is the end of the construction. In the next step, we shell prove the
required properties of the obtained partitions.

STEP 4.
The extended Markov matrix associated with the partition P, referring to the
following order of symbols g, d, 2, e, f is as follows

T =


1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 1
0 0 0 1 1

 .
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Picture 4. Partitions A and B, and the image of Partition B

The extended Markov matrix for the partition R, with the given order of
symbols g′, g”, d′, d”, 2′, 2”, e′, e”, f ′, f”, is as follows

T ′ =



1 0 1 0 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1

0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0

1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1



.

Let us check if condition 3. of the definition of the extended Markov partition
is satisfied. Let us define a map F : Σ+

T ′ → Σ+
T by the condition
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(F (an)+∞n=0)m = bm :⇐⇒ A(Ram) = Rbm , for m ≥ 0.

Let us check if F commutes with the subshift of finite type that is if the
following equality is valid

σT ◦ F = F ◦ σT ′ .

From the definition of F we obtain

σT (F (an)+∞n=0) = (cn)+∞n=0

⇐⇒ (F ((an)+∞n=0))m+1 = cm, for m ≥ 0

⇐⇒ A(Ram+1) = Rcm , for m ≥ 0

F (σT ′((an)+∞n=0)) = F ((an+1)+∞n=0) = (dn)+∞n=0

⇐⇒ (F ((an+1)+∞n=0))m = dm, for m ≥ 0

⇐⇒ A(Ram+1) = Rdm , for m ≥ 0.

From above it follows that cm = dm, for m ≥ 0 and so F commutes with
the subshift. Moreover by the definitions of the matrices T and T ′ the map F
is surjective. This proves that condition 3. of the definition of the extended
Markov partition is satisfied.

Remark 5.1. The map F is an infinite-to-one factor map.

Among the distinguished 2 × 2 submatrices of the matrix T ′ there is a
matrix (corresponding to the symbols g′, g” and 2′, 2”) of the form[

1 1
1 1

]
.

Therefore, in the sequences in which symbol g precedes 2, there are diamonds
and that implies that T ′ induces a infinite-to-one factor map, because in the
preimage under F of the sequence (g, 2, g, 2, g, 2, ...) there are infinitely many
sequences.

The definition of a diamond and an infinite-to-one factor map, as well as
similar reasoning one can find in [12], Chapter ’Embeddings and Factor Maps’.

STEP 5.
Now we will show that the condition (∗) is satisfied.

Theorem 5.2.

∀(an)n≥0 ∈ Σ+
T ′ :

+∞⋂
n=0

A−n(Ran) = I(an) × C,

where I(an) ⊂ W s(x)∩Ra0 , for some x ∈ T2 and C is a topological Cantor set.
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Let us switch to the coordinate system given by the vectors xs, xu. In this
coordinate system the matrix A takes the form

JA =
[
2 +

√
2 0

0 2−
√

2

]
.

Let V = {v1, v2, . . . , vk} be a set of vectors in T2. By C(V ) we mean the
set {vi1 + vi2 + . . . + vis : vi1 , vi2 , . . . , vis ∈ V, 1 ≤ s ≤ k, vm 6= vn for m 6= n}.

Let V k denote the set {0, [14 , 1
4 ], J−1

A ([14 , 1
4 ]), J−2

A ([14 , 1
4 ]), . . . , J−(k−1)

A ([14 , 1
4 ])}.

The following lemma describes the structure of the preimages of the given
rectangle Rak

.

Lemma 5.3. J−k
A Rak

= Rk
ak

+C(V k), where Rk
ak

is a rectangle in the torus.

Proof. Observation 3.3 holds in the coordinate system determined by vec-
tors xs and xu, but rectangles in the preimage are displaced by the vector [14 , 1

4 ]
relative to each other. Then by induction the statement is true for any k.

Lemma 5.4. diamxuRk
ak
−→ 0, when k −→ +∞.

Proof. This is a straightforward consequence of the fact that the vector
xu indicates the stable direction for J−1

A .

Now we can prove Theorem 5.2.

Proof of Theorem 5.2. We will use the coordinate system given by the
vectors xs and xu. By Lemmas 5.3 and 5.4, for any k ≥ 0 the set J−k

A Rak

consists of a finite number of rectangles such that diamxuRk
ak
−→ 0. Moreover,

it is obvious that
⋂

k≥0 J−k
A Rak

⊂ Ra0 . Therefore

∃(xn)+∞n=0, xn ∈ T2 :
⋂
k≥0

J−k
A Rak

=
⋃
xn

Ixn ,

where Ixn ⊂ W s(xn) ∩Ra0 .
From Lemma 5.3 and the definition of sets C(V k), it follows that (xn) is a

topological Cantor set, which completes the proof.

6. Proof of the theorem on the correspondence to a one-sided
subshift of finite type.

Let (P,R) be the extended Markov partition for A. Moreover, let T and
T ′ be the extended Markov matrices associated with the partition P and R re-
spectively. We denote by F the map appearing in the definition of the extended
Markov partition.

We want to show that the following diagram commutes.
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Σ+
T

σT−−−−→ Σ+
T

F

x xσT

Σ+
T ′ Σ+

T

σT ′

x xF

Σ+
T ′ Σ+

T ′

Π

x xΠ

T2 \B −−−−→
A

T2 \B

Then we define the maps Φ1 : T2 \B → Σ+
T and Φ2 : T2 \B → Σ+

T by

Φ1 := F ◦ σT ′ ◦Π

Φ2 := σT ◦ F ◦Π.

Let us remind that the map F : Σ+
T ′ → Σ+

T was defined in the previous chapter
by

F ((an)n≥0) = (bn)n≥0 ⇐⇒ A(Ran) = Rbn , for n ≥ 0.

Let us define Π : T2 \B → Σ+
T ′ by

Π(x) = (an)n≥0 :⇐⇒ An(x) ∈ Ran , for n ≥ 0.

Maps Φ1 and Φ2 are surjective because F is surjective and the set
⋂+∞

n=0 A−nRan

is nonempty, for (an) ∈ Σ+
T ′ , which is a consequence of the condition (∗).

Maps Φ1 and Φ2 are equal (and this map is a map Φ in Theorem 4.2),
because F is a shift commuting map.

To show that
σT ◦ Φ = Φ ◦A,

it is enough to prove the equality

σT ◦ F ◦ σT ′ ◦Π(x) = σT ◦ F ◦Π ◦A(x)

for any x ∈ T2 \B.
Let us consider the left hand side of the equation, i.e. σT ◦ F ◦ σT ′ ◦Π(x).

Π(x) = (an)n≥0 ⇐⇒ An(x) ∈ Ran , for n ≥ 0;

σT ′((an)n≥0) = (an+1)n≥0;

F ((an+1)n≥0) = (bn)n≥0 ⇐⇒ A(Ran+1) = Rbn , for n ≥ 0;

σT ((bn)n≥0) = (bn+1)n≥0.
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Therefore the sequence (bn)n≥0 satisfies condition

A(Ran+1) = Rbn , for n ≥ 0,

An(x) ∈ Ran , for n ≥ 0,

which is the same as

An+1(x) ∈ A(Ran) = Rbn−1 , for n ≥ 1,

hence
An+2(x) ∈ Rbn , for n ≥ 0.

Let us in turn consider the right hand side of the equation : σT ◦F ◦Π◦A(x).

Π(A(x)) = (cn)n≥0 ⇐⇒ An+1(x) ∈ Rcn , for n ≥ 0;

F ((cn)n≥0) = (dn)n≥0 ⇐⇒ A(Rcn) = Rdn , for n ≥ 0;

σT ((dn)n≥0) = (dn+1)n≥0.

Therefore, the sequence (dn)n≥0 satisfies the condition

A(Rcn) = Rdn , for n ≥ 0,

An+1(x) ∈ Rcn , for n ≥ 0.

Consequently
An+2(x) ∈ A(Rcn) = Rdn , for n ≥ 0,

which is equivalent to

An+2(x) ∈ Rdn , for n ≥ 0.

To finish the proof it is enough to notice that (bn)n≥0 = (dn)n≥0, because
the rectangles in the partition are pairwise disjoint.

7. A new method of obtaining the transition rule.

Theorem 7.1. Let R be a partition of the torus satisfying the good inter-
section property for the preimages. Then R satisfies the transition rule.

Proof. The transition rule is a consequence of the following two proper-
ties, which are satisfied for any three rectangles Ri, Rj , Rk ∈ R.

If A(Ri) ∩ Rj 6= ∅ then the intersection is a rectangle that crosses Rj all
the way along the unstable direction, because A(∂sR) ⊂ ∂sR.

The set A−1(Rk)∩Rj , if non-empty, consists of two rectangles and A−1(Rk)
crosses any unstable section of the rectangle Rj , due to the good intersection
property.

Therefore if A(Ri) ∩ Rj 6= ∅ and A−1(Rk) ∩ Rj 6= ∅ then Ri ∩ A−1(Rj) ∩
A−2(Rk) 6= ∅. The conclusion follows by induction. The idea of the proof is
illustrated in Picture 5.
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Picture 5. The transition rule is a consequence of the good
intersection property

Picture 6. Partition obtained by Adler and Weiss’s method

8. Adler and Weiss’s method fails in the case of an endomor-
phism. Adler and Weiss’s method gives a partition that does not satisfy transi-
tion rule, which is necessary to obtain a symbolic representation of a dynamical
system. More precisely it is described by

Theorem 8.1. Let R = {Ri ⊂ T2 : 1 ≤ i ≤ n} be a partition of the torus
and let T = [tij ]ni,j=1 be defined as follows

tij =

{
1 if A−1(Ri) ∩Rj 6= ∅,
0 otherwise.
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Moreover assume that there is at least one non-zero entry in each row of the
matrix T and for any sequence (ak)k≥0 admissible by the matrix T the set⋂+∞

k=0 A−k(Rak
) is non-empty.

Then R satisfies the transition rule.

Proof. Let us assume that Rak
∩ A−1(Rak+1

) 6= ∅, for any k such that
0 ≤ k ≤ m − 1 and for a given m ≥ 3. Then the sequence (a0, a1, . . . , am) is
admissible by the matrix T . It can be extended to a sequence (ak)k≥0 admissible
by T , because in each row of the matrix T there is at lest one non-zero entry.

Finally the set
⋂m

k=0 A−k(Rak
) is non-empty, because it includes the set⋂+∞

k=0 A−k(Rak
) which is not empty by the assumption.

Picture 6 illustrates partition obtained by Adler and Weiss’s method and
images of the rectangles from this partition.

Analyzing this picture one can notice that rectangles R′
1, R

′
5, R2 do not

satisfy the transition rule, which is clearly visible in Picture 7. To see this one
can compare Picture 7 with Picture 5 where the transition rule is satisfied. We
omit technical details of the proof.

Picture 7. Transition rule not satisfied

9. Why do we choose such an extension of Markov partitions?
9.1. The aim of the construction of the extended Markov partition. Our aim

is to find a partition of the torus, that could be used to obtain a symbolic model
for the considered semi-dynamical system. Moreover we expect this model to
be a one-sided subshift of finite type, because in the invertible case it was a
subshift of finite type. Let us specify properties that will explain why we choose
partitions constructed in Section 5 and why we propose such a definition of the
extended Markov partition in Section 3.
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9.2. Properties that are significant for Markov partitions. We already know
from Section 8 that the transition rule is the necessary condition for the associ-
ation of a one-sided subshift of finite type with a given toral endomorphism. A
sequence (an)n≥0 corresponds to all points in the set

⋂+∞
n=0 A−n(Ran) and this

is why we want this set to be non-empty. Therefore, we search for a partition
that satisfies
• PROPERTY A: Transition rule.

In the case of an automorphism, the transition rule is a consequence of the
good intersection property, which follows from the Markov condition. In the
non-invertible case, A−1(W u(0, 0)) 6⊂ W u(0, 0) and Markov condition is not
satisfied for any partition. That is why we must search for a new way to obtain
the transition rule.

Moreover, we want to obtain the most accurate model, that is we want
the set

⋂+∞
n=0 A−n(Ran) to be as small as possible for the sequences (an)n≥0

admissible by the matrix T .
In the invertible case, we consider the set

⋂+∞
n=−∞A−n(Ran), which is a

single point and this is why we obtain a conjugacy. In the non-invertible case
we consider the set

⋂+∞
n=0 A−n(Ran), which can at best be a union of intervals.

Thus we need the following condition.
• PROPERTY B: For any sequence (an)+∞n=0 admissible by the extended Markov
matrix, the set

⋂+∞
n=0 A−n(Ran) ⊂ I × C, where I is an interval parallel to the

stable direction and C is a topological Cantor set.
Because we use two partitions, one satisfying property A and another that

satisfies property B, to obtain Theorem 4.2 we need these partitions to be
compatible in some way, which is
• PROPERTY C: There exists a shift commuting map from Σ+

T ′ to Σ+
T , where

T and T ′ are the extended Markov matrices associated with the partitions
satisfying property A and B, respectively.

References

1. Adler R., Symbolic dynamics and Markov partitions, Bull. Amer. Math. Soc., 1 (1998),
1–56.

2. Adler R., Weiss B., Entropy, a complete metric invariant for automorphisms of the torus,
Proc. Nat. Acad. of Science, 57 (1967), 1573–1576.

3. ed. Bedford T., Keane M., Series C., Ergodic theory, symbolic dynamics, and hyperbolic
spaces, Oxford, 1991.

4. Blank M., Discreteness and Continuity in Problems of Chaotic Dynamics, Translat. of
Math. Monographs, Vol 161, 1997.

5. Bowen R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer
Lecture Notes in Math., 470, New York, 1975.

6. Bowen R., Markov partitions for Axiom A diffeomorphisms, American Journal of Math.,
91 (1970), 725–747.



279

7. Bowen R., Markov partitions are not smooth, Proc. Amer. Math. Soc., 71 (1970),
130–132.

8. Bowen R., Symbolic dynamics for hyperbolic flows, Proc. of the Inter. Congr. of Math.,
Vancouver, 1974.

9. Franceshini V., Zironi F., On Constructing Markov Partitions by Computer, Journal of
Statis. Physics, 40 (1985), 69–91.

10. Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems,
Cambridge, 1997.

11. Kitchens B., Symbolic Dynamics, Group Automorphisms and Markov Partitions, Real
and Complex Dynam. Sys., collection, Nato Adv. Sci. Inst. Ser. C (1995), 133–163.

12. Kitchens B., Symbolic Dynamics. One-sided, Two-sided and Countable State Markov
Shifts, Springer, 1998.

13. Kruger T., Troubetzkoy S., Markov partitions and shadowing for non-uniformly hyper-
bolic systems with singularities, Ergod. Th. and Dynam. Sys., 12 (1992), 487–508.

14. Lind D., Marcus B., An Introduction to Symbolic Dynamics and Coding, Cambridge,
1995.

15. Manning A., There are no new Anosov Diffeomorphisms on Tori, American Journal of
Math., 96 (1974), 422–429.

16. Manning A., A Markov Partition which Displays the Homology of a Toral Automorphism,
preprint of the University of Warwick.

17. Manning A., Axiom A Diffeomorphisms have rational zeta functions, Bull. Amer. Math.
Soc., 3 (1971), 215–220.

18. Przytycki F., Anosov Endomorphisms, Studia Mathematica, LVIII (1976), 249–285.
19. Shub M., Global Stability of Dynamical Systems, Springer, 1987.
20. Shub M., Endomorphisms of Compact Differentiable Manifolds American Journal of

Math., 91 (1969), 175–199.
21. Sinai Y., Markov Partitions and C-diffeomorphisms, Func. Anal. and its Appl., 2 (1968),

64–89.
22. Sinai Y., Construction of Markov Partitions, Func. Anal. and its Appl., 2 (1968),

245–253.
23. Snavely M., Markov Partitions for the Two-Dimensional Torus, Proceedings of the

Amer. Math. Soc., 113 (1991), 517–527.
24. Szlenk W., Wstęp do teorii gładkich układów dynamicznych, Warszawa, 1982.

Received December 18, 2000
Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków
Poland
e-mail : stolot@im.uj.edu.pl

mailto:stolot@im.uj.edu.pl

	1. Introduction
	2. Acknowledgements
	3. Definition of the extended Markov partition
	4. Main results
	5.  Proof of the existence of the extended Markov partition 
	6. Proof of the theorem on the correspondence to a one-sided subshift of finite type
	7. A new method of obtaining the transition rule
	8.  Adler and Weiss's method fails in the case of an endomorphism
	9. Why do we choose such an extension of Markov partitions?
	References

