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SOME REMARKS ON THE NON-UNIQUENESS OF THE

STATIONARY SOLUTIONS OF NAVIER-STOKES EQUATIONS

by Elżbieta Motyl

Abstract. We formulate some conditions when non-uniqueness of approx-
imate solutions of the stationary Navier-Stokes equations occurs.

Introduction. In this paper we will be concerned with the stationary
Navier-Stokes equations for incompressible liquid in a bounded domain in Rn

(n ∈ {2, 3}). Since a long time, it has been known that there exists a weak
solution of this problem. For example, general existence results are proved in
[8], Section 7 and in [11], Chapter II.1. As far as the problem of uniqueness
or non-uniqueness is concerned, the situation is different. There are no general
results. It is known that the solution is unique in a rather restrictive case when
viscosity is large compared with external forces (see [8], Chapter I, Section 7,
[11], Chapter II.1, [12], Part II, Section 9).

On the other hand, there are some specific results that assert non-unique-
ness. For example, W. Velte proved a non-uniqueness result for the Taylor
problem, i.e. the problem describing the flow of a viscous incompressible liquid
in a domain of R3 bounded by two infinite cylinders with the same vertical axis
(see [13], [14], [11]).

Let us also mention the Quette-Taylor experiment which indicates that if
the Reynolds number of the flow increases, then the flow loses its stability and
new steady states appear (see [12], Section 9).

There are some abstract results which assert that generically with respect
to various parameters of the flow, the number of solutions of the Navier-Stokes
problem is finite and odd (see [2], [3], [4], [7], [10]).

In the paper [5] some abstract criterion of non-uniqueness of the equation
of the Navier-Stokes type is proved. This criterion is applied to the finite-
dimensional Galerkin equations corresponding to the homogeneous boundary
value problem for the stationary Navier-Stokes equations.
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In this paper, we apply this abstract result concerning non-uniqueness to
the Holly numerical method of solving the N-S problem. With references to
the paper [7], we consider the approximate equations in a finite-dimensional
subspace of the Sobolev space H1

0 . From the results of this paper, it follows
that generically with respect to viscosity and external forces the set of all
stationary solutions of the N-S problem and the sets of solutions of appropriate
approximate problems are finite and equinumerous. In this way the question
of uniqueness or non-uniqueness has been reduced to the finite-dimensional
space. Using the aforementioned criterion we give a sufficient condition for
non-uniqueness.

1. General properties. Let us consider the stationary Navier-Stokes
equations for incompressible fluid with homogeneous boundary conditions, i.e.

∂vv = ν∆v + f̃ −∇p,(1.1)

div v = 0,(1.2)

v|∂Ω = 0,(1.3)

where Ω is a bounded domain (i.e. it is open and connected) in Rn (n = 2, 3)
with the Lipschitz boundary ∂Ω. The number ν ∈]0,∞[ (kinematic viscosity)
and f̃ : Ω → Rn (external forces ) are given, while v : Ω → Rn (velocity) and
p : Ω → R (pressure) are looked for. The symbol ∂uw stands for the vector
field

(1.4)
n∑

i=1

ui
∂w

∂xi
: Ω → Rn

for any differentiable vector fields

u = (u1, . . . , un) : Ω → Rn, w = (w1, . . . , wn) : Ω → Rn

We consider the Sobolev space

H1 :={u ∈ L2(Ω, Rn) : there exist
∂u

∂xi
in the sense of Sobolev

and
∂u

∂xi
∈ L2(Ω, Rn), for each 1 ≤ i ≤ n}.

It is a Hilbert space with the scalar product

(u, w) 7→ (u|w)L2(Ω,Rn) + ((u|w)),

where ((u|w)) :=
∑n

i=1

(
∂u
∂xi
| ∂w
∂xi

)
L2(Ω,Rn)

is the Dirichlet scalar product of u

and w. Let H1
0 be the closure in H1 of the subspace D := D(Ω, Rn) of all

C∞ mappings φ : Ω → Rn with compact supports contained in Ω. From the
Poincaré inequality, it follows that the bilinear form ((·|·)) is a scalar product
in H1

0 inducing the topology inherited from H1.
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Finally, V := D ∩ {div = 0} denotes the space of all divergence-free test
vector fields on Ω, V – its closure in the Hilbert space

(
H1

0 , ((·|·))
)

and V ⊥ -
its ((·|·)) - orthogonal complement in H1

0 .
J. Leray stated the following

Definition 1.1. Suppose that n ∈ {2, 3, 4}, f ∈ (H1
0 )′. A vector field

v ∈ V is a (weak) solution of the problem (1.1)–(1.3) if

(1.5)
∫

Ω
(∂vv)φdm = −ν((v|φ)) + f(φ).

for all φ ∈ V .

From the Sobolev imbedding theorem, it follows that this definition is well-
posed.

With the aid of the so called acceleration functional, identity (1.5) can be
written as the operator equation in the space H1

0 . In fact, we have the following

Remark 1.2. (see Remark 2.8 in [7]). Suppose ν ∈]0,∞[, f ∈ (H1
0 )′,

v ∈ H1
0 . Then the following conditions are equivalent

(i) v ∈ V and
∫
Ω(∂vv)φdm = −ν((v|φ)) + f(φ) for any φ ∈ V ,

(ii) νv = PVR−1(f −Av,v).

The symbol R stands for the canonical Riesz isomorphism in the space(
H1

0 , ((·|·))
)
, i.e.

R : H1
0 3 u 7→

(
H1

0 3 φ 7→ ((u|φ)) ∈ R
)
∈ (H1

0 )′.

The symbol PV : H1
0 → V stands for the ((·|·)) - orthogonal projection onto

V . Now, the acceleration functional is defined as

(1.6) Au,w : H1
0 3 φ 7→

∫
Ω

(
∂uw +

div u

2
w

)
φdm ∈ R

for any u, w ∈ H1
0 . We will use the following properties of this functional

proved in [7] Lemma 2.7.

Lemma 1.3. The functional Au,w is well-defined linear and continuous.
Moreover,

(1.7) Au,w(φ) = −Au,φ(w) for any φ ∈ H1
0 ;

in particular

(1.8) Au,w(w) = 0.

By virtue of the Rellich-Kondrashev theorem, we infer that the acceleration
functional has the following property
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if
k
u → u,

k
w → w weakly in H1

0 ,

then Ak
u,

k
w
→ Au,w pointwise on H1

0 as k →∞.
(1.9)

(see (2.23) in [7]).
Let us recall the discretization of the problem (1.1)–(1.3) introduced by

K. Holly (see [7], Section 2). The construction of the solution is based on the
internal approximation (HN )N∈N of the space H1

0 . The method is split into
two steps. In the first step, the Navier-Stokes problem is appoximated by the
equation

((∗)s) νu = P s
VR−1(fs −Au,P s

V u);

in the space H1
0 , where s ∈ N is fixed. The second step involves the following

discretization

((∗)s,N ) νw = P s,N
V R−1

N (fs −A
w,P s,N

V w
)

of the equation (∗)s in the space HN , where s,N ∈ N
Let us explain the symbols which appear above. K. Holly introduced the

following operators

P s
V ⊥ := div∗ ◦

( s∑
j=0

(id−div div∗)j
)
◦ div

P s,N
V ⊥ := div∗N ◦

( s∑
j=0

(id−div div∗N )j
)
◦ div ◦PN ,

P s
V := id−P s

V ⊥ , P s,N
V := id−P s,N

V ⊥ .

Here
div∗ : {∫ = 0} → H1

0

is the adjoint operator to the divergence operator div :
(
H1

0 , ((·|·))
)
→

(
{∫ =

0}, (·|·)L2(Ω)

)
, where {∫ = 0} := {q ∈ L2(Ω) :

∫
Ω qdm = 0}. Next, div∗Nq is

defined as the ((·|·)) – Riesz representation of the functional

HN 3 φ 7→
∫

Ω
q div φdm ∈ R

for a given q ∈ {∫ = 0}. Similarly, for the functional l ∈ (H1
0 )′, the symbol

R−1
N (l) denotes the ((·|·)) – Riesz representation of the restriction l|HN

of l to
HN . Finally, fs ∈ (H1

0 )′ stands for the approximate external forces.
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We collect key properties of the operators P s
V and P s,N

V in the following

Remark 1.4. (see Remark 2.6 in [7])

(a) The operators P s
V , P s,N

V are selfadjoint endomorphisms of the space H1
0

for any s,N ∈ N,
(b) |P s

V − PV |EndH1
0
≤ 1

θ (1− θ)s+1 and PV ≤ P s
V ≤ idH1

0
for any s ∈ N,

(c) for fixed s ∈ N : P s,N
V → P s

V pointwise as N →∞,
(d) ||div P s

V u||L2(Ω) ≤ 1
θ (1− θ)s+1||div u||L2(Ω) ≤ 1

θ (1− θ)s+1||u||H1
0

for any
u ∈ H1

0 , where θ ∈]0, 1[ is a constant depending only on Ω.

From Theorem 2.9 in [7], it follows that there exist solutions of the problems

(∗)s, (∗)S,N . Moreover, the sequence (
s,N
v )N∈N of the solutions of the equations

(∗)s,N contains a subsequence convergent in H1
0 to a solution of the equation

(∗)s. Similarly, from the sequence (
s
v )s∈N of the solutions of the equations

(∗)s, we can select a subsequence convergent to a solution of the Navier-Stokes
problem. In general, we do not know whether these solutions are unique,thus
we consider the sets of solutions. To be more specific

R(ν, f) – the set of all solutions of (∗),
Rs(ν, fs) – the set of all solutions of (∗)s for fixed s ∈ N,

Rs,N (ν, fs) – the set of all solutions of (∗)s,N for fixed (s,N) ∈ N2.

In Section 4 of the paper [7], some properties of the above sets are investigated,
connected with the problem of stability of the considered method. Let us recall
two main results which spurred further investigations concerning the problem
of non-uniqueness.

Theorem 1.5. (see Theorem 4.5 in [7]) If (ν, f) ∈ G, then
(i) lims→∞ Rs(ν, fs) = R(ν, f) in the Hausdorff metric;
(ii) for almost all s ∈ N: #Rs(ν, fs) = #R(ν, f) < ∞.

Here, G is some subset of the data: (viscosity, external forces). In fact,

G := {(ν, f) ∈]0,∞[×(H1
0 )′ : PVR−1f is a regular value

of the mapping V 3 φ 7→ νφ + PVR−1Aφ,φ ∈ V }.
In Section 3 of the paper [7], there is proved that the set G is open and dense
in ]0,∞[×(H1

0 )′. A similar result concerning the sequence
(
Rs,N (ν, fs)

)
N∈N is

expressed in the following theorem

Theorem 1.6. (see Theorem 4.7 in [7]) If (ν, f) ∈ G, then for almost all
s ∈ N:

(i) limN→∞ Rs,N (ν, fs) = Rs(ν, fs) in the Hausdorff metric;
(ii) for almost all N ∈ N: #Rs,N (ν, fs) = #Rs(ν, fs) < ∞.
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The properties of the sets of solutions stated in (ii) of Theorems 1.5, 1.6 are
of fundamental importance for further considerations. They guarantee that for
the data (ν, f) ∈ G, the sets R(ν, f),Rs(ν, fs) and Rs,N (ν, fs) are finite and
equinumerous. In this way the problem of uniqueness or non-uniqueness of the
N-S equations has been reduced to the corresponding problem in the finite-
dimensional space HN for sufficiently large s,N ∈ N.

In the sequel, we shall concentrate on the equations (∗)s,N . To be more
specific, we shall prove that the criterion for non-uniqueness mentioned in
Introduction can be applied to the problems (∗)s,N .

2. The problem of non-uniqueness. For the reader’s convenience we
recall the main result of the paper [5].

Let us consider a real separable Hilbert space
(
H, (·|·)

)
and a homogeneous

polynomial Q : H → H. Assume that Q is vortex, i.e.

(2.1)
(
Q(x)|x

)
= 0, x ∈ H.

Moreover, we assume that
if xk → x weakly in H,

then Q(xk) → Q(x) weakly in H.
(2.2)

A polynomial Q satisfying the above conditions is called the nonlinearity
of the Navier-Stokes type.

For a given c ∈ H \ {0} we consider the following equation of the Navier-
Stokes type

(2.3) Q(x) + x = c.

We say that a half-space {x ∈ H : (x|c) ≥ 0} is attractive in the field Q if(
Q(h)|c

)
> 0

for any h ∈ (R · c)⊥ \ {0} and it is uniformly attractive in the field Q if

inf{
(
Q(h)|c

)
, h ∈ (R · c)⊥, |h| = 1} > 0.

It is easy to see that if dim H < ∞, then the attractive half-space is
uniformly attractive. The main result of the above cited paper is the following

Theorem 2.1. (see Theorem 1.35 in [5]) Suppose that dim H = 2k and the
half-space {(·|e) ≥ 0} is attractive in the field Q; k ∈ N, e ∈ {x ∈ H : |x| = 1}.
If a number R ∈ R is such as

R >
1
δ
, |Q(e)| < 2

√
R

(
δ −R−1

3

) 3
2

,

where δ := inf{(Q(ζ)|e), ζ ∈ (R · e)⊥, |ζ| = 1}, then the equation (2.3) with
the right-hand side c = Re has at least two different solutions.
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2.1. Application to the Navier-Stokes problem. Let us fix s,N ∈ N. Let
HN be a finite-dimensional subspace of H1

0 and PH : H → HN be the (·|·) -
orthogonal projection. Putting H := HN ,

Q := Qs,N :=
1
ν

P s,N
V R−1

N AP s,N
V : HN → HN

and
s,N
c∗ =

1
ν

P s,N
V R−1

N fs

we can write the equation (∗)s,N as

(2.4) Qs,N (w) + w =
s,N
c∗ .

Here, AP s,N
V (w) := A

w,P s,N
V w

for any w ∈ HN . Let us remark that directly

from the definition of the operator P s,N
V , it follows that Qs,N (HN ) ⊂ HN .

Applying Theorem 2.1, we can formulate the following sufficient condition
for non-uniqueness of the solutions of the equation (∗)s,N .

Theorem 2.2. Assume that dim HN = 2k, (k ∈ N). Let e ∈ HN be such
a vector that ‖P s,N

V e‖H1
0

= 1 and the half-space {((·|P s,N
V e)) ≥ 0} is attractive

in the field Qs,N . If a number R ∈ R is such as

R >
1
δ
, ‖Qs,N (P s,N

V e)‖H1
0

< 2
√

R

(
δ −R−1

3

) 3
2

,

where δ := inf{((Qs,N (ζ)|P s,N
V e)), ζ ∈ (R · P s,N

V e)⊥, ‖ζ‖H1
0

= 1}, then the

equation (2.4) with the right-hand side
s,N
c∗ := R · P s,N

V e has at least two dif-
ferent solutions.

Proof. It is sufficient to check that Qs,N satisfies conditions (2.1), (2.2).
Let w ∈ HN . According to (a) of Remark 1.4, P s,N

V is selfadjoint. By virtue
of (1.8), we obtain

((Qs,N (w)|w)) =
1
ν

((P s,N
V R−1

N AP s,N
V (w)|w))

=
1
ν

((R−1A
w,P s,N

V w
|PN (P s,N

V w))) =
1
ν
A

w,P s,N
V w

(P s,N
V w) = 0,

Thus, Qs,N is vortex.
Now, let

k
w → w weakly in HN . Let φ ∈ HN . Then

((Qs,N (
k
w)|φ)) =

1
ν
Ak

w,P s,N
V

k
w
(P s,N

V φ) → 1
ν
A

w,P s,N
V w

(P s,N
V φ)

= ((Qs,N (w)|φ)) as k →∞,
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since by (1.9) and (c) of Remark 1.4, the sequence of operators (Ak
w,P s,N

V

k
w
)k is

pointwise convergent to A
w,P s,N

V w
. Thus, condition (2.2) is also fulfilled, which

completes the proof.
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3. Foiaş C., Temam R., Remarques sur les équations de Navier-Stokes stationnaires et les
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