THE MIXED PROBLEM FOR AN INFINITE SYSTEM OF FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

by Tomasz CzŁapiński

Abstract

We consider the mixed problem for the infinite system of nonlinear partial functional differential equations $$
D_{t} z_{i}(t, x)=f_{i}\left(t, x, z_{(t, x)}, D_{x} z_{i}(x, y)\right), \quad i \in \mathbb{N},
$$ where $z_{(x, y)}=\left\{\left(z_{i}\right)_{(t, x)}\right\}$ denotes an infinite sequence of functions defined by the formula $z_{(t, x)}(\tau, s)=z(t+\tau, x+s),(\tau, s) \in\left[-\tau_{0}, 0\right] \times[0, h]$. Using the method of bicharacteristics and the quasi-iteration method for a certain integral-functional system, we prove, under suitable assumptions, a theorem on the local existence of generalized solutions of the mixed problem.

1. Introduction. We denote by ℓ^{∞} the space of all infinite sequences $p=\left\{p_{i}\right\}, p_{i} \in \mathbb{R}, i \in \mathbb{N}$, such that $|p|_{\infty}=\sup \left\{\left|p_{i}\right| ; i \in \mathbb{N}\right\}<+\infty$, where \mathbb{N} denotes the set of natural numbers. Put $B=\left[-\tau_{0}, 0\right] \times[0, h] \subset \mathbb{R}^{1+n}$, where $h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}_{+}^{n}, \tau \in \mathbb{R}_{+},\left(\mathbb{R}_{+}=[0,+\infty)\right)$ and

$$
[0, h]=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; 0 \leq x_{j} \leq h_{j}, 1 \leq j \leq n\right\}
$$

Let $z=\left\{z_{i}\right\}:\left[-\tau_{0}, \bar{a}\right] \times[-b, b+h] \rightarrow \ell^{\infty}$ be a given function, where $\bar{a}>0$, $b=\left(b_{1}, \ldots, b_{n}\right), b_{j}>0, j=1, \ldots, n$. Then for a point $(t, x)=\left(t, x_{1}, \ldots, x_{n}\right) \in$ $[0, \bar{a}] \times[-b, b]$, we consider the function $z_{(t, x)}=\left\{\left(z_{i}\right)_{(t, x)}\right\}: B \rightarrow \ell^{\infty}$ defined by

$$
z_{(t, x)}(\tau, s)=z(t+\tau, x+s), \quad(\tau, s) \in B
$$

In this paper the operator $(t, x) \mapsto z_{(t, x)}$ is used to describe the functional dependence in a differential system.

[^0]For any $a \in(0, \bar{a}]$ we define the sets

$$
\begin{aligned}
& E_{0}^{*}=\left[-\tau_{0}, 0\right] \times[-b, b+h], \quad E_{a}=[0, a] \times[-b, b], \\
& \partial_{0} E_{a}=[0, a] \times[-b, b+h] \backslash[0, a] \times[-b, b), \quad E_{a}^{*}=E_{0}^{*} \cup \partial_{0} E_{a} \cup E_{a},
\end{aligned}
$$

and for any $X \subset E_{a}^{*}$ we denote by $C\left(X, \ell^{\infty}\right)$ the space of all continuous functions from X to ℓ^{∞}.

Given the sequences of functions $f=\left\{f_{i}\right\}$ and $\phi=\left\{\phi_{i}\right\}$ such that

$$
f_{i}: E_{\bar{a}} \times C\left(B, \ell^{\infty}\right) \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \text { and } \quad \phi_{i}: E_{0}^{*} \cup \partial_{0} E_{\bar{a}} \rightarrow \mathbb{R},
$$

where $\bar{a}>0$, we consider the mixed problem for the following weak coupled infinite system

$$
\begin{align*}
D_{t} z_{i}(t, x) & =f_{i}\left(t, x, z_{(t, x)}, D_{x} z_{i}(t, x)\right), \quad(t, x) \in E_{\bar{a}}^{*}, i \in \mathbb{N} \tag{1}\\
z(t, x) & =\phi(t, x), \quad(t, x) \in E_{0}^{*} \cup \partial_{0} E_{\bar{a}} \tag{2}
\end{align*}
$$

where $D_{x} z_{i}=\left(D_{x_{1}} z_{i}, \ldots, D_{x_{n}} z_{i}\right)$. Note that since we use the operator $(t, x) \mapsto$ $z_{(t, x)}$ in the right-hand side of (1), the functions $f_{i}, i \in \mathbb{N}$, actually become functional operators with respect to the third variable. In this setting differential systems with a deviated argument and differential-integral systems are particular cases of (1).

We call $z=\left\{z_{i}\right\}: E_{a}^{*} \rightarrow \ell^{\infty}$, where $0<a \leq \bar{a}$, a solution of problem (1),(2) if
(i) $z \in C\left(E_{a}^{*}, \ell^{\infty}\right)$ and the derivative $D_{x} z=\left\{D_{x} z_{i}(t, x)\right\}$ exists on E_{a},
(ii) $z(\cdot, x):[0, a] \rightarrow \ell^{\infty}$ is absolutely continuous on $[0, a]$ for each $x \in[-b, b]$,
(iii) for any fixed $i \in \mathbb{N}$ and $x \in[-b, b]$, the i-th equation of system (1) is satisfied for almost all $t \in[0, a]$, and condition (2) holds true for all $(t, x) \in E_{0}^{*} \cup \partial_{0} E_{a}$.
In other words we wish to investigate the local (with respect to t) existence of generalized solutions of problem (11), (22).

In this paper we consider the mixed problem for the infinite nonlinear functional differential problem. We use the method of bicharacteristics that was introduced and developed for non-functional equations by Cinquini-Cibrario [9, 10 and Cinquini [8 for quasilinear as well as nonlinear problems. This method was adapted by Cesari [6], [7] and Bassanini [1, [2 for quasilinear systems in the second canonical form. Some extensions of Cesari's results to differential-functional systems were given in [3, [1], 18]. The results obtained in the papers mentioned above by means of the method of bicharacteristics pertain generalized (in the "almost everywhere" sense) solutions.

Generalized solutions to quasilinear or nonlinear functional mixed problems were investigated by Leszczyński [16], Turo [19], and Kamont and Topolski [15]. Classical solutions in the functional setting were considered in [12].

In this paper we deal with the mixed problem for infinite nonlinear functional differential systems. Among the literature concerning the Cauchy problem for infinite nonlinear functional differential systems we mention papers by Szarski [17] and Jaruszewska-Walczak [14]. We prove existence of solutions using the quasi-iteration method for a certain integral-functional system which was introduced by Ważewski [20]. This method was used by Brandi, Kamont and Salvadori [5] in the case of the Cauchy problem (see also [13]). An existence result for this equation was also obtained by Brandi and Ceppitelli [4] by means of the method of successive approximations.
2. Notation and assumptions. Let \mathbb{R}^{n} denote the n-dimensional Euclidean space with the norm $|\cdot|$ defined by $|x|=\max _{1 \leq i \leq n}\left|x_{i}\right|$. We use the symbol ℓ_{n}^{∞} to denote the space of infinite sequences $r=\left\{r_{i}\right\}, r_{i}=\left(r_{i 1}, \ldots, r_{i n}\right) \in$ \mathbb{R}^{n} for $i \in \mathbb{N}$, such that $|r|_{\infty}=\sup \left\{\left|r_{i}\right| ; i \in \mathbb{N}\right\}<+\infty$. Note that we use the same symbols for the norms in ℓ^{∞} and ℓ_{n}^{∞} for simplicity.

Let $C^{0,1}\left(B, \ell^{\infty}\right)$ be the set of all continuous functions $\omega: B \rightarrow \ell^{\infty}$ in the variables $(\tau, s)=\left(\tau, s_{1}, \ldots, s_{n}\right)$ such that the derivatives $D_{s} \omega_{i}=\left(D_{s_{1}} \omega_{i}, \ldots, D_{s_{n}} \omega_{i}\right)$, exist and $D_{s} \omega=\left\{D_{s} \omega_{i}\right\} \in C\left(B, \ell_{m}^{\infty}\right)$. If $\|\cdot\|_{0}$ denotes the supremum norm in $C\left(B, \ell_{m}^{\infty}\right)$ then the norm in $C^{0,1}(B, \mathbb{R})$ is defined by $\|\omega\|_{1}=\|\omega\|_{0}+\left\|D_{s} \omega\right\|_{0}$.

For any $\omega \in C\left(B, \ell_{m}^{\infty}\right)$ let

$$
\|\omega\|_{L}=\sup \left\{\frac{|\omega(\tau, s)-\omega(\tau, \bar{s})|_{\infty}}{|s-\bar{s}|}:(\tau, s),(\tau, \bar{s}) \in B, s \neq \bar{s}\right\} .
$$

If we put $\|\omega\|_{0, L}=\|\omega\|_{0}+\|\omega\|_{L},\|\omega\|_{1, L}=\|\omega\|_{1}+\left\|D_{s} \omega\right\|_{L}$, then we define by $C^{0, i+L}\left(B, \ell^{\infty}\right), i=0,1$, the space of all functions $\omega \in C^{0, i}\left(B, \ell^{\infty}\right)$ such that $\|\omega\|_{i, L}<+\infty$ with the norm $\|\cdot\|_{i, L}$.

Let $\Omega^{(0)}=E_{\bar{a}} \times C\left(B, \ell^{\infty}\right) \times \mathbb{R}^{n}$ and $\Omega^{(1)}=E_{\bar{a}} \times C^{0,1}\left(B, \ell^{\infty}\right) \times \mathbb{R}^{n}$. We denote by θ the set of all functions $\theta:[0, \bar{a}] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that $\theta(t, \cdot): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ is nondecreasing for almost all $t \in[0, \bar{a}]$ and $\theta(\cdot, p):[0, \bar{a}] \rightarrow \mathbb{R}_{+}$is Lebesgue integrable for all $p \in \mathbb{R}_{+}$.

The norms in $C\left(E_{a}^{*}, \ell^{\infty}\right)$ and $C\left(E_{a}^{*}, \ell_{n}^{\infty}\right)$ will be denoted by the same symbol $\|\cdot\|_{E_{a}^{*}}$.

Assumption H_{1}. Let $f=\left\{f_{i}\right\}, f_{i}: \Omega^{(0)} \rightarrow \mathbb{R}$ be the infinite sequence of functions in the variables (t, x, w, q) and let δ be any of these variables. Suppose that
1° the derivatives $D_{\delta} f_{i}, i \in \mathbb{N}$ exist on $\Omega^{(1)}$, the sequence $D_{\delta} f=\left\{D_{\delta} f_{i}\right\}$ is measurable with respect to t and there is a nondecreasing function $\theta_{1}: \mathbb{R}_{+} \rightarrow$ \mathbb{R}_{+}such that

$$
\left|D_{\delta} f(t, x, w, q)\right|_{\infty} \leq \theta_{1}\left(\|w\|_{1}\right) \quad \text { on } \Omega^{(1)}
$$

\mathcal{D}° there is $\theta_{2} \in \Theta$ such that

$$
\begin{aligned}
\mid D_{\delta} f(t, x, w, q)-D_{\delta} f(t, \bar{x}, w+h & \bar{q})\left.\right|_{\infty} \\
& \leq \theta_{2}\left(t,\|w\|_{1, L}\right)\left[|x-\bar{x}|+\|h\|_{1}+|q-\bar{q}|\right]
\end{aligned}
$$

for all $(t, x, h, q) \in \Omega^{(1)}, \bar{x}, \bar{q} \in \mathbb{R}^{n}, w \in C^{0,1+L}\left(B, \ell^{\infty}\right)$.
Remark 1. Note that if $\delta=w$ then for each $(t, x, w, q) \in \Omega^{(1)}$ the derivative $D_{\delta} f(t, x, w, q)$ is a continuous linear operator from $C^{0,1}\left(B, \ell^{\infty}\right)$ to ℓ^{∞}. This means that in that case the norm of $D_{\delta} f(t, x, w, q)$ is a norm of a linear operator while if $\delta=x$ or $\delta=q$ it is a norm in the space ℓ_{n}^{∞}. These norms should be distinguished but for simplicity we use the same symbol $|\cdot|_{\infty}$ in both cases.

Assumption H_{2}. Suppose that

$1^{\circ} \phi=\left\{\phi_{i}\right\} \in C\left(E_{0}^{*} \cup \partial_{0} E_{\bar{a}}, \ell^{\infty}\right)$ and the derivative $D_{x} \phi=\left\{D_{x} \phi_{i}\right\}$ exists on $E_{0}^{*} \cup \partial_{0} E_{\bar{a}}$;
$\mathscr{2}^{\circ}$ there are constants $\Lambda_{0}, \tilde{\Lambda}_{1}, \Lambda_{1}, \tilde{\Lambda}_{2}, \Lambda_{2} \in \mathbb{R}_{+}$, such that on $E_{0}^{*} \cup \partial_{0} E_{\bar{a}}$ we have

$$
\begin{aligned}
|\phi(t, x)|_{\infty} & \leq \Lambda_{0}, \quad|\phi(t, x)-\phi(\bar{t}, x)|_{\infty} \leq \tilde{\Lambda}_{1}|t-\bar{t}|, \quad\left|D_{x} \phi(t, x)\right|_{\infty} \leq \Lambda_{1} \\
& \left|D_{x} \phi(t, x)-D_{x} \phi(\bar{t}, \bar{x})\right|_{\infty} \leq \tilde{\Lambda}_{2}|t-\bar{t}|+\Lambda_{2}|x-\bar{x}| ;
\end{aligned}
$$

3° the derivatives $D_{t} \phi_{i}(t, x), i \in \mathbb{N}$, exist on $\partial_{0} E_{\bar{a}} \cap E_{\bar{a}}$ and the consistency condition

$$
\begin{equation*}
D_{t} \phi_{i}(t, x)=f_{i}\left(t, x, \phi_{(t, x)}, D_{x} \phi_{i}(t, x)\right), \quad i \in \mathbb{N}, \tag{3}
\end{equation*}
$$

holds true on $\partial_{0} E_{\bar{a}} \cap E_{\bar{a}}$.
Now, analogously to [5, 13, we define two functional spaces such that the solution z of (11) will belong to the first space, while $D_{x} z$ to the other. Let ϕ be the function fulfilling Assumption H_{2} and $0<a \leq \bar{a}$.

If $Q_{j} \geq \Lambda_{i}$ for $j=0,1,2$, and $\tilde{Q}_{j} \geq \tilde{\Lambda}_{j}$ for $j=0,1$, then we denote by $C_{\phi, a}^{0,1+L}(Q)$ the set of all functions $z=\left\{z_{i}\right\}: E_{a}^{*} \rightarrow \ell^{\infty}$ such that the derivative $D_{x} z=\left\{D_{x} z_{i}\right\}$ exists on E_{a}^{*} and
(i) $z(t, x)=\phi(t, x) \quad$ on $E_{0}^{*} \cup \partial_{0} E_{a}$;
(ii) $|z(t, x)|_{\infty} \leq Q_{0}, \quad\left|D_{x} z(t, x)\right|_{\infty} \leq Q_{1} \quad$ on E_{a};
(iii) for $t, \bar{t} \in[0, a], x, \bar{x} \in[-b, b]$, we have

$$
\begin{aligned}
|z(t, x)-z(\bar{t}, x)|_{\infty} & \leq \tilde{Q}_{1}|t-\bar{t}|, \\
\left|D_{x} z(t, x)-D_{x} z(\bar{t}, \bar{x})\right|_{\infty} & \leq \tilde{Q}_{2}|t-\bar{t}|+Q_{2}|x-\bar{x}| .
\end{aligned}
$$

If $P_{j} \geq \Lambda_{j+1}$ for $j=0,1$, and $\tilde{P}_{1} \geq \tilde{\Lambda}_{2}$, then we denote by $C_{D_{x} \phi, a}^{0, L}(P)$ the set of all functions $u=\left\{u_{i}\right\}: E_{a} \rightarrow \ell_{n}^{\infty}$ such that
(i) $u(t, x)=D_{x} \phi(t, x) \quad$ on $\partial_{0} E_{a} \cap E_{a}$;
(ii) $|u(t, x)|_{\infty} \leq P_{0}$ on E_{a};
(iii) for $t, \bar{t} \in[0, a], x, \bar{x} \in[-b, b]$, we have

$$
|u(t, x)-u(\bar{t}, \bar{x})|_{\infty} \leq \tilde{P}_{1}|t-\bar{t}|+P_{1}|x-\bar{x}| .
$$

3. Bicharacteristics. Let ϕ be a given function satisfying Assumption H_{2} and $0<a \leq \bar{a}$. Then, for any $z \in C_{\phi, a}^{0,1+L}(Q), u \in C_{D_{x} \phi, a}^{0, L}(P)$ and $i \in \mathbb{N}$, we consider the Cauchy problem

$$
\begin{align*}
\frac{d \eta}{d \tau}(\tau) & =-D_{q} f_{i}\left(\tau, \eta(\tau), z_{(\tau, \eta(\tau))}, u_{i}(\tau, \eta(\tau))\right), \quad \tau \in[0, a] \tag{4}\\
\eta(t) & =x
\end{align*}
$$

and we denote by $g_{i}[z, u](\cdot, t, x)=\left(g_{i 1}[z, u](\cdot, t, x), \ldots, g_{i n}[z, u](\cdot, t, x)\right)$ its Caratheodory solution. This solution we call the i-th bicharacteristic of system (1) corresponding to $[z, u]$. From classical theorems it follows that the unique solution to problem (4) exists if Assumption H_{1} holds with $\delta=q$. Let $\lambda_{i}[z, u](t, x)$ be the left end of the maximal interval on which the solution $g_{i}[z, u](\cdot, t, x)$ is defined. If $D_{q_{j}} f_{i}(t, x, w, q) \geq 0, j=1, \ldots, n$, on $\Omega^{(0)}$ then

$$
\left(\lambda_{i}[z, u](t, x), g_{i}[z, u]\left(\lambda_{i}[z, u](t, x), t, x\right)\right) \in\left(E_{0}^{*} \cup \partial_{0} E_{a}\right) \cap E_{a}
$$

and we may define the following two sets:

$$
\begin{aligned}
& E_{a 0}^{(i)}[z, u]=\left\{(t, x) \in E_{a} ; \lambda_{i}[z, u](t, x)=0\right\}, \\
& E_{a b}^{(i)}[z, u]=\left\{(t, x) \in E_{a} ; g_{i j}[z, u]\left(\lambda_{i}[z, u](t, x), t, x\right)=b_{j},\right.
\end{aligned}
$$

for some $1 \leq j \leq n\}$.
Write

$$
R_{1}=1+Q_{1}+Q_{2}+P_{1}, \quad \Upsilon(\tau, t)=\exp \left\{R_{1}\left|\int_{t}^{\tau} \theta_{2}^{*}(\xi) d \xi\right|\right\}
$$

where $\theta_{2}^{*}(\xi)=\theta_{2}\left(\xi, Q_{0}+Q_{1}+Q_{2}\right)$. In the sequel we will also write θ_{1}^{*} instead of $\theta_{1}\left(Q_{0}+Q_{1}\right)$ for simplicity.

Lemma 1. Suppose that ϕ fulfills Assumption H_{2} and that Assumption H_{1} is satisfied for $\delta=q$. If $z, \bar{z} \in C_{\phi, a}^{0,1+L}(Q), u, \bar{u} \in C_{D_{x} \phi, a}^{0, L}(P)$, are given functions and $i \in \mathbb{N}$ then for $(t, x),(\bar{t}, \bar{x}) \in E_{a}$ such that the intervals

$$
\begin{gathered}
K_{1}=\left[\max \left\{\lambda_{i}[z, u](t, x), \lambda_{i}[z, u](\bar{t}, \bar{x})\right\}, \min \{t, \bar{t}\}\right], \\
K_{2}=\left[\max \left\{\lambda_{i}[z, u](t, x), \lambda_{i}[\bar{z}, \bar{u}](t, x)\right\}, t\right]
\end{gathered}
$$

are nonempty we have the estimates

$$
\begin{equation*}
\left|g_{i}[z, u](\tau, t, x)-g_{i}[z, u](\tau, \bar{t}, \bar{x})\right| \leq \Upsilon(\tau, t)\left\{\theta_{1}^{*}|t-\bar{t}|+|x-\bar{x}|\right\} \tag{5}
\end{equation*}
$$

for $\tau \in K_{1}$, and
(6) $\left|g_{i}[z, u](\tau, t, x)-g_{i}[\bar{z}, \bar{u}](\tau, t, x)\right| \leq \Upsilon(\tau, t) \mid \int_{t}^{\tau} \theta_{2}^{*}(\xi)\left\{\|z-\bar{z}\|_{E_{\xi}}\right.$

$$
\left.+\left\|D_{x} z-D_{x} \bar{z}\right\|_{E_{\xi}}+\|u-\bar{u}\|_{E_{\xi}}\right\} d \xi \mid \quad \text { for } \tau \in K_{2}
$$

Proof. Let $(t, x),(\bar{t}, \bar{x}) \in E_{a}$ be such that the intervals K_{1}, K_{2} are nonempty. If we transform (4) into an integral equation then by virtue of Assumption H_{1} we have

$$
\begin{aligned}
& \left|g_{i}[z, u](\tau, t, x)-g_{i}[z, u](\tau, \bar{t}, \bar{x})\right| \\
& \quad \leq|x-\bar{x}|+\left|\int_{t}^{\bar{t}}\right| D_{q} f_{i}\left(P_{i}[z, u](\xi, \bar{t}, \bar{x})\right)|d \xi| \\
& \quad+\left|\int_{t}^{\tau}\right| D_{q} f_{i}\left(P_{i}[z, u](\xi, t, x)\right)-D_{q} f_{i}\left(P_{i}[z, u](\xi, \bar{t}, \bar{x})\right)|d \tau| \\
& \leq \leq|x-\bar{x}|+\theta_{1}^{*}|t-\bar{t}|+\mid \int_{t}^{\tau} \theta_{2}^{*}(\xi)\left\{\left|g_{i}[z, u](\xi, t, x)-g_{i}[z, u](\xi, \bar{t}, \bar{x})\right|\right. \\
& \quad+\left|\left|z_{\left(\xi, g_{i}[z, u](\xi, t, x)\right)}-z_{\left(\tau, g_{i}[z, u](\xi, \bar{t}, \bar{x})\right) \mid}\right|\right. \\
& \left.\quad+\left|u_{i}\left(\tau, g_{i}[z, u](\tau, x, y)\right)-u_{i}\left(\xi, g_{i}[z, u](\xi, \bar{t}, \bar{x})\right)\right|\right\} d \xi \mid \\
& \leq \leq|x-\bar{x}|+\theta_{1}^{*}|t-\bar{t}| \\
& \quad+\left|\int_{t}^{\tau} \theta_{2}^{*}(\xi) R_{1}\right| g_{i}[z, u](\xi, t, x)-g_{i}[z, u](\xi, \bar{t}, \bar{x})|d \xi|
\end{aligned}
$$

for $\tau \in K_{1}$, where
(7) $P_{i}[z, u](\xi, t, x)=\left(\xi, g_{i}[z, u](\xi, t, x), z_{\left(\xi, g_{i}[z, u](\xi, t, x)\right)}, u_{i}\left(\xi, g_{i}[z, u](\xi, t, x)\right)\right)$.

Thus (5) follows from the Gronwall lemma.
In the same way, by Assumption H_{1}, we get the estimate

$$
\begin{aligned}
& \left|g_{i}[z, u](\tau, t, x)-g_{i}[\bar{z}, \bar{u}](\tau, t, x)\right| \\
& \quad \leq\left|\int_{t}^{\tau} \theta_{2}^{*}(\xi)\left\{\|z-\bar{z}\|_{E_{\xi}}+\left\|D_{x} z-D_{x} \bar{z}\right\|_{E_{\xi}}+\|u-\bar{u}\|_{E_{\xi}}\right\} d \xi\right| \\
& \quad+\left|\int_{t}^{\tau} \theta_{2}^{*}(\xi) R_{1}\right| g_{i}[z, u](\xi, t, x)-g_{i}[\bar{z}, \bar{u}](\xi, t, x)|d \xi|
\end{aligned}
$$

for $\tau \in K_{2}$. Now, again using the Gronwall lemma, we get (6), which completes the proof of Lemma 1 .

Lemma 2. Suppose that ϕ fulfills Assumption H_{2} and that Assumption H_{1} is satisfied for $\delta=q$. Furthermore, suppose that for every $p \in \mathbb{R}_{+}$there is $\delta(p)>0$ such that we have $D_{q_{j}} f_{i}(t, x, w, q) \geq \delta(p), i \in \mathbb{N}, j=1, \ldots, n$, for all $(t, x, w, q) \in \Omega^{(1)}$, such that $\|w\|_{1} \leq p$. If $i \in \mathbb{N}$ and $z, \bar{z} \in C_{\phi, a}^{0,1+L}(Q)$,
$u, \bar{u} \in C_{D_{x} \phi, a}^{0, L}(P)$, are given functions then for all $(t, x),(\bar{t}, \bar{x}) \in E_{a}$ we have

$$
\begin{align*}
\left|\lambda_{i}[z, u](t, x)-\lambda_{i}[z, u](\bar{t}, \bar{z})\right| & \leq \frac{1}{\delta^{*}} \Upsilon(0, t)\left\{\theta_{1}^{*}|t-\bar{t}|+|x-\bar{x}|\right\} \tag{8}\\
\left|\lambda_{i}[z, u](t, x)-\lambda_{i}[\bar{z}, \bar{u}](t, x)\right| & \leq \frac{1}{\delta^{*}} \Upsilon(0, t) \int_{0}^{t} \theta_{2}^{*}(\xi)\left\{\|z-\bar{z}\|_{E_{\xi}}\right. \tag{9}\\
& \left.+\left\|D_{x} z-D_{x} \bar{z}\right\|_{E_{\xi}}+\|u-\bar{u}\|_{E_{\xi}}\right\} d \xi
\end{align*}
$$

where $\delta^{*}=\delta\left(Q_{0}+Q_{1}\right)$.
Proof. Let $i \in \mathbb{N}$ be fixed and $g_{i}=g_{i}[z, u], \lambda_{i}=\lambda_{i}[z, u], \bar{g}_{i}=g_{i}[\bar{z}, \bar{u}]$, $\bar{\lambda}_{i}=\lambda_{i}[\bar{z}, \bar{u}]$. Since (8) is obviously satisfied if $(t, x),(\bar{t}, \bar{x}) \in E_{a 0}^{(i)}[z, u]$, without loss of generality we may assume that $\lambda_{i}(\bar{t}, \bar{x}) \leq \lambda_{i}(t, x)$ and $(t, x) \in E_{a b}^{(i)}[z, u]$. There exists $1 \leq j \leq n$ such that $g_{i j}\left(\lambda_{i}(t, x), t, x\right)=b_{j}$. Then we have

$$
\begin{aligned}
& g_{i j}\left(\lambda_{i}(t, x), t, x\right)-g_{i j}\left(\lambda_{i}(t, x), \bar{t}, \bar{x}\right) \\
& \quad \geq g_{i j}\left(\lambda_{i}(\bar{t}, \bar{x}), \bar{t}, \bar{x}\right)-g_{i j}\left(\lambda_{i}(t, x), \bar{t}, \bar{x}\right) \\
& \quad=\int_{\lambda_{i}(\bar{t}, \bar{x})}^{\lambda_{i}(t, x)} D_{q_{j}} f_{i}\left(\xi, g_{i}(\xi, \bar{t}, \bar{x}), z_{\left(\xi, g_{i}(\xi, \bar{t}, \bar{x})\right)}, u_{i}\left(\xi, g_{i}(\xi, \bar{t}, \bar{x})\right)\right) d \tau \\
& \quad \geq \delta^{*}\left[\lambda_{i}(t, x)-\lambda_{i}(\bar{t}, \bar{x})\right]
\end{aligned}
$$

The above estimate together with (5) gives (8).
Analogously, since (9) is obviously satisfied if $(t, x) \in E_{a 0}^{(i)}[z, u] \cap E_{a 0}^{(i)}[\bar{z}, \bar{u}]$, we may assume that $\bar{\lambda}_{i}(t, x) \leq \lambda_{i}(t, x)$ and $(t, x) \in E_{a b}^{(i)}[z, u]$. Then for $1 \leq j \leq$ n such that $g_{i j}\left(\lambda_{i}(t, x), t, x\right)=b_{j}$ we have

$$
\begin{aligned}
& g_{i j}\left(\lambda_{i}(t, x), t, x\right)-\bar{g}_{i j}\left(\lambda_{i}(t, x), t, x\right) \\
& \quad \geq \bar{g}_{i j}\left(\bar{\lambda}_{i}(t, x), t, x\right)-\bar{g}_{i j}\left(\lambda_{i}(t, x), t, x\right) \\
& \quad=\int_{\bar{\lambda}_{i}(t, x)}^{\lambda_{i}(t, x)} D_{q_{j}} f_{i}\left(\xi, \bar{g}_{i}(\xi, t, x), \bar{z}_{\left(\xi, \bar{g}_{i}(\xi, t, x)\right)}, \bar{u}_{i}\left(\xi, \bar{g}_{i}(\xi, t, x)\right)\right) d \xi \\
& \quad \geq \delta^{*}\left[\lambda_{i}(t, x)-\bar{\lambda}_{i}(t, x)\right]
\end{aligned}
$$

which together with (6) gives (9).

4. A certain system of integral-functional equations.

Assumption H_{3}. Suppose that
$1^{\circ} f=\left\{f_{i}\right\}, f_{i}: \Omega^{(0)} \rightarrow \mathbb{R}$ is an infinite sequence of functions in the variables (t, x, w, q), measurable in t, and there is a nondecreasing function $\theta_{0}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
|f(t, x, w, q)|_{\infty} \leq \theta_{0}\left(\|w\|_{0}\right) \quad \text { on } \Omega^{(0)}
$$

Furthermore, let Assumption H_{1} be satisfied with $\delta=x, w, q$.
${ }^{\circ}$ For every $p \in \mathbb{R}_{+}$there is a constant $\delta(p)>0$ such that we have $D_{q_{j}} f_{i}(t, x, w, q) \geq \delta(p), i \in \mathbb{N}, j=1, \ldots, n$, for all $(t, x, w, q) \in \Omega^{(1)}$, such that $\|w\|_{1} \leq p$.

Let ϕ and f satisfy assumptions $\mathrm{H}_{2} \mathrm{H}_{3}$, respectively, and for $a \in(0, \bar{a}]$ let $z=\left\{z_{i}\right\} \in C_{\phi, a}^{0,1+L}(Q), u=\left\{u_{i}\right\} \in C_{D_{x} \phi, a}^{0, L}(P)$, where $u_{i}=\left(u_{i 1}, \ldots, u_{i n}\right)$, $i \in \mathbb{N}$ be given functions. Note that u consists of n infinite sequences which we denote by $\hat{u}_{j}=\left\{u_{i j}\right\}, 1 \leq j \leq n$. We define the operators $T_{i}[z, u], V_{i j}[z, u]$, $i \in \mathbb{N}, j=1, \ldots, n$, by

$$
\begin{aligned}
T_{i}[z, u](t, x) & =\phi_{i}\left(\lambda_{i}[z, u](t, x), g_{i}[z, u]\left(\lambda_{i}[z, u](t, x), t, x\right)\right) \\
& +\int_{\lambda_{i}[z, u](t, x)}^{t}\left[f_{i}\left(P_{i}[z, u](\xi, t, x)\right)\right. \\
& \left.-\sum_{k=1}^{n} D_{q_{k}} f_{i}\left(P_{i}[z, u](\xi, t, x)\right) u_{i k}\left(\tau, g_{i}[z, u](\tau, t, x)\right)\right] d \xi, \\
V_{i j}[z, u](t, x) & =D_{x_{j}} \phi_{i}\left(\lambda_{i}[z, u], g_{i}[z, u]\left(\lambda_{i}[z, u](t, x), t, x\right)\right) \\
& +\int_{\lambda_{i}[z, u](t, x)}^{t}\left[D_{x_{i}} f_{i}\left(P_{i}[z, u](\xi, t, x)\right)\right. \\
& \left.+D_{w} f_{i}\left(P_{i}[z, u](\xi, t, x)\right) \circ\left(\hat{u}_{j}\right)_{\left(\tau, g_{i}[z, u](\xi, t, x)\right)}\right] d \xi
\end{aligned}
$$

for $(t, x) \in E_{a}^{*}$, and

$$
T_{i}[z, u](t, x)=\phi_{i}(t, x), \quad V_{i j}[z, u](t, x)=D_{x_{j}} \phi_{i}(t, x)
$$

for $(t, x) \in E_{0}^{*} \cup \partial_{0} E_{a}$, where $g_{i}[z, u]$ is a solution of (4], $\lambda_{i}[z, u]$ is the left end of the maximal interval on which this solution is defined and $P_{i}[z, u]$ is given by (7). In the definition of $V_{i j}[z, u]$ the derivative $D_{w} f_{i}\left(P_{i}[z, u](\xi, t, x)\right)$ is a continuous linear operator and by \circ we denote the value of this operator taken on the function $\left(\hat{u}_{j}\right)_{\left(\tau, g_{i}[z, u](\xi, t, x)\right)} \in C^{0,1}\left(B, \ell^{\infty}\right)$. Put $T[z, u]=\left\{T_{i}[z, u]\right\}$ and $V[z, u]=\left\{V_{i}[z, u]\right\}$, where $V_{i}[z, u]=\left(V_{i 1}[z, u], \ldots, V_{i n}[z, u]\right)$. We will consider the system of integral-functional equations

$$
\begin{equation*}
z=T[z, u], \quad u=V[z, u] . \tag{10}
\end{equation*}
$$

Remark 2. The integral-functional system (10) arises in the following way. We introduce an additional unknown function $u=D_{x} z$ in the i-th equation of system (11). Then we consider the linearization of this equation with respect to $u_{i}=\left(u_{i 1}, \ldots, u_{i n}\right)$, which yields

$$
\begin{equation*}
D_{t} z_{i}(t, x)=f_{i}\left(\tilde{P}_{i}\right)+\sum_{k=1}^{n} D_{q_{k}} f_{i}\left(\tilde{P}_{i}\right)\left(D_{x_{k}} z_{i}(t, x)-u_{i k}(t, x)\right), \tag{11}
\end{equation*}
$$

where $\tilde{P}_{i}=\left(t, x, z_{(t, x)}, u_{i}(t, x)\right)$. Differentiating (1) with respect to x_{j} and substituting $u=D_{x} z$, we get

$$
\begin{align*}
D_{t} u_{i j}(t, x)=D_{x_{j}} f_{i}\left(\tilde{P}_{i}\right)+ & D_{w} f_{i}\left(\tilde{P}_{i}\right) \circ\left(\hat{u}_{j}\right)_{(t, x)} \tag{12}\\
& +\sum_{k=1}^{n} D_{q_{k}} f_{i}\left(\tilde{P}_{i}\right) D_{x_{j}} u_{i k}(x, y), \quad j=1, \ldots, n .
\end{align*}
$$

Making use of (4) we have

$$
\begin{aligned}
\frac{d}{d \xi} z_{i}\left(\xi, g_{i}[z, u](\xi, t, x)\right) & =D_{t} z_{i}\left(\xi, g_{i}[z, u](\xi, t, x)\right) \\
& -\sum_{k=1}^{n} D_{q_{k}} f_{i}\left(P_{i}[z, u](\xi, t, x)\right) D_{x_{k}} z_{i}\left(\xi, g_{i}[z, u](\xi, t, x)\right)
\end{aligned}
$$

Substituting (11) in the above relation and integrating the resulting equation with respect to ξ on $[\lambda[z, u](t, x), t]$, we get the first of the equations in (10) on E_{a}. Repeating these considerations for (12) and taking into account that $z=\phi, u=D_{x} \phi$, on $E_{0}^{*} \cup \partial_{0} E_{a}$, we get the second equation in (10).

Suppose that ϕ and f satisfy Assumptions H_{2}, H_{3}, respectively. Under these assumptions we prove that the solution of (12) exists, using the quasiiteration method, which general idea was given by Ważewski [20]. We define a sequence $\left\{z^{(m)}, u^{(m)}\right\}$ in the following way.
1° Let $\tilde{\phi}$ be any extension of ϕ onto the set E_{a}^{*} such that $\tilde{\phi}$ satisfies conditions $1^{\circ}, 2^{\circ}$ of Assumption H_{2} on E_{a}^{*}. We put

$$
\begin{equation*}
z^{(0)}(t, x)=\tilde{\phi}(t, x), \quad u^{(0)}(t, x)=D_{x} \tilde{\phi}(t, x), \tag{13}
\end{equation*}
$$

and then $z^{(0)} \in C_{\phi, a}^{0,1+L}(Q), u^{(0)} \in C_{D_{x} \phi, a}^{0, L}(P)$.
2° If $z^{(m)} \in C_{\phi, a}^{0,1+L}(Q), u^{(m)} \in C_{D_{x} \phi, a}^{0, L}(P)$ are already defined functions then $u^{(m+1)}$ is a solution of the equation

$$
\begin{equation*}
u=V^{(m)}[u], \tag{14}
\end{equation*}
$$

and $z^{(m+1)}$ is defined by

$$
\begin{equation*}
z^{(m+1)}=T\left[z^{(m)}, u^{(m+1)}\right] . \tag{15}
\end{equation*}
$$

The operator $V^{(m)}=\left\{V_{i}^{(m)}\right\}$, where $V_{i}^{(m)}[u]=\left(V_{i 1}^{(m)}[u], \ldots, V_{i n}^{(m)}[u]\right), i \in \mathbb{N}$, is given by

$$
\begin{align*}
& V_{i j}^{(m)}[u](t, x) \tag{16}\\
& \quad=D_{x_{j}} \phi_{i}\left(\lambda_{i}\left[z^{(m)}, u\right](t, x), g_{i}\left[z^{(m)}, u\right]\left(\lambda_{i}\left[z^{(m)}, u\right](t, x), t, x\right)\right) \\
& \quad+\quad \int_{\lambda_{i}\left[z^{(m)}, u\right](t, x)}^{t}\left[D_{x_{j}} f_{i}\left(P_{i}\left[z^{(m)}, u\right](\xi, t, x)\right)\right. \\
& \left.\quad \quad \quad+D_{w} f_{i}\left(P_{i}\left[z^{(m)}, u\right](\xi, t, x)\right) \circ\left(\hat{u}_{j}^{(m)}\right)_{\left(\xi, g_{i}\left[z^{(m)}, u\right](\xi, t, x)\right)}\right] d \xi
\end{align*}
$$

for $(t, x) \in E_{a}$, and

$$
V_{i j}^{(m)}[u](x, y)=D_{x_{j}} \phi_{i}(x, y) \quad \text { for }(t, x) \in E_{0}^{*} \cup \partial_{0} E_{a} .
$$

Remark 3. Note that the operators $V^{(m)}$ and $V\left[z^{(m)}, \cdot\right]$ are not identical since in the last term of $\sqrt[16]{ }$ we have $\hat{u}_{j}^{(m)}$ instead of \hat{u}_{j}. In Theorem 3 we prove that $D_{x} z^{(m)}=u^{(m)}$ and therefore, analogously as in Remark 2 , we may say that $\hat{u}_{j}^{(m)}$ appears in 16 as a substitution for $D_{x} \hat{z}_{j}^{(m)}$.

In the next section we prove the existence of the sequence $\left\{z^{(m)}, u^{(m)}\right\}$ under the assumption that the constants defining classes $C_{\phi, a}^{0,1+L}(Q)$ and $C_{D_{x} \phi, a}^{0, L}(P)$ are sufficiently large. More precisely, they fulfill the following assumption.

Assumption H_{4}. Suppose that $Q_{0}>\Lambda_{0}, Q_{1}>\Lambda_{1}$,

$$
\begin{aligned}
& Q_{2}>\Lambda_{2}\left[\frac{1}{\delta^{*}}\left(1+\theta_{1}^{*}\right)+1\right]+S_{1} \theta_{1}^{*} \frac{1}{\delta^{*}} \\
& \tilde{Q}_{1}>\max \left\{\tilde{\Lambda}_{1}, \Lambda_{1}\left[\frac{1}{\delta^{*}}\left(1+\theta_{1}^{*}\right)+1\right] \theta_{1}^{*}+\left[1+\frac{1}{\delta^{*}} \theta_{1}^{*}\right]\left(\theta_{0}\left(Q_{0}\right)+\theta_{1}^{*} P_{0}\right)\right\}, \\
& \tilde{Q}_{2}>\max \left\{\tilde{\Lambda}_{2}, \Lambda_{2}\left[\frac{1}{\delta^{*}}\left(1+\theta_{1}^{*}\right)+1\right] \theta_{1}^{*}+\left[S_{1}+S_{1} \theta_{1}^{*} \frac{1}{\delta^{*}}\right] \theta_{1}^{*}\right\},
\end{aligned}
$$

and let $P_{0}=Q_{1}, P_{1}=Q_{2}, \tilde{P}_{1}=\tilde{Q}_{2}$.
Write

$$
\begin{aligned}
\Gamma_{0}(t)= & \Lambda_{1}+\theta_{1}^{*} S_{1} t \\
\tilde{\Gamma}_{0}(t)= & \Lambda_{1} \Upsilon(0, t)\left[\frac{1}{\delta^{*}}\left(1+\theta_{1}^{*}\right)+1\right] \theta_{1}^{*} \\
& +\left[1+\frac{1}{\delta^{*}} \Upsilon(0, t) \theta_{1}^{*}\right]\left(\theta_{0}\left(Q_{0}\right)+\theta_{1}^{*} P_{0}\right) \\
& +\int_{0}^{t}\left\{\theta_{1}^{*}+\theta_{2}^{*}(\tau) P_{0}\right\} R_{1} \Upsilon(0, \tau) d \tau
\end{aligned}
$$

$$
\begin{aligned}
\Gamma_{1}(t)= & \Lambda_{2} \Upsilon(0, t)\left[\frac{1}{\delta^{*}}\left(1+\theta_{1}^{*}\right)+1\right]+S_{1} \theta_{1}^{*} \frac{1}{\delta^{*}} \\
& +\int_{0}^{t}\left\{\theta_{2}^{*}(\tau) R_{1} S_{1}+\theta_{1}^{*} P_{1}\right\} \Upsilon(0, \tau) d \tau
\end{aligned}
$$

where $S_{1}=1+P_{0}$.

Remark 4. Note that, since $\lim _{t \rightarrow 0} \Upsilon(0, t)=1$, by Assumption H_{4}, we may choose $a \in(0, \bar{a}]$ sufficiently small for the following estimates to hold

$$
\begin{gathered}
\Lambda_{0}+\left[\theta_{0}^{*}+\theta_{1}^{*} P_{0}\right] a \leq Q_{0}, \quad \tilde{\Gamma}_{0}(a) \leq \tilde{Q}_{1}, \quad \Gamma_{0}(a) \leq Q_{1}=P_{0} \\
\theta_{1}^{*}\left[S_{1}+\Gamma_{1}(a)\right] \leq \tilde{Q}_{2}=\tilde{P}_{1}, \quad \Gamma_{1}(a) \leq Q_{2}=P_{1}
\end{gathered}
$$

5. The existence of the sequence of successive approximations. In this section we prove that the sequence $\left\{z^{(m)}, u^{(m)}\right\}$ exists, provided that $a \in(0, \bar{a}]$ is sufficiently small.

Theorem 3. If Assumptions $H_{2} H_{4}$ are satisfied and $a \in(0, \bar{a}]$ is sufficiently small then for any $m \in \mathbb{N}$ we have
$\left(I_{m}\right) z^{(m)}, u^{(m)}$ are defined on E_{a}^{*} and we have $z^{(m)} \in C_{\phi, a}^{0,1+L}(Q), u^{(m)} \in$ $C_{D_{x} \phi, a}^{0, L}(P) ;$

$$
\left(I I_{m}\right) D_{x} z^{(m)}(t, x)=u^{(m)}(t, x) \quad \text { on } E_{a}
$$

Proof. We will prove $\left(\mathrm{I}_{m}\right)$ and $\left(\mathrm{II}_{m}\right)$ by induction. It follows from 15) that $\left(\mathrm{I}_{0}\right),\left(\mathrm{II}_{0}\right)$ are satisfied. Suppose that conditions $\left(\mathrm{I}_{m}\right)$ and $\left(\mathrm{II}_{m}\right)$ hold true for a given $m \in \mathbb{N}$. We first prove that $u^{(m+1)}: E_{a}^{*} \rightarrow \mathbb{R}^{n}$ exists and $u^{(m+1)} \in$ $C_{D_{x} \phi, a}^{0, L}(P)$.

We claim that given $z^{(m)} \in C_{\phi, a}^{0,1+L}(Q)$, the operator $V^{(m)}$ maps $C_{D_{x} \phi, a}^{0, L}(P)$ into itself for sufficiently small $a \in(0, \bar{a}]$. It follows from Assumptions $\mathrm{H}_{2} \mid \mathrm{H}_{3}$ and inequality (5) that given $u \in C_{D_{x} \phi, a}^{0, L}(P)$, for all $(t, x),(\bar{t}, \bar{x}) \in E_{a}$ we have the estimates

$$
\left|V_{i}^{(m)}[u](t, x)\right| \leq \Lambda_{1}+\int_{\lambda_{i}\left[z^{(m)}, u\right](t, x)}^{t} \theta_{1}^{*} S_{1} d \xi \leq \Gamma_{0}(a)
$$

$$
\begin{aligned}
& \left|V_{i}^{(m)}[u](t, x)-V^{(m)}[u](\bar{t}, \bar{x})\right| \\
& \leq \\
& \quad \Lambda_{2} \Upsilon(0, t)\left\{\left[1+\theta_{1}^{*}\right] \frac{1}{\delta^{*}}+1\right\}\left\{\theta_{1}^{*}|t-\bar{t}|+|x-\bar{x}|\right\} \\
& \quad+\left|\int_{t}^{\bar{t}} \theta_{1}^{*} S_{1} d \xi\right|+\left|\int_{\lambda_{i}\left[z^{(m)}, u\right](t, x)}^{\lambda_{i}\left[z^{(m)}, u\right](\bar{t}, \bar{x})} \theta_{1}^{*} S_{1} d \xi\right| \\
& \quad+\left\{\theta_{1}^{*}|t-\bar{t}|+|x-\bar{x}|\right\} \cdot \int_{\lambda(t, x)}^{t}\left\{\theta_{2}^{*}(\xi) R_{1} S_{1}+\theta_{1}^{*} P_{1}\right\} \Upsilon(\xi, t) d \xi \\
& \leq \\
& \leq \theta_{1}^{*}\left[S_{1}+\Gamma_{1}(a)\right]|t-\bar{t}|+\Gamma_{1}(a)|x-\bar{x}| .
\end{aligned}
$$

Hence by Assumption H_{4} we may take $a \in(0, \bar{a}]$ so small that $\Gamma_{0}(a) \leq P_{0}$, $\Gamma_{1}(a) \leq P_{1}, \theta_{1}^{*}\left[S_{1}+\Gamma_{1}(a)\right] \leq \tilde{P}_{1}$, and then

$$
\begin{align*}
\left|V^{(m)}[u](t, x)\right|_{\infty} & \leq P_{0} \\
\left|V^{(m)}[u](x, y)-V^{(m)}[u](\bar{t}, \bar{x})\right|_{\infty} & \leq P_{1}[|t-\bar{t}|+|x-\bar{x}|] \tag{17}
\end{align*}
$$

for $(t, x),(\bar{t}, \bar{x}) \in E_{a}$. Since $V^{(m)}[u]=D_{x} \phi$ on $E_{0}^{*} \cup \partial E_{a}$, it follows from (17) that $V^{(m)}$ maps $C_{D_{x} \phi, a}^{0, L}(P)$ into itself.

If $u \in C_{D_{x} \phi, a}^{0, L}(P), \bar{u} \in C_{D_{x} \bar{\phi}, a}^{0, L}(P)$ then analogously, by Assumptions H_{2}, H3. formulas (6), (9) and the relation $V^{(m)}[u]=V^{(m)}[\bar{u}]=D_{x} \phi$ on E_{0}, we get

$$
\left\|V^{(m)}[u]-V^{(m)}[\bar{u}]\right\|_{E_{a}^{*}} \leq \int_{0}^{a} G(\tau)\|u-\bar{u}\|_{E_{\tau}^{*}} d \tau,
$$

where

$$
\begin{aligned}
G(t)= & \Lambda_{2} \Upsilon(0, t) \theta_{2}^{*}(t)\left[\frac{1}{\delta^{*}}\left(1+\theta_{1}^{*}\right)+1\right]+\theta_{1}^{*} S_{1} \frac{1}{\delta^{*}} \Upsilon(0, t) \theta_{2}^{*}(t) \\
& +\left[\theta_{2}^{*}(t) R_{1} S_{1}+\theta_{1}^{*} P_{1}\right] \Upsilon(0, t) \int_{0}^{t} \theta_{2}^{*}(\tau) d \tau+\theta_{2}^{*}(t) S_{1} .
\end{aligned}
$$

We may take $a \in(0, \bar{a}]$ so small that $\int_{0}^{a} G(\tau) d \tau<1$ and consequently $V^{(m)}$ is a contraction with the norm $\|\cdot\|_{E_{a}^{*}}$. By the Banach fixed point theorem, there exists the unique solution $u \in C_{D_{x} \phi, a}^{0, L}$ of (14) which is $u^{(m+1)}$.

Our next goal is to prove that $z^{(m+1)}$ given by (15) satisfies $\left(\mathrm{II}_{m+1}\right)$. For $t \in[0, a], x, \bar{x} \in[-b, b]$ put $\Delta(t, x, \bar{x})=\left\{\Delta_{i}(t, x, \bar{x})\right\}$, where

$$
\begin{equation*}
\Delta_{i}(t, x, \bar{x})=z_{i}^{(m+1)}(t, x)-z_{i}^{(m+1)}(t, \bar{x})-u_{i}^{(m+1)}(t, x) \cdot(x-\bar{x}), \tag{18}
\end{equation*}
$$

and "." denotes the scalar product. We will prove that there is a constant $\tilde{C} \in \mathbb{R}_{+}$such that

$$
\begin{equation*}
|\Delta(t, x, \bar{x})|_{\infty} \leq \tilde{C}|x-\bar{x}|^{2} \tag{19}
\end{equation*}
$$

For simplicity we put $\lambda_{i}(t, x)=\lambda_{i}\left[z^{(m)}, u^{(m+1)}\right](t, x)$ and

$$
P_{i}(\xi)=P_{i}\left[z^{(m)}, u^{(m+1)}\right](\xi, t, x), \quad g_{i}(\xi)=g_{i}\left[z^{(m)}, u^{(m+1)}\right](\xi, t, x),
$$

and replacing x with \bar{x} we get analogous formulas for $\bar{P}_{i}(\xi), \bar{g}_{i}(\xi)$. In view of (15) we may write (18) in the form

$$
\begin{aligned}
& \Delta_{i}(t, x, \bar{x})=\phi_{i}\left(\lambda_{i}(t, x), g_{i}\left(\lambda_{i}(t, x)\right)\right)-\phi_{i}\left(\lambda_{i}(t, \bar{x}), \bar{g}_{i}\left(\lambda_{i}(t, \bar{x})\right)\right) \\
& \quad-D_{x} \phi_{i}\left(\lambda_{i}(t, x), g_{i}(\lambda(t, x))\right) \cdot(x-\bar{x}) \\
& \quad+\int_{\lambda(t, x)}^{t}\left(f_{i}\left(P_{i}(\xi)\right)-f_{i}\left(\bar{P}_{i}(\xi)\right)\right) d \xi \\
& \quad-\int_{\lambda(t, x)}^{t}\left\{D_{q} f_{i}\left(P_{i}(\xi)\right) \cdot u_{i}^{(m+1)}\left(\xi, g_{i}(\xi)\right)\right. \\
& \left.\quad-D_{q} f_{i}\left(\bar{P}_{i}(\xi)\right) \cdot u_{i}^{(m+1)}\left(\xi, \bar{g}_{i}(\xi)\right)\right\} d \xi \\
& \quad+\int_{\lambda_{i}(t, x)}^{\lambda_{i}(t, \bar{x})}\left\{f_{i}\left(\bar{P}_{i}(\xi)\right)-D_{q} f_{i}\left(\bar{P}_{i}(\xi)\right) \cdot u_{i}^{(m+1)}(\xi, \bar{g}(\xi)\} d \xi\right. \\
& \quad-\int_{\lambda_{i}(t, x)}^{t}\left\{D_{x} f_{i}\left(P_{i}(\xi)\right)+D_{w} f_{i}\left(P_{i}(\xi)\right) \circ\left(u^{(m)}\right)_{\left(\xi, g_{i}(\xi)\right)}\right\} d \xi \cdot(x-\bar{x}),
\end{aligned}
$$

where

$$
\begin{aligned}
& D_{w} f_{i}\left(P_{i}(\xi)\right.) \circ\left(u^{(m)}\right)_{\left(\xi, g_{i}(\xi)\right)} \\
& \quad=\left(D_{w} f_{i}\left(P_{i}(\xi)\right) \circ\left(\hat{u}_{1}^{(m)}\right)_{\left(\xi, g_{i}(\xi)\right)}, \ldots, D_{w} f_{i}\left(P_{i}(\xi)\right) \circ\left(\hat{u}_{n}^{(m)}\right)_{\left(\xi, g_{i}(\xi)\right)}\right)
\end{aligned}
$$

In the above formula we apply the Hadamard mean value theorem to the difference $f_{i}\left(P_{i}(\xi)\right)-f_{i}\left(\bar{P}_{i}(\xi)\right)$, whence

$$
\begin{aligned}
& \int_{\lambda_{i}(t, x)}^{t} \quad\left(f_{i}\left(P_{i}(\xi)\right)-f_{i}\left(\bar{P}_{i}(\xi)\right)\right) d \xi \\
& \quad=\int_{\lambda_{i}(t, x)}^{t} \int_{0}^{1} D_{x} f_{i}\left(Q_{i}(s, \xi)\right)\left[g_{i}(\xi)-\bar{g}_{i}(\xi)\right] d s d \xi \\
& \quad \quad+\int_{\lambda_{i}(t, x)}^{t} \int_{0}^{1} D_{w} f_{i}\left(Q_{i}(s, \xi)\right) \circ\left[z_{\left(\xi, g_{i}(\xi)\right)}^{(m)}-z_{\left(\xi, \bar{g}_{i}(\xi)\right)}^{(m)}\right] d s d \xi \\
& \quad+\int_{\lambda_{i}(t, x)}^{t} \int_{0}^{1} D_{q} f_{i}\left(Q_{i}(s, \xi)\right) \cdot\left[u_{i}^{(m+1)}\left(\xi, g_{i}(\xi)\right)-u_{i}^{(m+1)}\left(\xi, \bar{g}_{i}(\xi)\right)\right] d s d \xi
\end{aligned}
$$

where

$$
Q_{i}(s, \xi)=s P_{i}\left[z^{(m)}, u^{(m+1)}\right](\xi, t, x)+(1-s) P_{i}\left[z^{(m)}, u^{(m+1)}\right](\xi, t, \bar{x}) .
$$

Let us define

$$
\begin{aligned}
& \Delta_{i}^{(1)}(t, x, \bar{x})=\phi_{i}\left(\lambda_{i}(t, x), g_{i}\left(\lambda_{i}(t, x)\right)\right)-\phi_{i}\left(\lambda_{i}(t, \bar{x}), \bar{g}_{i}\left(\lambda_{i}(t, \bar{x})\right)\right) \\
& \quad-D_{x} \phi_{i}\left(\lambda_{i}(t, x), g_{i}(\lambda(t, x))\right)\left[\lambda_{i}(t, x)-\lambda_{i}(t, \bar{x})\right] \\
& \quad-D_{x} \phi_{i}\left(\lambda_{i}(t, x), g_{i}(\lambda(t, x))\right) \cdot\left[g_{i}\left(\lambda_{i}(t, x)\right)-g_{i}\left(\lambda_{i}(t, \bar{x})\right)\right] \\
& +\int_{\lambda_{i}(t, x)}^{t} \int_{0}^{1}\left[D_{x} f_{i}\left(Q_{i}(s, \xi)\right)-D_{x} f_{i}\left(P_{i}(\xi)\right)\right] \cdot\left[g_{i}(\xi)-\bar{g}_{i}(\xi)\right] d s d \xi \\
& +\int_{\lambda_{i}(t, x)}^{t} \int_{0}^{1}\left[D_{w} f_{i}\left(Q_{i}(s, \xi)\right)-D_{w} f\left(P_{i}(\xi)\right)\right] \\
& \quad \circ\left[z_{\left(\xi, g_{i}(\xi)\right)}^{(m)}-z_{\left.\left(\xi, \bar{g}_{i}(\xi)\right)\right]}^{(m)}\right] d s d \xi \\
& +\int_{\lambda_{i}(t, x)}^{t} \int_{0}^{1}\left[D_{q} f_{i}\left(Q_{i}(s, \xi)\right)-D_{q} f_{i}\left(\bar{P}_{i}(\xi)\right)\right] \\
& \quad \cdot\left[u_{i}^{(m+1)}\left(\xi, g_{i}(\xi)\right)-u_{i}^{(m+1)}\left(\xi, \bar{g}_{i}(\xi)\right)\right] d s d \xi \\
& \quad+\int_{\lambda_{i}(t, x)}^{t} D_{w} f_{i}\left(P_{i}(\xi)\right) \circ\left[z_{\left(\xi, g_{i}(\xi)\right)}^{(m)}-z_{\left(\xi, \bar{g}_{i}(\xi)\right)}^{(m)}\right. \\
& \left.\quad-\left(u^{(m)}\right)_{\left(\xi, g_{i}(\xi)\right)} \cdot\left[g_{i}(\xi)-\bar{g}_{i}(\xi)\right]\right] d \xi, \\
& \Delta_{i}^{(2)}(t, x, \bar{x})=\left[\lambda_{i}(t, x)-\lambda_{i}(t, \bar{x})\right] \cdot D_{t} \phi\left(\lambda_{i}(t, x), g_{i}(\lambda(t, x))\right) \\
& \quad-\int_{\lambda_{i}(t, \bar{x})}^{\lambda_{i}(t, x)} f_{i}\left(\bar{P}_{i}(\xi)\right) d \xi \\
& +\left[\bar{g}_{i}\left(\lambda_{i}(t, x)\right)-\bar{g}_{i}\left(\lambda_{i}(t, \bar{x})\right)\right] \cdot D_{x} \phi_{i}\left(\lambda_{i}(t, x), g_{i}(\lambda(t, x))\right) \\
& \quad+\int_{\lambda_{i}(t, \bar{x})}^{\lambda_{i}(t, x)} D_{q} f\left(\bar{P}_{i}(\xi)\right) \cdot u_{i}^{(m+1)}\left(\xi, \bar{g}_{i}(\xi)\right) d \xi,
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{\Delta}_{i}^{(1)} & (t, x, \bar{x}) \\
& =D_{x} \phi_{i}\left(\lambda_{i}(t, x), g_{i}\left(\lambda_{i}(t, x)\right)\right) \cdot\left[g_{i}\left(\lambda_{i}(t, x)\right)-\bar{g}_{i}\left(\lambda_{i}(t, x)\right)-(x-\bar{x})\right] \\
\tilde{\Delta}_{i}^{(2)} & =\int_{\lambda_{i}(t, x)}^{t} D_{x} f_{i}\left(P_{i}(\xi)\right) \cdot\left[g_{i}(\xi)-\bar{g}_{i}(\xi)-(x-\bar{x})\right] d \xi \\
& +\int_{\lambda_{i}(t, x)}^{t} D_{w} f_{i}\left(P_{i}(\xi)\right) \circ\left(u^{(m)}\right)\left(\xi, g_{i}(\xi)\right) \cdot\left[g_{i}(\xi)-\bar{g}_{i}(\xi)-(x-\bar{x})\right] d \xi \\
\tilde{\Delta}_{i}^{(3)} & =-\int_{\lambda_{i}(t, x)}^{t}\left[D_{q} f_{i}\left(P_{i}(\xi)\right)-D_{q} f_{i}\left(\bar{P}_{i}(\xi)\right)\right] \cdot u_{i}^{(m+1)}\left(\xi, g_{i}(\xi)\right) d \xi .
\end{aligned}
$$

With the above definitions, we have

$$
\begin{equation*}
\Delta_{i}(t, x, \bar{x})=\sum_{k=1}^{2} \Delta_{i}^{(k)}(t, x, \bar{x})+\sum_{k=1}^{3} \tilde{\Delta}_{i}^{(k)}(t, x, \bar{x}) \tag{20}
\end{equation*}
$$

Since g_{i} is a solution of (4), we see that

$$
g_{i}(\xi)-\bar{g}_{i}(\xi)-(x-\bar{x})=\int_{\xi}^{t}\left[D_{q} f_{i}\left(P_{i}(\zeta)\right)-D_{q} f_{i}\left(\bar{P}_{i}(\zeta)\right)\right] d \zeta .
$$

Substituting the above relation in $\tilde{\Delta}_{i}^{(2)}$ and in $\tilde{\Delta}_{i}^{(1)}$ with $\xi=0$ and changing the order of integrals where necessary, we get

$$
\begin{aligned}
& \sum_{k=1}^{3} \tilde{\Delta}_{i}^{(k)}(t, x, \bar{x})=\int_{\lambda_{i}(t, x)}^{t}\left[D_{q} f_{i}\left(P_{i}(\xi)\right)-D_{q} f_{i}\left(\bar{P}_{i}(\xi)\right)\right] \\
& \quad \cdot\left[D_{x} \phi_{i}\left(0, g_{i}(0)\right)+\int_{\lambda_{i}(t, x)}^{\xi} D_{x} f_{i}\left(P_{i}(\zeta)\right) d \zeta\right. \\
& \left.\quad+\int_{\lambda_{i}(t, x)}^{\xi} D_{w} f_{i}\left(P_{i}(\zeta)\right) \circ\left(u^{(m)}\right)_{\left(\zeta, g_{i}(\zeta)\right)} d \zeta-u_{i}^{(m+1)}\left(\xi, g_{i}(\xi)\right)\right] d \xi \\
& =\int_{\lambda_{i}(t, x)}^{t}\left[D_{q} f_{i}\left(P_{i}(\xi)\right)-D_{q} f_{i}\left(\bar{P}_{i}(\xi)\right)\right] \\
& \quad \cdot\left[V^{(m)}\left[u^{(m+1)}\right]\left(\xi, g_{i}(\xi)\right)-u_{i}^{(m+1)}\left(\xi, g_{i}(\xi)\right)\right] d \xi=0
\end{aligned}
$$

from which and from (20) we get $\Delta_{i}(t, x, \bar{x})=\sum_{k=1}^{2} \Delta_{i}^{(k)}(t, x, \bar{x})$. In the above transformations we have also used the group property for the bicharacteristic g_{i}. Assumptions $\mathrm{H}_{2}, \mathrm{H}_{3}$, inequality (5) and the existence of derivatives $D_{x} \phi$, $D_{x} z^{(m)}=u^{(m)}$ yield the existence of a constant $C_{1} \in \mathbb{R}_{+}$such that

$$
\left|\Delta_{i}^{(1)}(t, x, \bar{x})\right| \leq C_{1}|x-\bar{x}|^{2}, \quad t \in[0, a], x, \bar{x} \in[-b, b] .
$$

Writing $\Delta_{i}^{(2)}$ in the form

$$
\begin{aligned}
& \Delta_{i}^{(2)}(t, x, \bar{x})=\int_{\lambda_{i}(t, \bar{x})}^{\lambda_{i}(t, x)}\left[D_{t} \phi_{i}\left(\lambda_{i}(t, x), g_{i}\left(\lambda_{i}(t, x)\right)\right)-f_{i}\left(\bar{P}_{i}(\xi)\right)\right] d \xi \\
& \quad+\int_{\lambda_{i}(t, \bar{x})}^{\lambda_{i}(t, x)} D_{q} f_{i}\left(\bar{P}_{i}(\xi)\right) \\
& \cdot\left[u_{i}^{(m+1)}\left(\xi, \bar{g}_{i}(\xi)\right)-D_{x} \phi_{i}\left(\lambda_{i}(t, x), g_{i}\left(\lambda_{i}(t, x), t, x\right)\right)\right] d \xi
\end{aligned}
$$

making additional use of the consistency condition (3), and taking into account the relation $u^{(m+1)}=D_{x} \phi$ on $\partial_{0} E \cap E_{a}$, we get the estimate of the same type
for $\Delta_{i}^{(2)}$ with a constant $C_{2} \in \mathbb{R}_{+}$. This means that (19) holds true with $\tilde{C}=C_{1}+C_{2}$, which completes the proof of $\left(\mathrm{II}_{m+1}\right)$.

Finally, we prove that $z^{(m+1)}$ defined by (15) belongs to the class $C_{\phi, a}^{0,1+L}(Q)$. Since $D_{x} z^{(m+1)}=u^{(m+1)}$, it follows from (17) that

$$
\begin{gathered}
\left|D_{x} z^{(m+1)}(t, x)\right|_{\infty} \leq Q_{1}, \\
\left.\left|D_{x} z^{(m+1)}(t, x)-D_{x} z^{(m+1)}(\bar{t}, \bar{x})\right|_{\infty} \leq \tilde{Q}_{2}|t-\bar{t}|+|x-\bar{x}|\right]
\end{gathered}
$$

for $(t, x),(\bar{t}, \bar{x}) \in E_{a}$. By Assumptions $\mathrm{H}_{2} \mathrm{H}_{4}$ we easily get

$$
\begin{gathered}
\left|z^{(m+1)}(t, x)\right|_{\infty} \leq \Lambda_{0}+\left[\theta_{0}\left(Q_{0}\right)+\theta_{1}^{*} P_{0}\right] a, \\
\left|z^{(m+1)}(t, x)-z^{(m+1)}(\bar{t}, x)\right|_{\infty} \leq \tilde{\Gamma}_{0}(a)|t-\bar{t}|,
\end{gathered}
$$

for $(t, x),(\bar{t}, x) \in E_{a}$. By Assumption H_{4} we may choose $a \in(0, \bar{a}]$ so small that additionally $\Lambda_{0}+\left[\theta_{0}\left(Q_{0}\right)+\theta_{1}^{*} P_{0}\right] a \leq Q_{0}, \tilde{\Gamma}_{0}(a) \leq \tilde{Q}_{1}$. This together with the relation $z^{(m+1)}=\phi$ on $E_{0}^{*} \cup \partial_{0} E_{a}$ gives $z^{(m+1)} \in C_{\phi, a}^{0,1+L}(Q)$, which completes the proof of $\left(\mathrm{I}_{m+1}\right)$. Thus Theorem 3 follows by induction.
6. The main result. Write

$$
H^{*}(t)=H(t)+H(t) \exp \left\{\int_{0}^{t} G(\xi) d \xi\right\} \int_{0}^{t} G(\xi) d \xi
$$

where

$$
\begin{aligned}
H(t)= & \Lambda_{1} \Upsilon(0, t) \theta_{2}^{*}(t)\left[\frac{1}{\delta^{*}}\left(1+\theta_{1}^{*}\right)+1\right]+\theta_{1}^{*} S_{1} \frac{1}{\delta^{*}} \Upsilon(0, t) \theta_{2}^{*}(t) \\
& +\left[\theta_{2}^{*}(t) R_{1} P_{0}+\theta_{1}^{*} R_{1}\right] \Upsilon(0, t) \int_{0}^{t} \theta_{2}^{*}(\tau) d \tau+\theta_{1}^{*}+\theta_{2}^{*}(t) P_{0} .
\end{aligned}
$$

Theorem 4. If Assumptions $\mathrm{H}_{2} \mathrm{H}_{4}$ are satisfied then the sequences $\left\{z^{(m)}\right\}$, $\left\{u^{(m)}\right\}$ are uniformly convergent on E_{a} for sufficiently small $a \in(0, \bar{a}]$.

Proof. Suppose that $a \in(0, \bar{a}]$ is such that the conclusion of Theorem 3 holds true. For any $\tau \in[0, a]$ and $m \in \mathbb{N}$ we put

$$
\begin{array}{ll}
Z^{(m)}(\tau) & =\sup \left\{\left|z^{(m)}(t, x)-z^{(m-1)}(t, x)\right|_{\infty} ;\right. \\
U^{(m)}(\tau) & \left.(t, x) \in E_{\tau}^{*}\right\}, \\
\sup \left\{\left|u^{(m)}(t, x)-u^{(m-1)}(t, x)\right|_{\infty} ;\right. & \left.(t, x) \in E_{\tau}^{*}\right\} .
\end{array}
$$

Using the same technique as in the proof of Theorem 3, by Assumptions H_{2}, H_{3} and inequality (6), for any $t \in[0, a]$ and $m \in \mathbb{N}$, we get the estimate

$$
\begin{aligned}
U^{(m+1)}(t) \leq & \int_{0}^{t} G(\xi) U^{(m+1)}(\xi) d \xi \\
& +\int_{0}^{t} G(\xi)\left[Z^{(m)}(\xi)+U^{(m)}(\xi)\right] d \xi
\end{aligned}
$$

Making use of the Gronwall lemma, we have

$$
\begin{equation*}
U^{(m+1)}(t) \leq \exp \left\{\int_{0}^{t} G(\xi) d \xi\right\} \int_{0}^{t} G(\xi)\left[Z^{(m)}(\xi)+U^{(m)}(\xi)\right] d \xi \tag{21}
\end{equation*}
$$

By Assumptions $\mathrm{H}_{2}, \mathrm{H}_{3}$ and relations (10), (21), we get the estimate

$$
\begin{equation*}
Z^{(m+1)}(t) \leq \int_{0}^{t} H^{*}(\xi)\left[Z^{(m)}(\xi)+U^{(m)}(\xi)\right] d \xi, \quad t \in[0, a] . \tag{22}
\end{equation*}
$$

Thus if we take

$$
M(t)=\exp \left\{\int_{0}^{a} G(\xi) d \xi\right\} G(t)+H^{*}(t)
$$

then using (21), (22) for any $t \in[0, a]$, we have

$$
Z^{(m+1)}(t)+U^{(m+1)}(t) \leq \int_{0}^{t} M(\xi)\left[Z^{(m)}(\xi)+U^{(m)}(\xi)\right] d \xi
$$

Now, by induction, it is easy to get

$$
Z^{(m)}(t)+U^{(m)}(t) \leq \frac{\left(\int_{0}^{t} M(\xi) d \xi\right)^{m-1}}{(m-1)!}\left[Z^{(1)}(a)+U^{(1)}(a)\right], \quad t \in[0, a]
$$

and consequently

$$
\begin{equation*}
\sum_{i=k}^{m}\left[Z^{(i)}(a)+U^{(i)}(a)\right] \leq\left[Z^{(1)}(a)+U^{(1)}(a)\right] \sum_{i=k-1}^{m-1} \frac{\left(\int_{0}^{a} M(\xi) d \xi\right)^{i}}{i!} \tag{23}
\end{equation*}
$$

Since the series $\sum_{i=1}^{\infty} \frac{\left(\int_{0}^{a} M(\xi) d \xi\right)^{i}}{i!}$ is convergent, it follows from (23) that the sequences $\left\{z^{(m)}\right\},\left\{u^{(m)}\right\}$ satisfy the uniform Cauchy condition on E_{a}^{*}, which means that they are uniformly convergent on E_{a}^{*}. This completes the proof of Theorem 4 .

Theorem 5. If Assumptions $H_{2} H_{4}$ are satisfied then there is a solution of the problem (1), (2).

Proof. It follows from Theorem 4 that there exist functions \bar{z}, \bar{u} such that $\left\{z^{(m)}\right\},\left\{u^{(m)}\right\}$ are uniformly convergent on E_{a}^{*} to \bar{z}, \bar{u}, respectively, if $a \in(0, \bar{a}]$ is sufficiently small. Furthermore, $D_{x} \bar{z}$ exists on E_{a}^{*} and $D_{x} \bar{z}=\bar{u}$. We prove that \bar{z} is a solution of (11).

From (12) it follows that for any $i \in \mathbb{N}$ and $(t, x) \in E_{a 0}^{(i)}\left[\bar{z}, D_{x} \bar{z}\right]$ we have

$$
\begin{align*}
\bar{z}_{i}(t, x)=\phi_{i}\left(0, \bar{g}_{i}(0, t, x)\right) & +\int_{0}^{t}\left[f_{i}\left(P_{i}\left[\bar{z}, D_{x} \bar{z}\right](\xi, t, x)\right)\right. \tag{24}\\
& \left.-\sum_{k=1}^{n} D_{q_{k}} f_{i}\left(P_{i}\left[\bar{z}, D_{x} \bar{z}\right](\xi, t, x)\right) D_{x_{k}} \bar{z}_{i}(\xi, t, x)\right] d \xi,
\end{align*}
$$

where $\bar{g}_{i}=g_{i}\left[\bar{z}, D_{x} \bar{z}\right]$.

For a fixed t we define the transformation $x \mapsto \bar{g}_{i}(0, t, x)=\zeta$. Then by the group property $\bar{g}_{i}(\tau, t, x)=\bar{g}_{i}(\tau, 0, \zeta)$ and by (24), we get

$$
\begin{aligned}
& \bar{z}_{i}\left(t, \bar{g}_{i}(i, 0, \zeta)\right)= \phi_{i}(0, \zeta) \\
&+ \int_{0}^{t}\left[f_{i}\left(\xi, \bar{g}_{i}(\xi, 0, \zeta), \bar{z}_{\left(\xi, \bar{g}_{i}(\xi, 0, \zeta)\right)}, D_{x} \bar{z}\left(\xi, \bar{g}_{i}(\xi, 0, \zeta)\right)\right)\right. \\
&-\sum_{k=1}^{n} D_{q_{j}} f_{i}\left(\xi, \bar{g}_{i}(\xi, 0, \zeta), \bar{z}_{\left(\xi, \bar{g}_{i}(\xi, 0, \zeta)\right)}, D_{x} \bar{z}\left(\xi, \bar{g}_{i}(\xi, 0, \zeta)\right)\right) \\
&\left.\quad D_{x_{k}} \bar{z}_{i}\left(\xi, \bar{g}_{i}(\xi, 0, \zeta)\right)\right] d \xi .
\end{aligned}
$$

Differentiating the above relation with respect to t and making use of the reverse transformation $\zeta \mapsto \bar{g}_{i}(t, 0, \zeta)=x$, we see that the i-th equation of system (1) is satisfied for almost all t with fixed x on $E_{a 0}^{(i)}\left[\bar{z}, D_{x} \bar{z}\right]$.

Analogously, for any $(t, x) \in E_{a b}^{(i)}\left[\bar{z}, D_{x} \bar{z}\right]$ we have

$$
\begin{align*}
\bar{z}_{i}(t, x)=\phi_{i}\left(0, \bar{g}_{i}(0, t, x)\right) & +\int_{\bar{\lambda}_{i}(t, x)}^{t}\left[f_{i}\left(P_{i}\left[\bar{z}, D_{x} \bar{z}\right](\xi, t, x)\right)\right. \tag{25}\\
& \left.-\sum_{k=1}^{n} D_{q_{j}} f_{i}\left(P_{i}\left[\bar{z}, D_{x} \bar{z}\right](\xi, t, x)\right) D_{x_{k}} \bar{z}_{i}(\xi, t, x)\right] d \xi,
\end{align*}
$$

where $\bar{\lambda}_{i}=\lambda_{i}\left[\bar{z}, D_{x} \bar{z}\right]$.
Without loss of generality we may suppose that $\bar{g}_{i j}\left(\bar{\lambda}_{i}(t, x), t, x\right)=b_{j}$ for $j=n$ and for simplicity we write $\zeta^{\prime}=\left(\zeta_{1}, \ldots, \zeta_{n-1}\right), \bar{g}_{i}^{\prime}=\left(\bar{g}_{i 1}, \ldots, \bar{g}_{i, n-1}\right)$. For a fixed t we define the transformation $x \mapsto\left(\bar{g}_{i}^{\prime}\left(\bar{\lambda}_{i}(t, x), t, x\right), \bar{\lambda}(t, x)\right)=\left(\zeta^{\prime}, \eta\right)$. Then by (25) and the group property we get

$$
\begin{aligned}
& \bar{z}_{i}\left(t, \bar{g}_{i}\left(t, \eta, \zeta^{\prime}, b_{n}\right)\right)=\phi_{i}\left(\eta, \zeta^{\prime}, b_{n}\right) \\
& \quad+\int_{\eta}^{t}\left[f\left(\xi, \bar{g}_{i}\left(\xi, \eta, \zeta^{\prime}, b_{n}\right), \bar{z}_{\left(\xi, \bar{g}_{i}\left(\xi, \eta, \zeta^{\prime}, b_{n}\right)\right)}, D_{x} \bar{z}\left(\xi, \bar{g}_{i}\left(\xi, \eta, \zeta^{\prime}, b_{n}\right)\right)\right)\right. \\
& \quad-\sum_{k=1}^{n} D_{q_{k}} f_{i}\left(\xi, \bar{g}_{i}\left(\xi, \eta, \zeta^{\prime}, b_{n}\right), \bar{z}_{\left(\xi, \bar{g}_{i}\left(\xi, \eta, \zeta^{\prime}, b_{n}\right)\right)}, D_{x} \bar{z}\left(\xi, \bar{g}_{i}\left(\xi, \eta, \zeta^{\prime}, b_{n}\right)\right)\right) \\
& \left.\quad \cdot D_{x_{k}} \bar{z}_{i}\left(\xi, \bar{g}_{i}\left(\xi, \eta, \zeta^{\prime}, b_{n}\right)\right)\right] d \xi .
\end{aligned}
$$

As previously, differentiating the above relation with respect to t and making use of the reverse transformation $\left(\zeta^{\prime}, \eta\right) \mapsto \bar{g}_{i}\left(t, \eta, \zeta^{\prime}, b_{n}\right)=x$, we see that the i-th equation of system (11) is satisfied for almost all t with fixed x also on $E_{a b}^{(i)}\left[\bar{z}, D_{x} \bar{z}\right]$. Since \bar{z} obviously fulfills condition (2), the proof of Theorem 5 is complete.

Remark 5. If in Theorem 5 we assume that f is continuous then we get existence of classical solutions of problem (1), (2).
7. Solutions with a generalized Lipschitz condition. We may consider solutions of problem (1), (2) that satisfy a generalized Lipschitz condition with respect to the first variable. In this case we modify the assumption on the initial function ϕ.

Assumption H_{5}. Suppose that
$1^{\circ} \phi=\left\{\phi_{i}\right\} \in C\left(E_{0}^{*} \cup \partial_{0} E_{\bar{a}}, \ell^{\infty}\right)$ and the derivative $D_{x} \phi=\left\{D_{x} \phi_{i}\right\}, i \in \mathbb{N}$, exists on $E_{0}^{*} \cup \partial_{0} E_{\bar{a}}$;
\mathscr{D}° there are constants $\Lambda_{0}, \Lambda_{1}, \Lambda_{2} \in \mathbb{R}_{+}$, and Lebesgue integrable functions $\omega_{1}, \omega_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that on $E_{0}^{*} \cup \partial_{0} E_{\bar{a}}$ we have $|\phi(t, x)|_{\infty} \leq \Lambda_{0}$ and

$$
\begin{gathered}
|\phi(t, x)-\phi(\bar{t}, x)|_{\infty} \leq\left|\int_{t}^{\bar{t}} \omega_{1}(\tau) d \tau\right|, \quad\left|D_{x} \phi(t, x)\right|_{\infty} \leq \Lambda_{1} \\
\left|D_{x} \phi(t, x)-D_{x} \phi(\bar{t}, \bar{x})\right|_{\infty} \leq\left|\int_{t}^{\bar{t}} \omega_{2}(\tau) d \tau\right|+\Lambda_{2}|x-\bar{x}|
\end{gathered}
$$

$\mathfrak{3}^{\circ}$ the derivatives $D_{t} \phi_{i}(t, x), i \in \mathbb{N}$, exist on $\partial_{0} E_{\bar{a}} \cap E_{\bar{a}}$ and the consistency condition (3) holds true on $\partial_{0} E_{\bar{a}} \cap E_{\bar{a}}$.

Let ϕ fulfill Assumption H_{5} and let $a \in(0, \bar{a}]$. Instead of the functional spaces $C_{\phi, a}^{0,1+L}(Q), C_{D_{y} \phi, a}^{0, L}(P)$ considered in section 2 , we may define two other spaces. By $C_{\phi, a}^{0,1+L}(\mu, Q)$, we define the set of all functions $z: E_{a}^{*} \rightarrow \ell^{\infty}$ such that the derivative $D_{x} z$, exists on E_{a}^{*} and
(i) $z(t, x)=\phi(t, x) \quad$ on $E_{0}^{*} \cup \partial_{0} E_{a}$;
(ii) $|z(t, x)|_{\infty} \leq Q_{0}, \quad\left|D_{x} z(t, x)\right|_{\infty} \leq Q_{1} \quad$ on E_{a};
(iii) for $t, \bar{t} \in[0, a], x, \bar{x} \in[-b, b]$, we have

$$
\begin{aligned}
|z(t, x)-z(\bar{t}, x)|_{\infty} & \leq\left|\int_{t}^{\bar{t}} \mu_{1}(\tau) d \tau\right|, \\
\left|D_{x} z(t, x)-D_{x} z(\bar{t}, \bar{x})\right|_{\infty} & \leq\left|\int_{t}^{\bar{t}} \mu_{2}(\tau) d \tau\right|+Q_{2}|x-\bar{x}| .
\end{aligned}
$$

We also define by $C_{D_{x} \phi, a}^{0, L}(\nu, P)$ the set of all functions $u: E_{a} \rightarrow \ell_{n}^{\infty}$ such that
(i) $u(t, x)=D_{x} \phi(t, x) \quad$ on $\partial_{0} E_{a} \cap E_{a}$;
(ii) $|u(t, x)|_{\infty} \leq P_{0}$ on E_{a};
(iii) for $t, \bar{t} \in[0, a], x, \bar{x} \in[-b, b]$, we have

$$
|u(t, x)-u(\bar{t}, \bar{x})|_{\infty} \leq\left|\int_{t}^{\bar{t}} \nu(\tau) d \tau\right|+P_{1}|x-\bar{x}| .
$$

In the above definitions the constants $\tilde{Q}_{1}, \tilde{Q}_{2}, \tilde{P}_{1}$ from section 2 have been replaced by Lebesgue integrable functions μ_{1}, μ_{2}, ν, respectively.

Assumption H_{6}. Suppose that
$1^{\circ} f=\left\{f_{i}\right\}, f_{i}: \Omega^{(0)} \rightarrow \mathbb{R}$ is an infinite sequence of functions in the variables (t, x, w, q), measurable in t, and there is $\theta_{1} \in \Theta$ such that

$$
|f(t, x, w, q)|_{\infty} \leq \theta_{1}\left(t,\|w\|_{0}\right) \quad \text { on } \Omega^{(0)}
$$

${ }^{\circ}$ For $\delta=x, w, q$ the derivatives $D_{\delta} f_{i}, i \in \mathbb{N}$ exist on $\Omega^{(1)}$, the sequence $D_{\delta} f=\left\{D_{\delta} f_{i}\right\}$ is measurable with respect to t, we have

$$
\left|D_{\delta} f(t, x, w, q)\right|_{\infty} \leq \theta_{1}\left(t,\|w\|_{1}\right) \quad \text { on } \Omega^{(1)}
$$

and there is $\theta_{2} \in \Theta$ such that

$$
\begin{aligned}
\left|D_{\delta} f(t, x, w, q)-D_{\delta} f(t, \bar{x}, w+h, \bar{q})\right|_{\infty} & \\
& \leq \theta_{2}\left(t,\|w\|_{1, L}\right)\left[|x-\bar{x}|+\|h\|_{1}+|q-\bar{q}|\right]
\end{aligned}
$$

for all $(t, x, h, q) \in \Omega^{(1)}, \bar{x}, \bar{q} \in \mathbb{R}^{n}, w \in C^{0,1+L}\left(B, \ell^{\infty}\right)$.
3° For every $p \in \mathbb{R}_{+}$there is a constant $\delta(p)>0$ such that we have $D_{q_{j}} f_{i}(t, x, w, q) \geq \delta(p) \theta_{1}(t, p), i \in \mathbb{N}, j=1, \ldots, n$, for all $(t, x, w, q) \in \Omega^{(1)}$, such that $\|w\|_{1} \leq p$.

Let ϕ be a given function satisfying Assumption H_{5} and $0<a \leq \bar{a}$. As in section 3. for any $z \in C_{\phi, a}^{0,1+L}(\mu, Q), u \in C_{D_{x} \phi, a}^{0, L}(\nu, P)$ and $i \in \mathbb{N}$, we may define the i-th bicharacteristic $g_{i}[z, u](\cdot, t, x)$ of system (1) corresponding to $[z, u]$ as a solution of problem (4). We may also prove a lemma about properties of $g_{i}[z, u](\cdot, t, x)$ analogous to Lemma 1. where instead of the term $\theta_{1}^{*}|t-\bar{t}|$ at the right-hand side of (5), we now have $\left|\int_{t}^{\bar{t}} \theta_{1}^{*}(\xi) d \xi\right|$, where $\theta_{1}^{*}(\tau)=\theta_{1}\left(\tau, Q_{1}+Q_{2}\right)$. For $\lambda_{i}[z, u](t, x)$, the left end of the maximal interval on which $g_{i}[z, u](\cdot, t, x)$ is defined we may prove the following estimates

$$
\begin{aligned}
\left|\int_{\lambda_{i}[z, u](t, x)}^{\lambda_{i}[z, u](\bar{t}, \bar{z})} \theta_{1}^{*}(\xi) d \xi\right| & \leq \frac{1}{\delta^{*}} \Upsilon(0, t)\left\{\left|\int_{t}^{\bar{t}} \theta_{1}^{*}(\xi) d \xi\right|+|x-\bar{x}|\right\}, \\
\left|\int_{\lambda_{i}[z, u](t, x)}^{\lambda_{i}[\bar{z} \bar{u}(t, x)} \theta_{1}^{*}(\xi) d \xi\right| & \leq \frac{1}{\delta^{*}} \Upsilon(0, t) \int_{0}^{t} \theta_{2}^{*}(\xi)\left\{\|z-\bar{z}\|_{E_{\xi}}\right. \\
& \left.+\left\|D_{x} z-D_{x} \bar{z}\right\|_{E_{\xi}}+\|u-\bar{u}\|_{E_{\xi}}\right\} d \xi,
\end{aligned}
$$

instead of (8) and (9) proved in Lemma 2.
Suppose that Assumptions H_{5} and H_{6} are satisfied and that there are constants $M_{1}, M_{2} \in \mathbb{R}_{+}$such that we have

$$
\omega_{1}(\tau) \leq M_{1} \theta_{1}^{*}(\tau), \quad \omega_{2}(\tau) \leq M_{2} \theta_{1}^{*}(\tau), \quad \text { for } \tau \in[0, \bar{a}] .
$$

Then we may choose parameters defining the classes $C_{\phi, a}^{0,1+L}(\mu, Q), u \in$ $C_{D_{x} \phi, a}^{0, L}(\nu, P)$ such that for sufficiently small $a \in(0, \bar{a}]$ there is a solution \bar{z} of problem (1), (2) belonging to the class $C_{\phi, a}^{0,1+L}(\mu, Q)$ and such that $D_{x} \bar{z} \in$ $C_{D_{x} \phi, a}^{0, L}(\nu, P)$.

Finally, we show some examples of infinite functional differential systems which are particular cases of (11).

Example 1. Given $\tilde{f}_{i}: E_{\bar{a}} \times \ell^{\infty} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, i \in \mathbb{N}$, let us consider the differential system with deviated argument

$$
\begin{equation*}
D_{t} z_{i}(t, x)=\tilde{f}_{i}\left(t, x, z(\alpha(t), \beta(t, x)), D_{x} z_{i}(t, x)\right), \tag{26}
\end{equation*}
$$

where $\alpha:[0, \bar{a}] \rightarrow \mathbb{R}, \beta: E_{\bar{a}} \rightarrow[-b, b]$, and $\alpha(t) \leq t$ for $t \in[0, \bar{a}]$. We define a function $f=\left\{f_{i}\right\}$ by

$$
f(t, x, w, q)=\tilde{f}(t, x, w(\alpha(t)-t, \beta(t, x)-x), q)
$$

for $(t, x, w, q) \in E_{\bar{a}} \times C\left(B, \ell^{\infty}\right) \times \mathbb{R}^{n}$. If $(\alpha(t)-t, \beta(t, x)-x) \in B$ for $(t, x) \in E_{\bar{a}}$ then (26) is a particular case of (1) under natural assumptions on α, β, \tilde{f}.

Example 2. With \tilde{f}_{i} as in the previous example, consider the differentialintegral system

$$
\begin{equation*}
D_{t} z_{i}(t, x)=\tilde{f}_{i}\left(t, x, \int_{B} z(t+\tau, x+s) d \tau d s, D_{x} z_{i}(t, x)\right) . \tag{27}
\end{equation*}
$$

If we define a function $f=\left\{f_{i}\right\}$ by

$$
f(t, x, w, q)=\hat{f}\left(t, x, \int_{B} w(\tau, s) d \tau d s, q\right)
$$

for $(t, x, w, q) \in E_{\bar{a}} \times C\left(B, \ell^{\infty}\right) \times \mathbb{R}^{n}$, then it is easy to formulate assumptions on \tilde{f} in order to get the existence theorem for (27) as a particular case of (11).

References

1. Bassanini P., On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Boll. Un. Mat. Ital., (5) 14-A (1977), 325-332.
2. Bassanini P., Iterative methods for quasilinear hyperbolic systems, Boll. Un. Mat. Ital., (6) 1-B (1982), 225-250.
3. Bassanini P., Turo J., Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations, Ann. Mat. Pura Appl., 156 (1990), 211-230.
4. Brandi P., Ceppitelli R., Generalized solutions for nonlinear hyperbolic systems in hereditary setting, preprint.
5. Brandi P., Kamont Z., Salvadori A., Existence of weak solutions for partial differentialfunctional equations, preprint.
6. Cesari L., A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Ann. Scuola Norm. Sup. Pisa, (4) 1 (1974), 311-358.
7. Cesari L., A boundary value problem for quasilinear hyperbolic systems, Riv. Mat. Univ. Parma, 3 (1974), 107-131.
8. Cinquini S., Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Rend. Sem. Mat. Fis. Univ. Milano, 52 (1982).
9. Cinquini-Cibrario M., Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Rend. Ist. Lombardo, 104 (1970), 795-829.
10. Cinquini-Cibrario M., Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Ann. Mat. Pura. Appl., 40 (1985), 223-253.
11. Człapiński T., On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order, Zeit. Anal. Anwend., 10 (1991), 169182.
12. Człapiński T., On the mixed problem for quasilinear partial differential-functional equations of the first order, Zeit. Anal. Anwend., 16 (1997), 463-478.
13. Człapiński T., On the local Cauchy problem for nonlinear hyperbolic functional differential equations, Ann. Polon. Math., 67 (1997), 215-232.
14. Jaruszewska-Walczak D., Generalized solutions of the Cauchy problem for infinite systems of functional differential equations, Funct. Differential Equations, 6 (1999), 305-326.
15. Kamont Z., Topolski K., Mixed problems for quasilinear hyperbolic differential-functional systems, Math. Balkanica, 6 (1992), 313-324
16. Leszczyński H., On CC-solutions to the initial-boundary-value problem for first-order partial differential-functional equations, Rend. Mat., VII 15 (1995), 173-209.
17. Szarski J., Cauchy problem for an infinite system of differential-functional equations with first order partial derivatives, Comm. Math. Special Issue 1 (1978), 293-300.
18. Turo J., On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order, Czechoslovak Math. J., 36 (1986), 185-197.
19. Turo J., Local generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in two independent variables, Ann. Polon. Math., 49 (1989), 259-278.
20. Ważewski T., Sur une procédé de prouver la convergence des approximations successives sans utilisation des séries de comparison, Bull. Acad. Polon. Sci., Sér Sci. Math. Astr. Phys., 8 (1960), 47-52.

Received January 19, 1999

[^0]: 1991 Mathematics Subject Classification. 35D05, 35F30, 35R10.
 Key words and phrases. Functional differential equations, infinite systems, mixed problem, generalized solutions, local existence, bicharacteristics, quasi-iteration.

