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Abstract. We prove that for any open polynomial mapping f : Cn → Cm,
m ≥ 3, there is a linear change of coordinates α : Cm → Cm such that for
each component fi of α ◦ f , every fibre of fi is irreducible. This is a
generalization of the Kaliman result to the multidimensional case.

Introduction. Let X, Y be irreducible algebraic varieties over C in the
sense of Weil-Serre (algebraic spaces in terms of [5], VII, §17) and f : X → Y
be a regular dominating mapping. We call f primitive if the generic fibre of f
is irreducible and we call f totally primitive if each fibre of f is irreducible. In
the case that f : Cn → C is a polynomial, the primitivity of f is equivalent to
the indecomposability or non-compositness of f considered by Schinzel [7] and
Stein [9] (the equivalence was proved by P loski in [6]).

Kaliman in [4] proved that in the two-dimensional jacobian conjecture for
a polynomial mapping (p, q) : C2 → C2, Jac(p, q) ≡ 1, one can assume that
one component, say p, is totally primitive. He showed it by finding for (p, q)
a polynomial automorphism f = (f1, f2) : C2 → C2 such that p1 := f1(p, q) is
totally primitive. In this paper we prove that in the multi-dimensional case the
result is stronger. Namely, for any open polynomial mapping f : Cn → Cm,
m ≥ 3, there is a linear change of coordinates α : Cm → Cm such that
each component of α ◦ f is totally primitive (Theorem 3). The crucial role
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in the proof plays a version of the Bertini Theorem (Proposition 3, cf. [3],
Theorem 6.6). The last result follows from a criterion for the primitivity of the
composition of a regular mapping with a projection (Theorem 2). Namely, we
prove that for any regular dominating mapping f : X → Cm, and a projection
π : Cm → Cm−1 such that π is proper on the set of bad values of f , the
composition π ◦ f is a primitive mapping.

In Section 1 we collect general facts on the primitivity of regular mappings
(cf. [8], II.6, [2], 2.13,14, [1], III.4.3). Section 2 is devoted to the criterion for
primitivity of the composition of a regular mapping with a projection. In the
last Section 3 we prove the Kaliman Theorem in the multidimensional case.

1. Primitive mappings on algebraic varieties. Let f : X → Y be a
regular dominating mapping between irreducible algebraic varieties X, Y over
C. The mapping f is called primitive if there exists a proper algebraic subset
Ỹ ⊂ Y such that for each ξ ∈ Y \ Ỹ , the fibre f−1(ξ) is an irreducible algebraic
subvariety of X, and the mapping f is called totally primitive if each fibre
f−1(ξ), ξ ∈ Y , is irreducible.

In the sequel we write “for the generic ξ ∈ Y ” instead of “there exists a
proper algebraic subvariety Ỹ ⊂ Y such that for each ξ ∈ Y \ Ỹ ”.

From the definition of primitive mappings we immediately obtain

Proposition 1. Let X, Y be irreducible algebraic varieties. If X̃ ⊂ X is
a proper algebraic subvariety of X, then a dominating mapping f : X → Y is
primitive if and only if the mapping f |X\X̃ : X \ X̃ → Y is primitive.

Proof. Assume that f is primitive. Since f |X\X̃ : X \ X̃ → Y is domi-
nating, then, for the generic ξ ∈ Y , f−1(ξ) is irreducible in X and f−1(ξ) ∩
(X \ X̃) 6= ∅. Then f−1(ξ)∩ (X \ X̃) is irreducible in X \ X̃. This implies that
f |X\X̃ is primitive.

Let us assume that f |X\X̃ is primitive. Since the generic fibre of f has
dimension dimX − dimY and the generic fibre of f |X̃ has dimension at most
dimX−dimY −1, then for the generic fibre of f , its all irreducible components
intersect X \ X̃. In consequence, by the assumption, f is a primitive mapping.

Proposition 2. Let X, Y be irreducible algebraic varieties and f : X → Y
be a dominating regular mapping. Then the mapping f is primitive if and only
if there exist nonempty Zariski open subsets X0 ⊂ X, Y0 ⊂ Y , biregular to
affine varieties (i.e. to irreducible algebraic subsets of some Cm) such that
f(X0) ⊂ Y0 and the mapping f |X0 : X0 → Y0 is primitive.

Proof. By Proposition 1, we may assume that X is an affine variety. Let
Y0 6= ∅ be a nonempty Zariski open subset of Y and biregular to an affine
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variety. Let X1 = f−1(Y0). Then X1 is a Zariski open subset of X. Hence it is
an algebraic variety. So, there exists a nonempty Zariski open subset X0 6= ∅
of X1, biregular to an affine variety. In consequence, f(X0) ⊂ Y0 and, by
Proposition 1, f is primitive if and only if f |X0 : X0 → Y0 is primitive. This
ends the proof.

From the proposition it follows that the investigation of the primitivity of
regular mappings can be reduced to affine varieties. We shall use this propo-
sition in the proof of general algebraic criterions for the primitivity. We start
with definitions.

For an irreducible algebraic variety X, by C(X) we denote the field of
rational functions on X.

Let f : X → Y be a dominating regular mapping between irreducible
algebraic varieties X, Y . Let f∗ : C(Y ) → C(X) be the homomorphism
induced by f . Since f is dominating, then f∗ is an embedding of C(Y ) into
C(X). Of course, the extension C(X) of f∗(C(Y )) is finite generated, i.e.
C(X) = f∗(C(Y ))(ϕ1, ..., ϕm), for some ϕ1, ..., ϕm ∈ C(X). Thus C(X) is
isomorphic to the quotient field of the ring f∗(C(Y ))[T1, ..., Tm]/IX , where
T1, ..., Tm are algebraically independent variables and IX is the ideal of relations
between ϕ1, ..., ϕm, i.e. the kernel of the natural homomorphism

f∗(C(Y ))[T1, ..., Tm] → f∗(C(Y ))[ϕ1, ..., ϕm].

The algebraic varietyX is called irreducible over Y if Ie
X ⊂ f∗(C(Y ))[T1, ..., Tm]

is a prime ideal, where f∗(C(Y )) is an algebraic closure of f∗(C(Y )) and Ie
X

denotes the ideal in f∗(C(Y ))[T1, ..., Tm] generated by IX .

The following theorem gives the known equivalent conditions for the prim-
itivity of f .

Theorem 1. Let f : X → Y be a regular dominating mapping between
irreducible algebraic varieties X, Y . The following conditions are equivalent:

(i) f is a primitive mapping,
(ii) f∗(C(Y )) is algebraically closed in C(X),
(iii) X is irreducible over Y .

Proof. (i)⇒(ii). By Proposition 2 one can assume that X and Y are affine
varieties. Take any ϕ ∈ C(X) algebraic over f∗(C(Y )). Since f is primitive,
it is easy to show that ϕ is constant on the generic fibres of f . Hence, the
minimal polynomial in f∗(C(Y ))[T ] for ϕ is of degree 1. Thus ϕ ∈ f∗(C(Y )).
Thus we have (ii).

The implication (ii)⇒(iii) follows from [11], Ch. VII, §11, Theorem 39.
One can find a proof of the implication (iii)⇒(i) in [8], Ch. 2, §6, Theo-

rem 1.
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From the above Theorem we immediately obtain

Corollary 1. Let X, Y , Z be irreducible algebraic varieties. If f : X →
Y and g : Y → Z are primitive mappings, then g ◦ f : X → Z is primitive,
too.

2. Composition of a regular mappings with a projection. In this
section we give a theorem on primitivity of the composition of a regular map-
ping with a projection (Theorem 2). Let us start with definitions.

Let X be an irreducible algebraic variety. By X∗ we denote the set of
singular points of X. Let f : X → Cm be a regular dominating mapping. We
say that ξ ∈ Cm is a typical value of f if there exists a neighbourhood ∆ ⊂ Cm

of ξ such that f |f−1(∆) : f−1(∆) → ∆ is a trivial topological bundle. We call
the remaining points of Cm bifurcation points of f and denote by Bf the set
of such points. Let Af = {ξ ∈ Cm : some irreducible component of f−1(ξ) is
contained in X∗}, Cf – the set of critical values of f |X\X∗ : X \X∗ → Cm. We
denote by Ef the Zariski closure of the set Af ∪Bf ∪Cf and call it the set of
bad values of f .

Lemma 1. If X is an irreducible algebraic variety and f : X → Cm is a
dominating regular mapping, then

(a) Ef is a proper algebraic subset of Cm,
(b) there exists a positive integer df such that for any ξ ∈ Cm \Ef , f−1(ξ)

is the union of df irreducible components of dimension dimX −m.
(c) for any ξ ∈ Cm\Ef there exist a connected neighbourhood ∆ ⊂ Cm\Ef

of ξ and open connected sets U1, ..., Udf
⊂ X \X∗ such that for any j, f |Uj :

Uj → ∆ is a trivial holomorphic bundle and for any ξ̃ ∈ ∆, f−1(ξ̃) ∩ Uj,
j = 1, ..., df , are subsets of different components of f−1(ξ̃).

Proof. (a) From [10], Corollary 5.1 we conclude that Bf is contained in
a proper algebraic subset of Cm.

By the Sard Lemma, Cf is also contained in a proper algebraic subset
of Cm.

From the definition of Bf , for any ξ ∈ Cm\Bf , each irreducible component
of f−1(ξ) has dimension dimX − m. Let Y ⊂ Cm be the Zariski closure of
f(X∗). If Y 6= Cm, then Af ⊂ Y is contained in a proper algebraic subset of
Cm. If Y = Cm, then the mapping f̃ = f |X∗ : X∗ → Cm is dominating. Then
there exists a nonempty Zariski open subset U ⊂ Cm such that for all ξ ∈ U ,
each irreducible component of f̃−1(ξ) has dimension dimX−m−1, and so each
irreducible component of f−1(ξ) intersects X \X∗. Thus Af ⊂ Bf ∪ (Cm \U)
is contained in a proper algebraic subset of Cm. Summing up we have (a).

(b) follows from the definition of Af and Bf .
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(c) follows from (b), the definition of Ef and the Implicit Function Theo-
rem.

Theorem 2. Let X be an irreducible algebraic variety and f : X → Cm,
m ≥ 2, be a regular dominating mapping. If π : Cm 3 (ξ, ξ′) 7→ ξ ∈ Cm−1 is
the canonical projection and π|Ef

: Ef → Cm−1 is proper, then f̃ = π ◦ f :
X → Cm−1 is a primitive mapping.

Proof. Let X1 = X \ (f−1(Ef ) ∪ X∗). From Lemma 1(a), f−1(Ef ) is
a proper algebraic subset of X, and so, by Proposition 1, it suffices to prove
that g = f̃ |X1 : X1 → Cm−1 is a primitive mapping. We shall use Theorem 1,
implication (ii)⇒(i).

Let ϕ ∈ C(X1) be algebraic over g∗(C(λ)), λ = (λ1, ..., λm−1). Then there
exists an irreducible polynomial

p = us + a1(λ)us−1 + . . .+ as(λ) ∈ C(λ)[u],

where aj ∈ C(λ), such that

p(g, u) ∈ g∗(C(λ))[u]

is the minimal polynomial of ϕ. Obviously

(1) (g, ϕ)(X1) is a dense constructible subset of

Γ = {(ξ, t) ∈ Cm−1 × C : p(ξ, t) = 0}.
To finish the proof we will show that s = 1. By the Monodromy Theorem it

suffices to prove that for any ξ ∈ Cm−1 there exist a neighbourhood ∆ ⊂ Cm−1

of ξ and s different meromorphic functions ψ1, ..., ψs on ∆ such that

p(ξ, ψj(ξ)) = 0 on ∆, j = 1, ..., s.

Take any ξ0 ∈ Cm−1. Since π|Ef
is proper, then there exists ξ′0 ∈ C such

that (ξ0, ξ′0) ∈ Cm \ Ef . Let df be the number defined in Lemma 1(b) for the
mapping f . Since ϕ is constant on each irreducible component of the generic
fibre g−1(ξ), then ϕ is constant on each irreducible component of the generic
fibre f−1(ξ, ξ′) ∩ X1, and so, by (1), s ≤ df . By Lemma 1(c), there exist a
neighbourhood ∆0 = ∆×D ⊂ Cm \ Ef of (ξ0, ξ′0), where ∆ ⊂ Cm−1, D ⊂ C,
and open sets Uj ⊂ X1, j = 1, ..., df (in the natural topology) such that for
any j, f |Uj : Uj → ∆0 is a trivial holomorphic bundle, and for any (ξ, ξ′) ∈ ∆0,
f−1(ξ, ξ′)∩Uj are subsets of different components of f−1(ξ, ξ′). In consequence
there exist meromorphic functions ψ1,...,ψdf

on ∆0 such that

ϕ|Uj = ψj ◦ f |Uj , j = 1, ..., df

and so,

ψs
j (ξ, ξ′) + a1(ξ)ψs−1

j (ξ, ξ′) + . . .+ as(ξ) = 0 for (ξ, ξ′) ∈ ∆0, j = 1, ..., df .
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Hence we see that ψj does not depend on ξ′, and so,

(2) ψs
j (ξ) + a1(ξ)ψs−1

j (ξ) + . . .+ as(ξ) = 0 on ∆, j = 1, ..., df .

Moreover

(3) ϕ|Uj = ψj ◦ g|Uj , j = 1, ..., df .

Note that for any ξ ∈ ∆, each irreducible component of g−1(ξ) intersects
U = U1 ∪ . . . ∪ Udf

. Indeed, for fixed ξ ∈ ∆, the set g−1(ξ) is non-empty.
Let V0 be an irreducible component of g−1(ξ). Obviously dimV0 ≥ 1. Since
g−1(ξ) = f−1({ξ} × C) ∩X1 then from the definition of X1 and the Remmert
Open Mapping Theorem there follows that f |V0 : V0 → {ξ} × C is open and
thence dominating mapping. In consequence, there exists ξ′ ∈ C such that
(ξ, ξ′) ∈ f(V0) ∩∆0. From the choice of Uj there follows that f−1(ξ, ξ′) ∩ Uj ,
j = 1, ..., df are subsets of different components of f−1(ξ, ξ′). But at least one
of them is contained in V0. This gives the announced observation. From (3)
and the above observation we have

df⋃
j=1

{(ξ, ψj(ξ)) : ξ ∈ ∆} =
df⋃

j=1

(g, ϕ)(Uj) = (g, ϕ)(g−1(∆)).

Since, by (1), (g, ϕ)(g−1(∆)) is a dense subset of {(ξ, t) ∈ ∆× C; p(ξ, t) = 0},
then we see that there exist s different functions ψj1 , ..., ψjs ∈ {ψ1, ..., ψdf

}
satisfying (2).

This ends the proof.

3. Irreducibility of components of polynomial mappings. In this
section we prove a theorem on irreducibility of components of polynomial map-
pings (Theorem 3). It is a generalization of the Kaliman result [4] from the
two-dimensional case of locally diffeomorphic mappings to the multidimen-
sional case of open mappings.

Let us start with a proposition and two lemmas. This proposition is a
version of the Bertini Theorem (cf. [3], Theorem 6.6).

For positive integers k, m we shall denote by M(k,m) the set of all complex
matrices α = [αi,j ] i=1,...,k

j=1,...,m

with k rows and m columns. Since M(k,m) can be

identified with Ckm, then M(k,m) is an algebraic variety. For any α ∈ M(k,m),
we shall also denote by α the linear mapping of Cm into Ck defined by α. If
k = m and α is invertible, then α is called a linear change of coordinates in Ck.

Proposition 3. Let X be an irreducible algebraic variety over C and f =
(f1, ..., fm) : X → Cm, m ≥ 2, be a regular mapping. Let 0 < k < dim f(X).
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Then the mapping τ : X ×M(k,m) → Ck ×M(k,m) of the form

τ(z, α) = (α(f(z)), α)

is primitive.

Proof. By Corollary 1, it suffices to prove this proposition in the case
k = dim f(X) − 1. Let Y ⊂ Cm be the Zariski closure of f(X). It is known
that there exists a dense subset W ⊂ M(k+1,m) such that for any β ∈ W ,
β|Y : Y → Ck+1 is proper. Moreover, for any β ∈ W there exists a dense
subset Uβ ⊂ M(k,k+1) such that for any η ∈ Uβ, η : Ck+1 → Ck restricted to
Eβ◦f is proper. Hence

U = {α ∈M(k,m) : ∃β ∈W, ∃η ∈ Uβ, α = η ◦ β}

is dense inM(k,m). By Theorem 2, for any α ∈ U the mapping α◦f is primitive.
Thus

{(ξ, α) ∈ Ck ×M(k,m) : τ−1(ξ, α) is irreducible}

is dense in Ck ×M(k,m). Hence, by Lemma 1(b), for the generic (ξ, α) ∈ Ck ×
M(k,m), the fibre τ−1(ξ, α) is irreducible. Thus the mapping τ is primitive.

In the proof of Theorem 3 we will need a lemma on a family of algebraic
sets.

We say that an algebraic set V ⊂ Ck is in general position if for any
s ∈ {1, ..., k} the projection

V 3 (ξ1, ..., ξk) 7→ (ξ1, ..., ξs−1, ξs+1, ..., ξk) ∈ Ck−1

is proper.
Take any invertible η ∈M(k,k). Put Lη : Ck ×M(k,m) → Ck ×M(k,m),

Lη(ξ, α) = (η(ξ), ηα),

where ηα denotes the multiplication of matrices. Obviously Lη is a linear
automorphism of Ck ×M(k,m).

Lemma 2. Let V  Ck ×M(k,m) be an algebraic set. If for any invertible
η ∈M(k,k) there is

Lη(V ) = V,

then for the generic α ∈M(k,m),

Vα = {ξ ∈ Ck : (ξ, α) ∈ V }

is in general position.
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Proof. Let Pk be the k-dimensional projective space over C, and H∞ =
Pk \ Ck – the hyperplane at infinity. Denote by Ps ∈ H∞, s = 1, ..., k the
points at infinity of the coordinate axes Xs = {(z1, ..., zk) ∈ Ck : z1 = . . . =
zs−1 = zs+1 = . . . = zk = 0}. It is easy to see that, if Va and Xs have no
common points at infinity for s = 1, ..., k, then Vα is in general position. Thus,
it suffices to prove that for the generic α ∈ M(k,m), Ps 6∈ (Vα) for s = 1, ..., k,
where (Vα) ⊂ Pk denotes the closure of Vα.

Let V be the closure of V in Pk(C)×M(k,m). Take an invertible η ∈M(k,k).
Let η̃ : Pk → Pk be the canonical extension of η, i.e.

η̃(z0 : ... : zk) = (z0 : η(z1, ..., zk)),

and L̃η : Pk × M(k,m) → Pk × M(k,m) be the automorphism of Pk × M(k,m)

generated by Lη, i.e.
L̃η(P, α) = (η̃(P ), ηα).

By the assumption, L̃η(V ) = V . Since V 6= Ck ×M(k,m), then

(4) V∞ = V ∩ (H∞ ×M(k,m))  (H∞ ×M(k,m)).

Moreover,

(5) L̃η(V∞) = V∞.

Let V∞,α = V∞ ∩ (H∞ × {α}). Observe that

Ws = {α ∈M(k,m) : (Ps, α) ∈ V∞,α}, s = 1, ..., k

are proper algebraic subsets of M(k,m). Indeed, take s ∈ {1, ..., k}. Obviously
Ws is an algebraic set. By (4), there exists α0 ∈ M(k,m) such that V∞,α0 6=
H∞ × {α0}. Thus there exists a point Q ∈ H∞ such that (Q,α0) 6∈ V∞,α0 .
Moreover, there exists an invertible η ∈ M(k,k) such that η̃(Q) = Ps. Hence
and from (5),

(Ps, ηα
0) = L̃η(Q,α0) 6∈ L̃η(V∞,α0) = V∞,ηα0 .

Thus ηα0 6∈Ws, i.e. Ws is a proper algebraic subset of M(k,m).
Since, for any α ∈M(k,m), ((Vα)∩H∞)×{α} ⊂ V∞,α, then from the above

there follows that for α ∈ M(k,m) \ (W1 ∪ ... ∪Ws), Ps 6∈ (Vα) for s = 1, ..., k.
This ends the proof.

Lemma 3. Let f : Cn → Cm be an open polynomial mapping. If f is totally
primitive, then the all components of f are totally primitive, too.

Proof. Let f = (f1, ..., fm) : Cn → Cm. For the simplicity of notations
we prove that f1 is totally primitive. Fix t ∈ C. Since Γt = f−1

1 (t) = f−1({t}×
Cm−1), then, by the Remmert Open Mapping Theorem, f |Γt : Γt → {t}×Cm−1

is an open mapping. So, it is dominating on each irreducible component of Γt.
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By the assumptions, for each ξ ∈ Cm−1, f−1(t, ξ) is irreducible. Hence, for
the generic ξ ∈ Cm−1, f−1(t, ξ) is contained in each irreducible component of
Γt. This implies that the intersection of the components of Γt has dimension
dimΓt. Thus Γt is irreducible.

Theorem 3. Let f : Cn → Cm, m ≥ 3, be an open polynomial mapping.
For the generic linear change of coordinates α : Cm → Cm, all components of
α ◦ f are totally primitive.

Proof. Define mappings κ : Cn × M(m,m) → Cm × M(m,m), τ : Cn ×
M(m−1,m) → Cm−1 ×M(m−1,m), by

κ(z, α) = (α(f(z)), α), τ(z, β) = (β(f(z)), β),

and projections πs : Cm → Cm−1, Πs : M(m,m) →M(m−1,m), s = 1, ...,m,
πs(ξ1, ..., ξm, ) = (ξ1, ..., ξs−1, ξs+1, ..., ξm, ),

Πs([αi,j ]i,j=1,...,m) = [αi,j ]i=1,...,s−1,s+1,...,m
j=1,...,m

.

Denote by id the identity mapping on Cn. Then the diagram

(6)

Cn ×M(m,m) κ−−−−→ Cm ×M(m,m)

(id,Πs)

y (πs,Πs)

y
Cn ×M(m−1,m) τ−−−−→ Cm−1 ×M(m−1,m)

is commutative for s = 1, ...,m. By the assumption, dim f(Cn) = m. Thus,
by Proposition 3, τ is a primitive mapping. Let V ⊂ Cm−1 ×M(m−1,m) be
the minimal algebraic set, such that for any (ξ, β) ∈ (Cm−1 ×M(m−1,m)) \ V ,
the fibre τ−1(ξ, β) is irreducible. Observe that V satisfies the assumptions
of Lemma 2. Indeed, by primitivity of τ , V is a proper algebraic subset of
Cm−1 ×M(m−1,m). Take any invertible η ∈M(m−1,m−1). Let us observe that

Lη(V ) = V.

Indeed, take any (ξ, β) ∈ (Cm−1×M(m−1,m))\Lη(V ). Then (ξ, β) = Lη(ξ1, β1)
and (ξ1, β1) 6∈ V . Therefore,

τ−1(ξ, β) ={z ∈ Cn : β(f(z)) = ξ} × {β}
={z ∈ Cn : η ◦ β1(f(z)) = η(ξ1)} × {β}
={z ∈ Cn : β1(f(z)) = ξ1} × {β}

is irreducible, because

τ−1(ξ1, β1) = {z ∈ Cn : β1(f(z)) = ξ1} × {β1}
is irreducible. Hence, by definition of V , V ⊂ Lη(V ). Since Lη is an automor-
phism, then Lη(V ) = V . So, by Lemma 2, there exists a Zariski open subset
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U ⊂M(m−1,m) such that for each β ∈ U , the set Vβ = {ξ ∈ Cm−1 : (ξ, β) ∈ V }
is in general position in Cm−1.

From the above, the set W =
⋂m

s=1 Π−1
s (U) is a nonempty Zariski open

subset of M(m,m). Thus the set D of all invertible α ∈ W is also a nonempty
Zariski open subset of M(m,m). Fix any α ∈ D and let

α ◦ f = (f̃1, ..., f̃m).

Take any i ∈ {1, ...,m}. Since m ≥ 3, then there exist j1, j2 ∈ {1, ...,m},
j1 6= j2 such that i ∈ {1, ...,m} \ {j1, j2}. Without loss of generality we
may assume that i ∈ {1, ...,m − 2}. To prove that f̃i is totally primitive, by
Lemma 3, it suffices to show that the mapping

(f̃1, ..., f̃m−2) : Cn → Cm−2

is totally primitive. Take ξ ∈ Cm−2. Then

Γξ = (f̃1, ..., f̃m−2)−1(ξ) = (f̃1, ..., f̃m−1)−1({ξ} × C).

By the Remmert Open Mapping Theorem,

(f̃1, ..., f̃m−1)|Γξ
: Γξ → {ξ} × C

is an open mapping. Thus, it is dominating on each irreducible component
of Γξ. By the choice of α, β = Πm(α) ∈ U . By the definition of U , Vβ is in
general position, thus, for the generic t ∈ C, (ξ, t, β) 6∈ V . Moreover, by (6),
for any z ∈ Cn,

((f̃1, ..., f̃m−1)(z), β) = (πm,Πm) ◦ κ(z, α) = τ(z, β).

Thus, for the generic t ∈ C,

(f̃1, ..., f̃m−1)−1(ξ, t)× {β} = τ−1(ξ, t, β)

is irreducible. Hence, for the generic t ∈ C, the fibre (f̃1, ..., f̃m−1)−1(ξ, t) is
irreducible, and, consequently, is contained in each irreducible component of
Γξ. This implies that the intersection of the components of Γξ has dimension
dimΓξ. Thus Γξ is irreducible. This proves Theorem 3.

Remarks. 1. The above theorem does not hold for m = 2. A simple
example is the mapping: f : C2 → C2, f(x1, x2) = (x2

1, x
2
2).

2. The assumption of openness of f in the theorem is essential and cannot
be replaced by the weaker one that f is dominating. An example: f : Cn → Cn,
f(x1, ..., xn) = (x1 . . . xn, x2 . . . xn, . . . , xn−1xn, xn).

3. From the proof it follows that for any 1 ≤ k ≤ m − 2 and ξ ∈ Ck the
fibre (f̃i1 , . . . , f̃ik)−1(ξ), 1 ≤ i1 < . . . < ik ≤ m, is irreducible. It is not true for
k = m−1 as shown by the example: f : Cm → Cm, f(x1, ..., xm) = (x2

1, ..., x
2
m).

4. Theorem 3 really is a generalization of the Kaliman Theorem, because
every polynomial mapping with non-zero constant jacobian is open.
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Corollary 2. Let f : Cn → Cm, m ≥ 3, be an open polynomial mapping.
For the generic linear change of coordinates α : Cm → Cm, where α ∈M(m,m),
and for any component f̃j of the mapping α ◦ f ,

f̃j − t

is an irreducible polynomial in C[x1, ..., xn] for any t ∈ C.

Proof. By Theorem 3, for the generic α ∈ M(m,m), any component of
α ◦ f is totally primitive. Fix such α. Suppose to the contrary that there
exist a component f̃j of α ◦ f and t0 ∈ C such that the polynomial f̃j − t0 is
reducible. Since f̃−1(t0) is an irreducible algebraic set and f̃ − t0 is a reducible
polynomial, then there exist a polynomial g ∈ C[x1, ..., xn] and k > 1 such that
fj − t0 = gk. Thus, for any t 6= 0, fj − t0 − t = (g − ε1) . . . (g − εk), where εi,
i = 1, ..., k are all k-th roots of t. Thus f−1

j (t0 + t) is a reducible algebraic set
for t 6= 0. This is impossible.

Corollary 3. Let f ∈ C[x1, ..., xn], n ≥ 3. If f is monic with respect to
x1, then for the generic (α, β) ∈ C2,

f + αx2 + βx3 − t

is an irreducible polynomial for any t ∈ C.

Proof. If deg f = 0, then the assertion is obvious. Let deg f > 0. Since
f is monic with respect to x1, then for any (t1, t2, t3) ∈ C3, the set

{z = (z1, ..., zn) ∈ Cn : f(z) = t1, z2 = t2, z3 = t3}
has dimension n− 3. Thus, by the Remmert Open Mapping Theorem,
(f, x2, x3) : Cn → C3 is an open mapping. Hence, by Theorem 3, the assertion
follows.

Analogously to the above we obtain

Corollary 4. Let f ∈ C[x1, ..., xn], n ≥ 3 be a nonconstant polynomial.
If f is monic with respect to x1, and g ∈ C[x2], h ∈ C[x3] are nonconstant
polynomials, then for the generic (α, β) ∈ C2,

f + αg + βh− t

is an irreducible polynomial for any t ∈ C.
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