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FORMULAE FOR THE SINGULARITIES AT INFINITY OF

PLANE ALGEBRAIC CURVES

by Janusz Gwoździewicz and Arkadiusz Płoski¶

Abstract. This paper collects together formulae concerning singularities
at infinity of plane algebraic curves. For every polynomial f : C2 → C with
isolated critical points we consider the well known topological invariants
µ(f) (the global Milnor number) and λ(f) (the sum of all the “jumps” in
the Milnor number at infinity). We prove new estimations for µ(f) + λ(f)
and show that the number of critical values at infinity of f is less than or
equal to ((d−1)2−µ(f)−λ(f))/d where d is the degree of f . We give also
some estimations for the Łojasiewicz exponent at infinity.

Introduction. The aim of this paper is to present some old and new results
concerning the invariants at infinity of plane algebraic curves. Our intention
is to complete the collection of formulae given by Pham in the appendix to
his article [34]. We base our considerations on the properties of intersection
numbers (see [6, Appendix D.3]) and on a variant of the Riemann-Hurwitz
formula.

If f , g ∈ C[X, Y ] and p = (a, b) ∈ C2 then (f, g)p = dimCOp/(f, g) where
Op is the local ring of C2 at p and (f, g) is the ideal generated by f and g in Op.
Let (f, g)C2 =

∑
p∈C2(f, g)p. Then (f, g)C2 < +∞ if and only if the system of

equations f = g = 0 has finite number of solutions in C2. We put µp(f) =( ∂f
∂X , ∂f

∂Y

)
p
, rp(f) = the number of irreducible factors of f(a + X, b + Y ) in the

ring of formal power series C[[X, Y ]], and ordp f = inf{k ∈ N : dkf(p) 6= 0}.
Let us recall Teissier’s lemma: (f, ∂f

∂Y )p = µp(f) + (f,X − a)p− 1 for every
point p = (a, b) of the reduced curve f(X, Y ) = 0 such that the line X = a
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intersects the curve in a finite number of points. This is the two dimensional
case of a formula due to Teissier (see [38, Chap. II, Theorem 5] or [39, Chap. II,
Proposition 1.2]). Note here that the expression (f, ∂f

∂Y )p − (f,X − a)p + 1
appears in many classical texts (see for example [27, Chap. X, p. 181] where a
notion equivalent to the Milnor number of a plane branch is introduced).

In Section 1, a projective version of Teissier’s lemma enables us to give very
simple proofs of Plücker’s and Noether’s formulae and of the formula due to
Krasiński (see [30, Chap. I, Theorem 6.4]) for the degree of the discriminant.

In Section 2 we consider polynomial functions on affine algebraic curves
and introduce some notions which are useful later.

Section 3 is central to this paper; we give a global version of Teissier’s
lemma (Theorem 3.3) and present some applications. It turns out that the
well-known invariants µ(f) (the total Milnor number) and λ(f) (the jump of
Milnor numbers at infinity) (see [7], [11], [17]) of a polynomial f : C2 → C with
a finite number of critical points can be described in terms of the restriction
of f to the generic polar ∂f

∂Y = 0. This permits us to give new estimations for
µ(f) + λ(f) and for the number of critical values at infinity of a polynomial f
(Theorems 3.4, 3.5).

In Section 4 we present new proofs of well-known formulae due to different
authors. In particular we give a simple proof of the description of the Euler
characteristic of the fiber f−1(t) due to Suzuki [36], [37] and Gavrilov [17],
[18].

We end the paper with some estimations of the Łojasiewicz exponent (Theo-
rem 5.2) and open questions (Section 6). Earlier versions of this paper included
results of polynomials without critical points; these are to appear in [22]

1. Projective Teissier’s lemma, Applications. If C ⊂ P2(C) is a (re-
duced) projective plane curve then for every p ∈ C we put µp(C) = the Mil-
nor number of C at p, rp(C) = the number of branches of C centered ar p,
ordp(C) = the order of C at p.

If we choose a local reduced equation f(X, Y ) = 0 of C, where f ∈ C[X, Y ]
is a polynomial in affine coordinates X, Y , then µp(C) = µp(f), rp(C) = rp(f)
and ordp(C) = ordp f .

If C, D are two projective curves (possibly with multiple components) then
we denote by (C,D)p the intersection multiplicity of C, D at p. If f(X, Y ) = 0
and g(X, Y ) = 0 are local equations of C and D respectively in affine coordi-
nates X, Y then (C,D)p = (f, g)p.

Let C ⊂ P2(C) be a reduced projective curve and let q = (q0:q1:q2) ∈ P2(C).
If F (X, Y, Z) = 0 is the minimal equation of C and q0

∂F
∂X + q1

∂F
∂Y + q2

∂F
∂Z 6= 0

in C[X, Y, Z] then the polar ∇qC is defined to be the curve (possibly with
multiple components) given by the equation q0

∂F
∂X + q1

∂F
∂Y + q2

∂F
∂Z = 0. Recall
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that the notion of the polar is projectively invariant. The following projective
version of Teissier’s lemma is basic for us.

Lemma 1.1. For every p ∈ C, p 6= q

(1.1) (C,∇qC)p = µp(C) + (C, qp)p − 1

where qp is the line passing through q and p.

Proof. We choose the coordinates so that p = (0:0:1) and q = (0:1:0).
Then (1.1) reduces to Teissier’s local formula:

(
f, ∂f

∂Y

)
0
=

(
∂f
∂X , ∂f

∂Y

)
0
+(f,X)0−

1.

Let C be a reduced projective curve of degree d and L be a line such
that L 6⊂ C. We put ε(C,L) =

∑
p∈C∩L

(
(C,L)p − ordp C

)
and call ε(C,L)

the multiplicity of the tangent L to C. Note that ε(C,L) > 0 iff there is a
point p ∈ C such that L is a tangent to C at p. Let q /∈ C. If L is a tangent to C
at p passing through q then ε(C,L) =

∑(
(C,∇qC)p − (µp(C) + ordp(C)− 1)

)
the sum being over all p ∈ C ∩L by the projective version of Teissier’s lemma.
Applying Bezout’s theorem to the curves C and ∇qC, we get

Plücker’s formula. The number of tangents to C passing through q is
equal to

d(d− 1)−
∑
p∈C

(µp(C) + ordp(C)− 1).

The above formulation of Plücker’s formula and the generalization to hy-
persurfaces are due to Teissier [40, Appendix 2]. Another application of 1.1 is
the following

Max Noether’s formula. The Euler characteristic χ(C) of the curve
C ⊂ P2(C) of degree d > 0 is equal to

(1.2) χ(C) = −d(d− 3) +
∑
p∈C

µp(C).

Proof. Let q /∈ C and let us identify the pencil of lines through q with the
projective line P(C). Let πq : C → P(C) be given by the formula πq(p) = qp.
It is easy to check that multp πq = (C, qp)p and deg πq = d. Then by the
Riemann–Hurwitz formula (cf. Appendix A.3) we get χ(C) = dχ(P2(C)) −∑

p∈C((C, qp)p−1) = 2d−
∑

p∈C((C,∇qC)p−µp(C)) = −d(d−3)+
∑

p∈C µp(C)
by (1.1) and Bezout’s theorem applied to C and ∇qC.

Corollary 1.2. Let ν : C̃ → C be the normalization of the curve C. Then
χ(C̃) = −d(d− 3) +

∑
p∈C(µp(C) + rp(C)− 1). The genus g of an irreducible

curve C satisfies 2g = (d− 1)(d− 2)−
∑

p∈C(µp(C) + rp(C)− 1).
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Proof. We have χ(C̃) = χ(C) +
∑

p∈C(rp(C)− 1) (Appendix A.2) hence
the formula for χ(C̃) follows from (1.2). If C is irreducible, we get the formula
for g by using the relation χ((C̃) = 2− 2g.

The classical version of Max Noether’s formula gives the genus of C̃ in
terms of infinitely near points ([32], [5]). Formula (1.2) appears in [16] and
in [25] (Lemma 8).

We end this section by proving a formula for the degree of the discriminant
due to Krasiński [30, Theorem 6.4]. Let f(X, Y ) ∈ C[X, Y ] be a reduced
(without multiple factors) polynomial such that degY f = deg f = d > 0 and
let C be the projective closure of the affine curve f(X, Y ) = 0. We put C∞ =
the set of points at infinity of C and c = #C∞

Krasiński’s formula. Let ∆(X) = discY f(X, Y ) be the Y –discriminant
of the polynomial f . Then

deg ∆(X) = d(d− 2) + c−
∑

p∈C∞

µp(C).

Proof. Let F (X, Y, Z) be the homogeneous polynomial corresponding to
f(X, Y ). Then ∂F

∂Y corresponds to ∂f
∂Y , because we have assumed degY f =

deg f . Let q = (0:1:0). Then C is given by F (X, Y, Z) = 0 and ∇qC by ∂F
∂Y = 0.

By a classical formula (see [45], p. 111) we have deg ∆(X) = deg ResY (f, ∂f
∂Y ) =∑

p∈C2(f, ∂f
∂Y )p. Consequently

deg ∆(X) =
∑

p∈C\L∞

(C,∇qC)p =
∑
p∈C

(C,∇qC)p −
∑

p∈L∞

(C,∇qC)p =

=d(d− 1)−
∑

p∈C∞

(µp(C) + (C, qp)p − 1) = d(d− 2) + c−
∑

p∈C∞

µp(C).

We have applied the projective version of Teissier’s lemma and Bezout’s
theorem to C and L∞.

2. Polynomials on affine plane curves. Let f = f(X, Y ), g = g(X, Y )
be nonconstant polynomials and suppose that g|f−1(0) has finite fibers. Then
g is nonconstant on irreducible components of f−1(0).

Let g.deg(g|f) = sup{ (f, g − t)C2 : t ∈ C } (“geometric degree of g with
respect to the curve f = 0”) and for every t ∈ C: δt(g|f) = g.deg(g|f)− (f, g−
t)C2 (“the defect of the fiber of g|{f = 0} over t ∈ C”). It is easy to see that
0 ≤ δt(g|f) ≤ g.deg(g|f) ≤ (deg f)(deg g).

Let [x] be the integral part of x ∈ R.
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Proposition 2.1. The set D = { t ∈ C : δt(g|f) > 0 } is finite, moreover,

#D ≤
[
deg f − g.deg(g|f)

deg g

]
.

The mapping f−1(0) \ g−1(D) → C \ D induced by g is proper. The set D is
the smallest set with this property.

Proposition 2.1 is an easy consequence of two lemmas presented below.

Lemma 2.2. Suppose that f is a Y –monic polynomial and let R(X, T ) be
the Y –resultant of f(X, Y ), g(X, Y )− T . Let us write R(X, T ) = R0(T )XN +
· · ·+ RN (T ), R0(T ) 6= 0 in C[T ]. Then

(i) g.deg(g|f) = degX R(X, T ) = N ,
(ii) δt(g|f) = N − degX R(X, t),
(iii) deg R0(T ) ≤

[
deg f − N

deg g

]
.

Proof. Properties (i) and (ii)follow from the classical formula degXR(X, t) =
(f, g − t)C2 (cf. [45], p. 111) and from the definitions given above. In order
to check the estimation for deg R0(T ), let us put weight X = 1, weight T =
deg g. Then by the well-known property of the resultant, weight R(X, T ) ≤
(deg f)(deg g) and consequently weight R0(T )XN ≤ (deg f)(deg g), that is
weight R0(T )≤(deg f)(deg g)−N . But weight R0(T )=(deg R0(T ))(weight T ) =
(deg R0(T ))(deg g) and we get deg R0(T ) ≤

[
deg f − N

deg g

]
.

Let R(X, T ) = R0(T )XN + · · · + RN (T ) ∈ C[X, T ] be a polynomial such
that N > 0 and R0(T ) 6= 0 in C[T ]. Set V = { (x, t) ∈ C2 : R(x, t) = 0 },
D = { t ∈ C : R0(t) = 0 } and let π : V → C be given by π(x, t) = t.

Lemma 2.3. The mapping V \ π−1(D) → C \ D induced by π is proper.
The set D is the smallest set with this property.

Proof. Let K be a compact subset of C. Then π−1(K) is compact if and
only if K ∩D = ∅, by continuity of roots, (see [41], Lemma 1) and the lemma
follows.

In order to give another description of the introduced notions we need a
formula for intersection multiplicity of two affine curves f(X, Y ) = 0, g(X, Y ) =
0. Let us consider the field C((X−1)) of Laurent series centered at infinity. If
φ(X) ∈ C((X−1)) then φ(X) = cnXn+· · ·+c1X+c0+c−1X

−1+· · ·+c−mX−m+
. . . . We put deg φ = sup{ j : cj 6= 0 } with the convention sup ∅ = −∞. We
have (see [1])
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Puiseux’s theorem 2.4. If f(X, Y ) ∈ C((X−1))[Y ] is a monic irreducible
in C((X−1))[Y ] polynomial of degree d then there is a Laurent series y(τ) ∈
C((τ−1)), τ a new variable such that

f(τd, Y ) =
∏
εd=1

(Y − y(ετ)) in C((τ−1))[Y ].

Now we can formulate

Zeuthen’s Rule 2.5. (For the number of intersections of affine curves)
Let f, g ∈ C[X, Y ] be coprime, f = f(X, Y ) a monic polynomial with respect
to Y. Suppose that f(X, Y ) =

∏s
i=1 fi(X, Y ) where fi(X, Y ) ∈ C((X−1))[Y ] is

irreducible of degree di. Let yi(τ) ∈ C((τ−1)) be such that fi(τdi , yi(τ)) = 0 for
i = 1, . . . , s. Then

(f, g)C2 =
s∑

i=1

deg g(τdi , yi(τ)).

Proof. We have (f, g)C2 =
∑

p∈C2(f, g)p = deg ResY (f, g), then we use
the expression of the resultant in terms of roots and Puiseux’s theorem.

With the assumptions of 2.5 we call the pairs (τdi , yi(τ)) cycles at infinity of
the curve f(X, Y ) = 0. The lemma below follows immediately from Zeuthen’s
Rule.

Lemma 2.6. Let (τdi , yi(τ)), i = 1, . . . , s be the cycles at infinity of the
curve f(X, Y ) = 0. Let I+ (resp. I0, I−) be the set of all i ∈ {1, . . . , s} such
that deg g(τdi , yi(τ)) > 0 (resp. = 0, < 0). For every i ∈ I0 we put ti = the
unique non–zero complex number such that deg(g(τdi , yi(τ))− ti) < 0. Then

(1) g.deg(g|f) =
∑

i∈I+
deg g(τdi , yi(τ)),

(2) δt(g|f) = 0 if t /∈ {ti}i∈I0

⋃
{0},

(3) δ0(g|f) = −
∑

i∈I−
deg g(τdi , yi(τ)),

(4) if t ∈ {ti}i∈I0 then δt(g|f) = −
∑

deg(g(τdj , yj(τ)) − tj) the sum being
over all j ∈ I0 such that tj = t.

In the sequel we denote δ(g|f) =
∑

t∈C δt(g|f).
Let C((X−1))∗ =

⋃
n≥1 C((X−1/n)) be the field of Puiseux series “centered

at infinity”. From Puiseux’s theorem it follows that C((X−1))∗ is an alge-
braically closed field. We extend the notion of degree to the field of Puiseux
series in a natural way. Then −deg is a valuation of C((X−1))∗. The following
version of Lemma 2.6 enables us to calculate g.deg(g|f) and δ(g|f) without
using the resultant.

Lemma 2.6’. Let Yj(X), j = 1, . . . , d be the roots of f(X, Y ) (Y –monic
polynomial) counted with multiplicities. Let J+ (resp. J0, J−) be the set of all
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j ∈ {1, . . . , d} such that deg g(X, Yj(X)) > 0 (resp. = 0, < 0). For every j ∈ J0

we put tj = the unique nonzero complex number such that deg(g(X, Yj(X)) −
tj) < 0. Then

(1) g.deg(g|f) =
∑

j∈J+
deg g(X, Yj(X)),

(2) δt(g|f) = 0 if t /∈ {tj}j∈J0 ∪ {0},
(3) δ0(g|f) = −

∑
j∈J−

deg g(X, Yj(X)),
(4) if t ∈ {ti}i∈J0 then δt(g|f) = −

∑
deg(g(X, Yj(X)) − tj) the sum being

over all j ∈ J0 such that tj = t.

For every z = (x, y) ∈ C2 we put |z| = max(|x|, |y|). The Łojasiewicz
exponent at infinity L∞(g|f) of the polynomial function g|f−1(0) is the supre-
mum of the set { θ ∈ R : ∃C,R > 0∀z ∈ f−1(0) |g(z)| ≥ C|z|θ if |z| ≥ R }.
Since g|f−1(0) has finite fibers the aforementioned set is not empty. We omit
a simple proof of the following

Lemma 2.7. Suppose that degY f = deg f = d > 0 and let (τdi , yi(τ))
(i = 1, . . . , s) be the cycles at infinity of the curve f(X, Y ) = 0. Then

L∞(g|f) =
s

min
i=1

{
1
di

deg g(τdi , yi(τ))
}

.

Note that the above formula can also be written in the following form

Lemma 2.7’. With the notations introduced above

L∞(g|f) =
d

min
j=1

{deg g(X, Yj(X)) }.

The Newton diagram at infinity ∆∞(F ) of the polynomial F (X, T ) =∑
aα,βXαT β is the convex hull of the set { (α, β) ∈ N2 : aα,β 6= 0 } ∪ {(0, 0)}.

The sides of ∆∞(F ) are the straight lines passing through successive vertices
of ∆∞(F ). The last side passes through the vertex of ∆∞(F ) lying on the
horizontal axis. Recall that the slope of the line β = λα + µ is λ. The lines
parallel to the vertical axis have the slope ∞. We put 1/∞ = 0. The follow-
ing proposition is a version of the result due to Chądzyński and Krasiński [8,
Theorem 3.1].

Proposition 2.8. Let degY f = deg f = d > 0. Consider
R(X, T ) = ResY (f(X, Y ), g(X, Y ) − T ). If θ is the slope of the last side of
∆∞(R) then

L∞(g|f) = −1
θ
.

Proof. Expressing the resultant in terms of its roots we get R(X, T ) =
(−1)d

∏d
j=1(T − g(X, Yj(X))) in C((X−1))∗[T ]. By Property B.1 (Appen-

dix B) applied to the field C((X−1))∗ with valuation −deg, we check that
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mind
j=1 deg g(X, Yj(X)) = −1/θ. Now Proposition 2.8 follows from Lemma 2.7’.

Remark to proposition 2.8. Write R(X, T ) = R0(T )XN +· · ·+RN (T ),
R0(T ) 6= 0. Then:

θ = −maxN
j=1

deg Rj

j if R0(T ) = const,
θ = ∞ if R0(0) 6= 0 and R0(T ) 6= const,
θ = minr

j=0
ord0(Rj)
r+1−j if R0(0) = · · · = Rr(0) = 0 and Rr+1(0) 6= 0.

Now we are able to give some estimations of the Łojasiewicz exponent.

Theorem 2.9. With the notation introduced above:
(i) L∞(g|f) > 0 if and only if g|f−1(0) is proper. Moreover L∞(g|f) ≥

1/ deg f . If the curve f(X, Y ) = 0 has exactly one cycle at infinity then
L∞(g|f) = (f, g)C2/ deg f .

(ii) L∞(g|f) < 0 if and only if δ0(g|f) > 0. If L∞(g|f) < 0 then deg f −
g.deg(g|f)

deg g ≥ 1 and −δ0(g|f) ≤ L∞(g|f) ≤ −δ0(g|f)
[
deg f − g.deg(g|f)

deg g

]−1
.

(iii) L∞(g|f) is a rational number. If L∞(g|f) = p/q with coprime integers
then q ≤ deg f . If L∞(g|f) < 0 then deg f > 1 and q ≤ deg f − 1.

Proof. Part (i) follows immediately from 2.7, 2.6 and 2.1. The inequal-
ity L∞(g|f) < 0 is equivalent to δ0(g|f) > 0 by 2.7 and 2.6. Moreover
L∞(g|f) ≥ −δ0(g|f). The estimation deg f− g.deg(g|f)

deg g ≥ 1 follows from Proposi-
tion 2.1. To get the upper bound for L∞(g|f), consider the resultant R(X, T ) =
ResY (f(X, Y ), g(X, Y ) − T ) and write R(X, T ) = R0(T )XN + · · · + RN (T ),
R0(T ) 6= 0. By Lemma 2.2 we have g.deg(g|f) = degX R(X, T ) = N ,

(b) δ0(g|f) = N − degX R(X, 0),
(c) deg R0(T ) ≤

[
deg f − N

deg g

]
.

Let ∆∞(R) be the Newton polygon at infinity of R(X, T ). The points
(degX R(X, 0), 0) and (N,deg R0(T )) are vertices of ∆∞(R). Since the last side
of ∆∞(R) passes through (degX R(X, 0), 0), its slope θ is less than or equal to
deg R0(T )/(N−degX R(X, 0)). Hence by (a), (b) and (c) θ ≤ deg R0(T )/(N−
degX R(X, 0)) ≤

[
deg f − g.deg(g|f)

deg g

]
/δ0(g|f). By Proposition 2.8

L∞(g|f) =
−1
θ

≤ −δ0(g|f)
[
deg f − g.deg(g|f)

deg g

]−1

.

Part (iii) follows easily from 2.7. If L∞(g|f) < 0 then the curve f(X, Y ) = 0
has at least two cycles at infinity by (i). Therefore deg f > 1 and di < d for
all i = 1, . . . , s in the formula of Lemma 2.7. Hence q ≤ deg f − 1.
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Let us put L∞,min(g|f) = inf{L∞(g − t|f) : t ∈ C}. From this definition
and from Theorem 2.9, we get

Theorem 2.10.
(i) If g|f−1(0) is proper then L∞,min(g|f) = L∞(g|f),
(ii) L∞,min(g|f) 6= 0,
(iii) If L∞,min(g|f) < 0 then L∞,min(g|f) = min{L∞(g − t|f) : t ∈ D} and

−δmax(g|f) ≤ L∞,min(g|f) ≤ −δmax(g|f)
[
deg f − g.deg(g|f)

deg g

]−1
where

δmax(g|f) = max{δt(g|f) : t ∈ D},
(iv) L∞,min(g|f) is a rational number. If L∞,min(g|f) = p/q with coprime

integers then q ≤ deg f . If L∞,min(g|f) < 0 then q ≤ deg f − 1.

3. Global version of Teissier’s lemma, Estimations. Let f : C2 → C
be a polynomial mapping, d = deg f > 1. We assume that f has a finite number
of critical points. This means that the partial derivatives ∂f

∂X , ∂f
∂Y do not have

a common factor, that is, for all t ∈ C the polynomials f − t are reduced. We
put µt(f) =

∑
p∈f−1(t) µp(f) (the fiber Milnor number) and µ(f) =

∑
t∈C µt(f)

(the total Milnor number).
Let Ct be the projective closure of the fiber f−1(t). If F (X, Y, Z) is

the homogeneous form corresponding to f , then Ct is given by the equation
F (X, Y, Z)− tZd = 0. Let L∞ ⊂ P2(C) be the line at infinity given by Z = 0
and let (Ct)∞ = Ct ∩ L∞. Obviously (Ct)∞ = (C0)∞. In the sequel we write
C = C0 and C∞ = (C0)∞. Let µt

p = µp(Ct) for every p ∈ C∞. The following
proposition is due to Broughton [7] (see also [30] for a simple direct proof).

Proposition 3.1. There exists a family (µgen
p )p∈C∞ of nonnegative integers

such that
(1) ∀t ∈ C µt

p ≥ µgen
p ,

(2) for all but a finite number of t ∈ C: µt
p = µgen

p .

For every t ∈ C according to Broughton, we put λt(f) =
∑

p∈C∞
(µt

p−µgen
p )

and λ(f) =
∑

t∈C λt(f). Moreover we set Λ(f) = { t ∈ C : λt(f) 6= 0 }. We call
every element of Λ(f) a critical value at infinity of f . Equivalent definitions
of this notion and numerous examples are discussed in [15]. In order to give
descriptions of λt(f) and Λ(f) let us assume that degY f = deg f = d. Then
we may write

f(X, Y ) = Y d + a1(X)Y d−1 + · · ·+ ad(X).

Let ∆(X, T ) = discY (f(X, Y )− T ) = ResY (f(X, Y )− T, ∂f
∂Y ) and let us write

∆(X, T ) = ∆0(T )XN + · · ·+ ∆N (T ), ∆0(T ) 6= 0 in C[T ].
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Proposition 3.2.
(1) λt(f) = N − degX ∆(X, t),
(2) Λ(f) = { t ∈ C : ∆0(t) = 0 }.

Proof. By Krasiński’s formula we have degX ∆(X, t) = d(d − 2) + c −∑
p∈C∞

µt
p, degX ∆(X, T ) = d(d − 2) + c −

∑
p∈C∞

µgen
p . Hence follows (1).

Property (2) is an immediate consequence of (1).

The theorem below can be considered as a global version of Teissier’s lemma.
Some versions were proved in [2] (Lemma 6.1) and [3] (Proposition 2.1) but our
result gives more information. In [21] we proved a version of the theorem below
by using Viro’s method of integration [42]. This kind of results in n dimensions
has been recently obtained by topological methods in [12].

Theorem 3.3. Let f = f(X, Y ) ∈ C[X, Y ] be Y –monic polynomial,
degY f > 1, with finite number of critical points. Then the mapping f |{ ∂f

∂Y = 0}
has finite fibers and we have

(i) g.deg(f | ∂f
∂Y ) = µ(f) + δ(f | ∂f

∂Y ) + (f,X)C2 − 1,
(ii) if degY f = deg f then λt(f) = δt(f | ∂f

∂Y ) for all t ∈ C, in particular
λ(f) = δ(f | ∂f

∂Y ) and Λ(f) is the smallest set such that f |{ ∂f
∂Y = 0}

induces a proper mapping over C \ Λ(f),
(iii) if degY f = deg f then L∞( ∂f

∂X

∣∣ ∂f
∂Y ) + 1 = L∞,min(f | ∂f

∂Y ).

Note that if the mapping f |{ ∂f
∂Y = 0} is proper then we have(

f,
∂f

∂Y

)
C2 = µ(f) + (f,X)C2 − 1

which is a counterpart of Teissier’s local result:
(
f, ∂f

∂Y

)
0

= µ0(f)+(f,X)0−1.

Proof of Theorem 3.3. Let us write f(X, Y ) = Y d+a1(X)Y d−1+· · ·+
ad(X), ∂f

∂Y (X, Y ) = d
∏s

i=1 gi(X, Y ), gi = gi(X, Y ) ∈ C((X−1))[Y ] irreducible,
monic of degrees di = degY gi.

Let yi(τ) ∈ C((τ−1)) be such that gi(τdi , yi(τ)) = 0. Then by Zeuthen’s
Rule we get

(1) (f,
∂f

∂Y
)C2 =

s∑
i=1

deg f(τdi , yi(τ))

It is easy to check that the mapping f |{ ∂f
∂Y = 0} has finite fibers, conse-

quently the both sides of (1) are finite.
Let I0 = { i : deg f(τdi , yi(τ)) = 0 }, f(τdi , yi(τ)) = ti + terms of negative

degrees, ti ∈ C \ {0} for i ∈ I0.
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Obviously

(2)

{
deg f(τdi , yi(τ)) = deg ∂f

∂X (τdi , yi(τ)) + di if i /∈ I0

deg
(
f(τdi , yi(τ))− ti

)
= deg ∂f

∂X (τdi , yi(τ)) + di if i ∈ I0.

From (1) and (2) we obtain
(
f, ∂f

∂Y

)
C2 =

∑s
i=1(deg ∂f

∂X (τdi , yi(τ)) + di) −∑
i∈I0

deg
(
f(τdi , yi(τ))−ti)

)
=

( ∂f
∂X , ∂f

∂Y

)
C2+

∑s
i=1 di+

∑
t6=0 δt(f | ∂f

∂Y ) = µ(f)+
d− 1 + δ(f | ∂f

∂Y )− δ0(f | ∂f
∂Y ) by Zeuthen’s Rule and Lemma 2.6. Moreover

g.deg(f | ∂f

∂Y
) = (f,

∂f

∂Y
)C2 + δ0(f | ∂f

∂Y
) = µ(f) + δ(f | ∂f

∂Y
) + (f,X)C2 − 1

and we get (i).
By Lemma 2.2, δt(f | ∂f

∂Y ) = N − degX ∆(X, t) where N = degX ∆(X, T ).
If degY f = deg f then, by Proposition 3.2, λt(f) = N − degX ∆(X, t) and the
second part of Theorem 3.3 follows.

Using Lemma 2.7 and formulae (2) we get

L∞(
∂f

∂X

∣∣ ∂f

∂Y
) + 1 =

s
inf
i=1

{
1
di

deg
∂f

∂X
(τdi , yi(τ)) + 1

}
= inf

{
inf
i/∈I0

{ 1
di

deg f(τdi , yi(τ)) }, inf
i∈I0

{ 1
di

deg(f(τdi , yi(τ))− ti) }
}

= L∞,min(f |
∂f

∂Y
)

Corollary to Theorem 3.3. Let f = f(X, Y ) ∈ C[X, Y ] be a polyno-
mial such that degY f = deg f = d > 0. Let ∆(X) = discY f(X, Y ). Then

deg ∆(X) = µ(f) + λ∗(f) + d− 1

where λ∗(f) =
∑

t6=0 λt(f).

Proof. By Theorem 3.3 we have g.deg(f | ∂f
∂Y ) = µ(f)+λ∗(f)+δ0(f | ∂f

∂Y )+
d−1. Hence we get the corollary because deg ∆(X)=

(
f, ∂f

∂Y

)
C2 = g.deg(f | ∂f

∂Y )−
δ0(f | ∂f

∂Y ).

Theorem 3.4. Let f : C2 → C be a polynomial of degree d > 1 with a finite
number of critical points. Then µ(f) + λ(f) ≤ (d− 1)2 and

#Λ(f) ≤
[
(d− 1)2 − µ(f)− λ(f)

d

]
.
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Proof. We may assume that deg f = degY f . By 3.3 and Bezout’s theo-
rem we get µ(f) + λ(f) = g.deg(f | ∂f

∂Y )− d + 1 ≤ d(d− 1)− d + 1 = (d− 1)2.
From 3.3(ii) and 2.1 we get

#Λ(f) ≤

[
deg

∂f

∂Y
−

g.deg(f | ∂f
∂Y )

deg f

]
=

[
d− 1− µ(f) + λ(f) + d− 1

d

]
=

=
[
(d− 1)2 − µ(f)− λ(f)

d

]
.

Corollary to Theorem 3.4.
(1) µ(f) + λ(f) ≤ (d− 1)2 − d(#Λ(f)),
(2) if f has at least one critical value at infinity, then µ(f) + λ(f) ≤ (d −

1)2 − d,
(3) #Λ(f) ≤ max(1, d− 3).

Proof. Part (1) is an equivalent form of Theorem 3.4. Part (2) follows
from (1). To check (3) we may assume d > 3 (if d = 3 then λ(f) ≤ 1 and
#Λ(f) = 1, if d = 2 then Λ(f) = ∅). If λ(f) ≤ d−3 then #Λ(f) ≤ λ(f) ≤ d−3.
Suppose that λ(f) ≥ d−2. We have (d−1)2−µ(f)−λ(f)

d ≤ (d−1)2−(d−2)
d = d−3+ 3

d
and (3) follows.

Example. Let f(X, Y ) = Y ((XY − 1)2 + X2Y ). Then f is of degree 5
with two critical values at infinity. It is easy to check, by computing the Milnor
numbers at infinity, that λ0(f) = 2, λ1(f) = 1. Moreover µ(f) = 0.

Question: Is the bound for #Λ(f), obtained above, optimal for d > 5?
We complete above estimations by

Theorem 3.5. Let f : C2 → C be a polynomial with a finite number of
critical points of degree d > 1 with c points at infinity. Then

(i) (i) µ(f) + λ(f) ≥ d(c− 2) + 1,
(ii) (ii) #Λ(f) ≤ d− c.

Note that the projective degeneracy at infinity of f introduced in [31] is
equal to d − c and estimation (ii) is Theorem 2.4 of [31]. We restrict our
attention to polynomials with a finite number of critical points, however an
easy modification of our arguments gives (ii) for all polynomials, as in [31].

Proof of Theorem 3.5. It is easy to see that Part (ii) follows from The-
orem 3.4 and from Part (i). To prove Part (i) we may assume that degY f =
deg f . Thus we can write f(X, Y ) = Y d + a1(X)Y d−1 + · · · + ad(X) =∏d

j=1(Y − Yj(X)) in C((X−1))∗[Y ] and ∂f
∂Y = d

∏d−1
k=1(Y − Zk(X)).
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Let (1:mi:0), i = 1, . . . , c, be the points at infinity of the curve f(X, Y ) =
0. We may assume that Yj(X) = mjX + terms of degree less than 1 for
j = 1, . . . , c. Therefore

* deg(Yi(X)− Yj(X)) = 1 for 1 ≤ i < j ≤ c,
** for every k ∈ {1, . . . , d} there is a unique i ∈ {1, . . . , c} such that

deg(Yk(X)− Yi(X)) < 1.
By Property B.4 (Appendix B) applied to the field C((X−1))∗ with valua-

tion −deg, we get

(1) #{ k ∈ {1, . . . , d−1} : deg(Zk(X)−Yi(X)) ≥ 1 for all i=1, . . . , d } = c−1

On the other hand, by Lemma 2.6’

(2) g.deg(f |fY ) =
∑
j∈J+

deg f(X, Zj(X)).

Using (1) we check that deg f(X, Zj(X)) =
∑d

i=1 deg(Zj(X)− Yi(X)) ≥ d
for exactly c− 1 values of j ∈ {1, . . . , d− 1}. Therefore g.deg(f |fY ) ≥ (c− 1)d
by (2). Hence and from Theorem 3.3 we obtain µ(f) + λ(f) = g.deg(f |fY ) −
d + 1 ≥ d(c− 2) + 1.

Remark to Theorem 3.5. If f has at least one critical value at infinity
and µ(f)+λ(f) = (d−1)2−d then the curve f = 0 has d−1 points at infinity.

Proof. With the notation introduced above we have∑
j∈J+

deg f(X, Zj(X)) = g.deg(f |fY ) = µ(f) + λ(f) + d − 1 = (d − 2)d and
#J+ ≤ d − 2. Thus #J+ = d − 2 and deg f(X, Zj(X)) = d for all j ∈ J+.
Therefore c− 1 = #J+ = d− 2.

Examples.
1. Let f(X, Y ) = Y d + Xc−1Y d−c+1 + Y , 1 < c ≤ d. Then f is of degree d

with c points at infinity and µ(f)+λ(f) = d(c−2)+1. Thus the inequality 3.5(i)
is optimal.

Indeed, let ∂f
∂Y = dY d−1 + (d− c + 1)Xc−1Y d−c + 1 = d

∏d−1
j=1(Y − zj(X))

in C((X−1))∗[Y ]. Using the Newton polygon (appendix B) we find that c − 1
roots of ∂f

∂Y are of degree 1 and d − c roots are of degree −(c − 1)/(d − c),
say deg z1(X) = · · · = deg zc−1(X) = 1 and deg zc(X) = · · · = deg zd−1(X) =
−(c−1)/(d− c). It is easy to check that deg f(X, zj(X)) = d for j = 1, . . . , c−
1 and deg f(X, zj(X)) < 0 for j = c, . . . , d − 1. Therefore g.deg(f | ∂f

∂Y ) =∑c−1
j=1 deg f(X, zj(X)) = d(c−1) and µ(f)+λ(f) = d(c−2)+1 by Theorem 3.3.

Moreover, Λ(f) = {0}.

2. Let f(X, Y ) = Y d +Xd−2Y 2 +Y , d > 2. Here µ(f)+λ(f) = (d−1)2−d
and Λ(f) = {0}. This example shows that the inequality µ(f) + λ(f) ≤
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(d − 1)2 − d is optimal in the class of polynomials having at least one critical
value at infinity.

Now, we give a global counterpart of the local formula (f, ∂(f,g)
∂(X,Y ))p =

µp(f) + (f, g)p − 1 (see for example [35, Proposition 4.1]). In the case of
meromorphic curves a formula for the number of intersections of the curves
f = 0 and ∂(f,g)

∂(X,Y ) = 0 was given by Assi [4]. The following version of Assi’s
result was found independently by Cassou-Nogués and Maugendre [14], and by
the authors.

Proposition 3.6. Let f : C2 → C be a polynomial with a finite number
of critical points and let g : C2 → C be a polynomial such that the mapping
g|f−1(0) has finite fibers. Put J = ∂f

∂X
∂g
∂Y − ∂f

∂Y
∂g
∂X . Then

(f, J)C2 + δ(g|f) = µ(f) + λ∗(f) + g.deg(g|f)− 1.

Proof. Let (τdi , yi(τ)), i = 1, . . . , s be the cycles at infinity of the curve
f(X, Y ) = 0 (we assume degY f = deg f = d). Then we have

∂f

∂X
(τdi , yi(τ))diτ

di−1 +
∂f

∂Y
(τdi , yi(τ))y′i(τ) = 0

∂g

∂X
(τdi , yi(τ))diτ

di−1 +
∂g

∂Y
(τdi , yi(τ))y′i(τ) =

d

dτ
g(τdi , yi(τ)).

By Cramer’s identities we get

diτ
di−1J(τdi , yi(τ)) =

(
− d

dτ
g(τdi , yi(τ))

) ∂f

∂Y
(τdi , yi(τ))

hence

(1) deg J(τdi , yi(τ)) + di − 1 = deg
d

dτ
g(τdi , yi(τ)) + deg

∂f

∂Y
(τdi , yi(τ)).

From (1) we get, by Zeuthen’s Rule,

(2) (f, J)C2 + d =
s∑

i=1

[deg
d

dτ
g(τdi , yi(τ)) + 1] +

(
f,

∂f

∂Y

)
C2 .

Let I0 = { i : deg g(τdi , yi(τ)) = 0 } and let us write g(τdi , yi(τ)) =
ti+ terms of negative degrees, ti ∈ C \ {0} for i ∈ I0. We have

(3)

{
deg d

dτ g(τdi , yi(τ)) = deg g(τdi , yi(τ))− 1 if i /∈ I0

deg d
dτ g(τdi , yi(τ)) = deg(g(τdi , yi(τ))− ti)− 1 if i ∈ I0.



123

Using (3) we obtain
s∑

i=1

[deg
d

dτ
g(τdi , yi(τ)) + 1]

=
∑
i/∈I0

deg g(τdi , yi(τ)) +
∑
i∈I0

deg(g(τdi , yi(τ))− ti) =

=
s∑

i=1

deg g(τdi , yi(τ)) +
∑
i∈I0

deg(g(τdi , yi(τ))− ti)

=(f, g)C2 −
∑
t6=0

δt(g|f)

(4)

From (2) and (4) we get

(5) (f, J)C2 + d = (f, g)C2 −
∑
t6=0

δt(g|f) +
(
f,

∂f

∂Y

)
C2 .

By Corollary to Theorem 3.3
(
f, ∂f

∂Y

)
C2 = µ(f) + λ∗(f) + d − 1, consequently

(f, J)C2 +
∑

t6=0 δt(g|f) = (f, g)C2 +µ(f)+λ∗(f)−1 but (f, g)C2 = g.deg(g|f)−
δ0(g|f) and Proposition 3.6 follows.

Remark. If δt(g|f) = 0 for t 6= 0 then (5) reduces to Assi’s formula

(f, J)C2 + d = (f, g)C2 +
(
f,

∂f

∂Y

)
C2 .

4. The Euler characteristic of the fibers. Recall that f : C2 → C
is a polynomial with a finite number of critical points. Let us begin with an
elementary proof of a formula due to Cassou–Noguès [11, Proposition 12].

Cassou–Noguès’ formula. Let f = f(X, Y ) be a polynomial of degree
d > 0. With the notation introduced above,

d(d− 3) + c + 1 =
∑

p∈C∞

µgen
p + µ(f) + λ(f).

Proof. We may assume that degY f = deg f . Let ∆ = discY f . By
Krasiński’s formula for the degree of the discriminant, we have

deg ∆ = d(d− 2) + c−
∑

p∈C∞

µp(C).

On the other hand, by Corollary to Theorem 3.3

deg ∆ = µ(f) +
∑
t6=0

λt(f) + d− 1

and Cassou–Noguès’ formula follows.
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Now we are able to prove the formula for the Euler characteristic of the
fibers f−1(t). Recall that Ct is the projective closure of f−1(t). The following
lemma is well-known (see for example [26], Lemma 2.3).

Lemma 4.1. If F is a finite subset of a curve C ⊂ P2(C) then χ(C \ F ) =
χ(C)−#F .

In particular, the Euler characteristic of an affine curve is equal to the Euler
characteristic of its projective closure minus the number of points at infinity. In
[37] (Proposition 2, p. 533) Suzuki gave a formula for the Euler characteristic
of the fibers of a primitive polynomial. In the case of polynomials with a
finite number of critical points, Suzuki’s result was improved by Gavrilov ([17],
Theorem 3.3 and [18], Theorem 2.2).

Suzuki–Gavrilov’s formula. If f : C2 → C is a polynomial with iso-
lated critical points then the Euler characteristic of the fiber f−1(t) is given
by

χ(f−1(t)) = 1− µ(f)− λ(f) + µt(f) + λt(f).

Proof. By Max Noether’s formula

χ(Ct) = −d(d− 3) + µt(f) +
∑

p∈C∞

µt
p = −d(d− 3) + µt(f) + λt(f) +

∑
p∈C∞

µgen
p .

By Cassou-Noguès’ formula∑
p∈C∞

µgen
p = d(d− 3) + c + 1− µ(f)− λ(f).

Then we get χ(Ct) = c + 1− µ(f)− λ(f) + µt(f) + λt(f) and, by the lemma,
χ(f−1(t)) = 1− µ(f)− λ(f) + µt(f) + λt(f).

Let f : C2 → C be a polynomial with a finite number of critical points.
The number t ∈ C is a typical value of f if µt(f) = λt(f) = 0. It is an atypical
value if µt(f) > 0 or λt(f) > 0.

Corollary 4.2. The value t ∈ C is typical iff χ(f−1(t)) = 1−µ(f)−λ(f).
If the value t ∈ C is atypical then χ(f−1(t)) > 1− µ(f)− λ(f).

According to [25] the set of atypical values is the smallest set A such that
the mapping C2 \ f−1(A) → C \ A induced by f is a smooth locally trivial
fibration.

Assume that the polynomial f is irreducible and let Γ = f−1(0). Let us
put µ∗(f) =

∑
t6=0 µt(f). The following result was proved in [2].
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Abhyankar–Sathaye’s formula. Let γ be the genus of the Riemann
surface corresponding to Γ. Then

2γ +
∑
p∈Γ

(rp(f)− 1) + (r∞(f)− 1) = µ∗(f) + λ∗(f)

where r∞(f) is the number of branches at infinity of Γ.

Proof. Let C be the projective closure of Γ. Then χ(C) = c + χ(Γ) =
c+1−µ∗(f)−λ∗(f) by Gavrilov’s formula and χ(C̃) = χ(C)+

∑
p∈C(rp−1) =

c + 1 − µ∗(f) − λ∗(f) +
∑

p∈C(rp − 1) = c + 1 − µ∗(f) − λ∗(f) +
∑

p∈Γ(rp −
1) +

∑
p∈C∞

rp − c = 1− µ∗(f)− λ∗(f) +
∑

p∈Γ(rp − 1) + r∞(f).
On the other hand, χ(C̃) = 2−2γ and Abhyankar-Sathaye’s formula follows.

Remark 4.3. Let Γ ⊂ C2 be an affine irreducible curve. Then it is easy to
check that χ(Γ) = 2−2γ−

∑
p∈Γ(rp(f)−1)−r∞(f) (see [26], Proposition 2.4).

5. The Łojasiewicz exponent and critical values at infinity. Let
f : C2 → C be a polynomial with a finite number of critical points. Put
grad f = ( ∂f

∂X , ∂f
∂Y ). By the Łojasiewicz exponent at infinity we mean L∞(f) =

sup{ θ ∈ R : ∃C,R > 0∀z ∈ C2 | grad f(z)| ≥ C|z|θ for |z| ≥ R }. The
following lemma is implicit in [24] and [13].

Lemma 5.1. Let degX f = degY f = deg f > 1. Then

L∞(f) = min{L∞,min(f | ∂f

∂X
),L∞,min(f | ∂f

∂Y
) } − 1.

Proof. By a theorem due to Chądzyński and Krasiński (see [9], Theo-
rem 1), we get

L∞(f) = min{L∞(
∂f

∂Y
| ∂f

∂X
),L∞(

∂f

∂X
| ∂f

∂Y
) }.

Then we use Theorem 3.3 (iii).

Our main result concerning the Łojasiewicz exponent is

Theorem 5.2. Let f : C2 → C be a polynomial of degree d > 1 with a finite
number of critical points. Then

(i) if f has no critical values at infinity, then L∞(f) ≥ −1 + 1/(d− 1),
(ii) if f has at least one critical value at infinity, then −λmax(f) ≤ L∞(f)+

1 ≤ −λmax(f)
[
d− 2− µ(f)+λ(f)−1

d

]−1
where λmax(f) = max{λt(f) : t ∈

C}.



126

(iii) The Łojasiewicz exponent is a rational number; if L∞(f) = p/q with
coprime integers p, q then q ≤ d − 1. If L∞(f) < −1 then d > 2 and
q ≤ d− 2.

Proof. We may assume that degX f = degY f = d. Suppose that f has
no critical values at infinity, that is Λ(f) = ∅. Then the mappings f |{ ∂f

∂X = 0}
and f |{ ∂f

∂Y = 0} are proper by (3.3)(ii) and L∞,min(f | ∂f
∂X ), L∞,min(f | ∂f

∂Y ) ≥ 1
d−1

by Theorem 2.9(i). Part (i) of the theorem follows from Lemma 6.1.
Suppose that Λ(f) 6= ∅. By Lemma 6.1 we may assume

(1) L∞(f) = L∞,min(f |
∂f

∂Y
)− 1.

The mapping f |{ ∂f
∂Y = 0} is not proper by (3.3)(ii). Moreover, δmax(f | ∂f

∂Y ) =
λmax(f). By Theorem 2.10 we get

(2) −λmax(f) ≤ L∞,min(f |
∂f

∂Y
) ≤ −λmax(f)

[
d− 1−

g.deg(f | ∂f
∂Y )

d

]−1

and Part (ii) follows from (1), (2) and Theorem 3.3. To get Part (iii) it suffices
to use Lemma 5.1 and Theorem 2.10(iv).

Corollary to theorem 5.2. (see [24], [8]) Let f : C2 → C be a poly-
nomial with a finite number of critical points. Then f has no critical value at
infinity if and only if L∞(f) > −1.

6. More estimations, questions. To illustrate the obtained results let
us check the following

Theorem 6.1. Let f be a polynomial with a finite number of critical points
of degree d > 1 with d − 1 points at infinity. Let p be the unique point at
which the curve f = 0 intersects the line at infinity with multiplicity > 1.
Suppose that Λ(f) 6= ∅. Then f has exactly one critical value at infinity t0 and
µ(f) = d2 − 2d−µt0

p , λ(f) = µt0
p − d + 1, L∞(f) = d− 2−µt0

p where µt0
p is the

Milnor number of the curve f = t0 at p.

Proof. By theorems 3.4 and 3.5 f has exactly one critical value t0 at
infinity and µ(f) + λ(f) = d2 − 3d + 1. From Cassou–Noguès formula we
get µgen

p = d − 1. Thus λ(f) = λt0(f) = µt0
p − µgen

p = µt0
p − d + 1 and

µ(f) = d2 − 3d + 1− λ(f) = d2 − 2d− µt0
p . By Theorem 5.2 we get L∞(f) =

−λ(f)− 1 = d− 2− µt0
p .

Example. Yoshihara [44] gave an example of a rational plane curve C of
degree 6 with the unique singular point p of order 2 with two branches. Let us
take the generic line passing through p as the line at infinity. Let f = 0 be the
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affine equation of C. One checks that Λ(f) = {0} and µ0
p = 19. Then by the

above theorem λ(f) = 14 and L∞(f) = −15.

Remark 6.2. Let us keep the assumptions of 6.1 and suppose that Λ(f) =
∅. Then from the Cassou-Noguès formula we get µ(f) = d2 − 2d − µgen

p . One
can also check that L∞(f) = d− 2− µgen

p .

In the sequel we will need

Proposition 6.3. Let C be a reduced projective curve of degree d. Suppose
that m components of C pass through a point p ∈ C. Then µp(C) ≤ (d−1)(d−
2) + m− 1.

Proof. Let C1,. . . ,Cm be the irreducible components of C passing through p.
From the formula for the genus of an irreducible curve (Corollary 1.2), we get
µp(Ci) ≤ (di − 1)(di − 2) where di = deg Ci for i = 1,. . . , m. On the other
hand, by a well-known property of Milnor numbers (see [35]) we can write

µp(C) + m− 1 = µp

( m⋃
i=1

Ci

)
+ m− 1

=
m∑

i=1

µp(Ci) + 2
∑

1≤i<j≤j

(Ci, Cj)p ≤
m∑

i=1

(di − 1)(di − 2) + 2
∑

1≤i<j≤j

didj

=
( m∑

i=1

di

)2 − 3
( m∑

i=1

di

)
+ 2m ≤ d2 − 3d + 2m.

Thus we have proved µp(C) + m − 1 ≤ d2 − 3d + 2m and the proposition
follows.

Now we can prove

Proposition 6.4. Let f be a polynomial of degree d > 3 with d− 1 points
at infinity. Then µ(f) ≥ d− 3.

Proof. We may assume µ(f) < +∞. By theorem 6.1 and remark 6.2 we
can write µ(f) = d2 − 2d − µp(Ct0) for a t0 ∈ C. Since (Ct0 , P(C)∞)p = 2, at
least two components of Ct0 pass through the point p. Therefore µp(Ct0) ≤ (d−
1)(d−2)+1 by proposition 6.3 and µ(f) = d2−2d−(d−1)(d−2)−1 = d−3.

An application of 6.4 is the following

Proposition 6.5. Let f : C2 → C be a polynomial of degree d > 3 without
critical points in C2. Then the curve f = 0 has at most d−2 points at infinity.

Proof. Let f : C2 → C be a polynomial of degree d with c points at
infinity. If c = d then µ(f) = (d− 1)2 > 0. If c = d− 1 then µ(f) ≥ d− 3 > 0.
Thus if µ(f) = 0 then c ≤ d− 2.
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Question: How many points at infinity can a polynomial without critical
points of degree d > 3 have?

Proposition 6.6. If f : C2 → C is a polynomial of degree d > 3 with a
finite number of critical points then λ(f) ≤ d2 − 3d.

Proof. By Corollary to Theorem 3.4 we have µ(f) + λ(f) ≤ d2 − 3d + 1
if λ(f) 6= 0. Therefore it suffices to show that λ(f) < d2 − 3d + 1 for d > 3.

If we had λ(f) = d2 − 3d + 1 then we would get µ(f) = 0 and f would
have d − 1 points at infinity by Remark to Theorem 3.5. This contradicts
Proposition 6.5.

Using Theorem 5.2(ii) we get

Proposition 6.7. With the assumptions of 6.6: L∞(f) ≥ −d2 + 3d− 1.

Question: If d = 4 then the above estimations are optimal (take f(X, Y ) =
X4−X2Y 2+2XY −1, then λ(f) = 4 and L∞(f) = −5). What are the optimal
bounds on λ(f) and L∞(f) in the class of polynomials of degree d > 4 with a
finite number of critical points?

Appendix A. Traditionally, the Riemann-Hurwitz formula is stated for
compact Riemann surfaces. However one may observe that the classical proof
gives the following, purely topological result

A.1. Let X, Y be compact topological spaces, Y triangulable and let π :
X → Y be a continuous open surjective mapping with finite fibers. Suppose
there is a finite subset A ⊂ Y such that π : X \ π−1(A) → Y \ A is a covering
with d sheets. Then X is triangulable and

χ(X) = dχ(Y ) +
∑
y∈A

(#π−1(y)− d)

where χ(X) (resp. χ(Y )) is the Euler characteristic of X (resp. Y ).

Proof. We assume for simplicity that X and Y are of dimension 2. Let
(V,E, F ) be a triangulation of Y with the set V of vertices, the set E of edges
and the set F of faces. Suppose that A ⊂ V . Then the standard considera-
tions (see, for example [28, Appendix C]) show that there exist a triangulation
(V ′, E′, F ′) of X such that #F ′ = d(#F ), #E′ = d(#E) and V ′ = π−1(V ).
Therefore #V ′ =

∑
y∈V #π−1(y) = d(#V ) +

∑
y∈A(#π−1(y)− d) and we get

χ(X) = #V ′ − #E′ + #F ′ = d(#V − #E + #F ) +
∑

y∈A(#π−1(y) − d) =
dχ(Y ) +

∑
y∈A(#π−1(y)− d).

Let us note two useful corollaries of A.1
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A.2. Let ν : X̃ → X be the normalization of a curve X. Then

χ(X̃) = χ(X) +
∑
x∈X

(rx(X)− 1).

Proof. Here d = 1 and #ν−1(x) = rx(X) (the number of branches
through x). Then we use A.1.

Let X, Y be algebraic projective curves, Y smooth and let π : X → Y be a
regular surjective mapping with finite fibers. Then the assumptions of A.1 are
satisfied with d = deg π (the geometric degree of π) and for every x ∈ X the
multiplicity multx π is defined in such a way that

∑
x∈π−1(y) multx π = deg π

and for generic y ∈ Y multx π = 1 if x ∈ π−1(y) (see [32, Chapter 3]).

A.3. With the notation introduced above,

χ(X) = (deg π)χ(Y )−
∑
x∈X

(multx π − 1).

Proof. By A.1 we get

χ(X) = (deg π)χ(Y ) +
∑
y∈Y

(#π−1(y)− deg π)

= (deg π)χ(Y ) +
∑
y∈Y

(
∑

x∈π−1(y)

1−
∑

x∈π−1(y)

multx π)

= (deg π)χ(Y )−
∑
y∈Y

∑
x∈π−1(y)

(multx π − 1)

= (deg π)χ(Y )−
∑
x∈X

(multx π − 1).

Note that in A.3 we do not assume X to be smooth!

Appendix B. We recall here the Newton method of determining orders
of roots and the number of roots of the given order of a polynomial with coef-
ficients in a valued field. Then we use it to locate the roots of the derivative.

Let ν : K\{0} → R be a nonzero valuation of a field K. We put ν(0) = +∞
where the symbol +∞ has usual properties.

B.1. Let P (Y ) = a0Y
d + a1Y

d−1 + · · ·+ ad, a0, ad 6= 0 be a polynomial of
degree d > 0 with coefficients in K. Assume P (Y ) = a0(Y − y1) · · · (Y − yd) in
K[Y ] and suppose that ν(y1) ≤ · · · ≤ ν(yd). Let 0 = k0 < k1 < · · · < ks−1 <
ks = d and Θ1 < · · · < Θs be two sequences defined by conditions

ν(ykj+1) = · · · = ν(ykj+1
) = Θj+1

for j = 0, . . . , s− 1.
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Set Ij+1 = { k ∈ N : kj < k ≤ d, ak 6= 0 } for j = 0, . . . , s− 1. Then

(i) min
{

ν(ak)− ν(akj
)

k − kj
: k ∈ Ij+1

}
= Θj+1

and

(ii) max
{

k ∈ Ij+1 :
ν(ak)− ν(akj

)
k − kj

= Θj+1

}
= kj+1

Proof. We have ak/a0 = (−1)k(y1 · · · yk + · · · ). It is easy to see that
ν(ak/a0) ≥ ν(y1 · · · yk) with the equality for k = kj . Therefore, if ak 6= 0 and

k ≥ kj then
ν(ak)−ν(akj

)

k−kj
≥

ν(y1···yk)−ν(y1···ykj
)

k−kj
=

ν(ykj+1···yk)

k−kj
≥ Θj+1(k−kj)

k−kj
=

Θj+1 with the equality for k = kj+1. To finish the proof it suffices to observe
that ν(ykj+1 · · · yk) > Θj+1(k − kj) for k > kj+1.

The polygon with vertices (ν(akj
), d − kj) for j = 0, . . . , s is called the

Newton polygon (see [45, p.98])
Let A be a set. For any a1, . . . , ap ∈ A we denote by 〈a1, . . . , ap〉 the

sequence a1, . . . , ap regarded as unordered. From B.1 we get

B.2. Let P (Y ) = a0Y
d +a1Y

d−1 + · · ·+ad = a0
∏d

j=1(Y −yj) and P̄ (Y ) =
ā0Y

d + ā1Y
d−1 + · · · + ād = ā0

∏d
j=1(Y − ȳj) be polynomials of degree d > 0

with roots in K. Suppose that ν(ai) = ν(āi) for i = 0, . . . , d.
Then 〈ν(y1), . . . , ν(yd)〉 = 〈ν(ȳ1), . . . , ν(ȳd)〉.

The property below is a version of the Kuo–Lu lemma (see [29, Lemma 3.3]
and [20, Lemma 2.2]). In the sequel we assume that K has zero characteristic.

B.3. If P (Y ) = a0Y
d + a1Y

d−1 + · · · + ad = a0
∏d

i=1(Y − yi), a0 6= 0,
d > 1 and P ′(Y ) = da0

∏d−1
j=1(Y − zj) then 〈ν(z1 − yi), . . . , ν(zd−1 − yi)〉 =

〈ν(y1 − yi), . . . , ν(yi−1 − yi), ν(yi+1 − yi), . . . , ν(yd − yi)〉 for every i = 1, . . . , d.

Proof. Fix i = 1, . . . , d and consider the special case yi = 0. We see
that P (Y )/Y is of degree d− 1 with roots y1, . . . , yi−1, yi+1, . . . , yd. Moreover,
polynomials P (Y )/Y and P ′(Y ) satisfy the assumption of B.2. Hence we get
〈ν(z1), . . . , ν(zd−1)〉 = 〈ν(y1), . . . , ν(yi−1), ν(yi+1), . . . , ν(yd)〉 which proves B.3
in the special case.

In the general case we consider the polynomial Pi(Y ) = P (Y + yi). The
roots of Pi(Y ) are y1 − yi, . . . , yi−1 − yi, 0, yi+1 − yi, . . . , yd − yi while the roots
of P ′(Y ) are z1 − yi, . . . , zd−1 − yi. Applying the special case to Pi we get the
lemma.

We call ν(yi − yj) the order of contact of yi, yj and put by definition
sepP = inf{ ν(yi − yj) : 1 ≤ i < j ≤ d }. Then sepP = +∞ iff P has a unique
root.
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B.4. Suppose that P ′(Y ) = da0
∏d−1

j=1(Y − zj) and let c denote the maximal
number of roots such that any two have order of contact sepP . Then

#{ k ∈ {1, . . . , d− 1} : ν(zk − yi) ≤ sepP for i = 1, . . . , d } = c− 1.

Proof. We may assume that:
(i) for 1 ≤ i < j ≤ c ν(yi − yj) = sepP ,
(ii) for every k ∈ {1, . . . , d} there is an i ∈ {1, . . . , c} (necessarily unique)

such that ν(yk − yi) > sepP .
Let di = #{k : ν(yk − yi) > sepP}. We have

∑c
i=1 di = d. Let us consider

the sets Ki = {k ∈ {1, . . . , d−1} : ν(zk−yi) > sepP} for i = 1, . . . , c. From B.3
we get #Ki = di−1. Let J = {1, . . . , d−1}\ (K1∪· · ·∪Kc), then #J = c−1.
From definition of J we get:

* if k ∈ J then ν(yj − zk) ≤ sepP for j = 1 . . . , d,
** if k /∈ J then ν(yj − zk) > sepP for some j = 1 . . . , d

which ends the proof.
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