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IMPLICIT VARIATIONAL-LIKE INCLUSIONS INVOLVING
GENERAL (H, η)-MONOTONE OPERATORS

M. ALIMOHAMMADY1,∗, M. ROOHI2

Abstract. In this paper, using Lipschitz continuity of general (H, η)-monotone
operators, a type of implicit variational-like inclusion problems in uniformly
smooth Banach spaces are solved.

1. Introduction

A very powerful tool of mathematical technology is variational inequality the-
ory. In recent years, variational inequalities have been extended and generalized in
different directions, using novel and innovative techniques. Useful and important
generalizations of variational inequalities are variational and quasi-variational in-
clusions. Variational inclusion theory is a branch of applicable mathematics with
a wide range of applications in the fields of optimization, control, economics,
transportation equilibrium, engineering science, industrial, physical, regional, so-
cial, pure and applied sciences. Recently, many existence results and iterative
algorithms for various variational inequality and variational inclusion problems
have been studied. For details, one can see [1–21] and the references therein.

This paper is organized as follows. In section 2 we study the required definitions
about some generalized types of monotone operators and also some preliminary
results which will be used in other sections are collecting. Section 3 is devoted
to reviewing definition, examples and some results about the new class ”gen-
eral (H, η)-monotone operators”, the proximal mapping associated with this type
of monotone operators. Moreover, some fact about Lipschitz continuity of the
proximal mapping associated with general (H, η)-monotone operators are proved.
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Finally, in section 4, using Lipschitz continuity of general proximal mappings asso-
ciated with general (H, η)-monotone operators, a type of implicit variational-like
inclusion problems in uniformly smooth Banach spaces are solved.

2. Preliminaries

Let X be a real Banach space with dual space X∗ and let η : X×X −→ X is a
single valued mapping. η is called γ-Lipschitz continuous mapping, if there exists
some γ > 0 such that ‖η(x, y)‖ ≤ γ‖x−y‖ for all x, y ∈ X. For a set-valued map
T : X ( Y , the range of T is Range(T ) = {y ∈ Y : ∃x ∈ X, (x, y) ∈ T} and the
inverse T−1 of T is {(y, x) : (x, y) ∈ T}. We say that T is closed valued, if T (x)
is closed for all x ∈ X. For a real number c, let cT = {(x, cy) : (x, y) ∈ T}. If
S and T are any set-valued mappings, we define S + T = {(x, y + z) : (x, y) ∈
S, (x, z) ∈ T}.

Definition 2.1. A single valued map H : X −→ X∗ is said to be

(a) monotone if 〈H(x)−H(y), x− y〉 ≥ 0 for all x, y ∈ X.

(b) η-monotone if 〈H(x)−H(y), η(x, y)〉 ≥ 0 for all x, y ∈ X.

(c) strictly monotone if H is monotone and 〈H(x) − H(y), x − y〉 = 0 if and
only if x = y.

(d) strictly η-monotone if H is η-monotone and 〈H(x) −H(y), η(x, y)〉 = 0 if
and only if x = y.

(e) r-strongly monotone if there exists some constant r > 0 such that 〈H(x)−
H(y), x− y〉 ≥ r‖x− y‖2 for all x, y ∈ X.

(f) r-strongly η-monotone if there exists some constant r > 0 such that 〈H(x)−
H(y), η(x, y)〉 ≥ r‖x− y‖2 for all x, y ∈ X.

(g) δ-Lipschitz if ‖H(x)−H(y)‖ ≤ δ‖x− y‖ for all x, y ∈ X.

Definition 2.2. A set-valued map T : X ( X is said to be

(a) maximal monotone if T is monotone and (I + λT )(X) = X holds for every
λ > 0.

(b) maximal η-monotone if T is η-monotone and (I + λT )(X) = X holds for
every λ > 0, if and only if T is η-monotone and there is no other η-monotone
set-valued mapping whose graph strictly contains the graph of T [18].

Definition 2.3. [4, 5, 6, 15] A set-valued map T : X ( X∗ is said to be

(a) monotone if 〈x∗−y∗, x−y〉 ≥ 0 for all x, y ∈ X and all x∗ ∈ T (x), y∗ ∈ T (y).

(b) η-monotone if 〈x∗− y∗, η(x, y)〉 ≥ 0 for all x, y ∈ X and all x∗ ∈ T (x), y∗ ∈
T (y).

(c) r-strongly monotone if there exists some constant r > 0 such that 〈x∗ −
y∗, x− y〉 ≥ r‖x− y‖2 for all x, y ∈ X and all x∗ ∈ T (x), y∗ ∈ T (y).

(d) r-strongly η-monotone if there exists some constant r > 0 such that
〈x∗ − y∗, η(x, y)〉 ≥ r‖x− y‖2 for all x, y ∈ X and all x∗ ∈ T (x), y∗ ∈ T (y).
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The duality mapping J : X ( X∗ is defined by

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ X. The module of smoothness of X is the function ρX : [0,+∞) −→
[0,+∞) defined by

ρX(t) = sup{‖x+ y‖+ ‖x− y‖
2

− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

A Banach space X is called uniformly smooth if lim
t→0

ρX(t)
t

= 0 if and only if

there exists a constant c > 0 for which ρX(t) ≤ ct2.

Definition 2.4. A single valued map H : X −→ X is said to be k-strongly ac-
cretive if for any x, y ∈ X there exist j ∈ J(x− y) for which 〈j,H(x)−H(y)〉 ≥
k‖x− y‖2.

Xia and Huang, proving Theorem 3.4 in [18] showed the following useful in-
equality.

Proposition 2.5. Suppose that X is a uniformly smooth Banach space with
ρX(t) ≤ ct2 for some c > 0. If ψ : X −→ X is k-strongly accretive and δ-Lipschitz
continuous mapping, then ‖x− y − ψ(x)− ψ(y)‖ ≤

√
1− 2k + 64cδ2‖x− y‖.

Let P(X) be the power set of X. The function D : P(X)×P(X) −→ [0,+∞]
defined by

D(A,B) = max{sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖},

is called Hausdorff pseudo-metric. We note that, if D is restericted to closed
bounded subsets of X, then it is Hausdorff metric.

Definition 2.6. A set valued mapping M : X ( X is said to be D-Lipschitz
continuous with constant ρ, if D(M(x),M(y)) ≤ ρ‖x− y‖ for all x, y ∈ X.

3. General (H, η)-monotone operators

Definition 3.1. [1] The set-valued map T : X ( X∗ is said to be general (H, η)-
monotone operator if T is η-monotone and (H + λT )(X) = X∗ holds for every
λ > 0.

Remark 3.2. The general (H, η)-monotone operator reduces to the

(a) general H-monotone operator which is introduced in [18], if η(x, y) = x−y.
(b) (H, η)-monotone operators [7], if X is a Hilbert space.

(c) g-η-monotone mapping which is considered in [20], when X is a Hilbert
space and H = g.

(d) H-monotone operator [5], if X is a Hilbert space and η(x, y) = x− y.
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(e) maximal η-monotone mapping considered in [2, 4], when X is a Hilbert
space and H = I, the identity mapping.

Example 3.3. Let X = R and let η : R×R −→ R be defined by η(x, y) = y3−x3.
Consider the set-valued mapping T : R ( R defined by

T (x) =

 {−x− 1} x > 0
{−1, 1} x = 0
{−x+ 1} x < 0.

One can easily check that T is η-monotone and (I + λT )(R) 6= R for λ ≥ 1.
Therefore, T is not maximal η-monotone. Now, for single valued mapping H :
R −→ R defined by

H(x) =

{
x2 x ≥ 0
−x2 x < 0,

we have (H + λT )(R) = R for all λ > 0, which implies that T is general (H, η)-
monotone operator.

Example 3.4. Let X = R and let η : R×R −→ R be defined by η(x, y) = x3−y3.
Consider the set-valued mapping T : R ( R defined by T (x) = {x}. Then T is
η-monotone and (I + λT )(x) = {(1 + λ)x} and hence (I + λT )(R) = R for all
λ > 0. Therefore, T is maximal η-monotone. Now, for single valued mapping
H : R −→ R defined by H(x) = x2 we have (H + λT )(R) = [−λ2

4
,+∞) 6= R for

all λ > 0, which implies that T is not general (H, η)-monotone operator.

Theorem 3.5. [1] Suppose that H : X −→ X∗ is a strictly η-monotone mapping
and suppose that T : X ( X∗ is a general (H, η)-monotone operator. Then
(H + λT )−1 : X∗ −→ X is a single-valued operator for all λ > 0.

Based on Theorem 3.5, we can define the general proximal mapping RH,η
T,λ as

following.

Definition 3.6. [1] For a strictly η-monotone mapping H : X −→ X∗ and a
general (H, η)-monotone operator T : X ( X∗, the general proximal mapping

RH,η
T,λ : X∗ −→ X is defined by RH,η

T,λ (x∗) = (H + λT )−1(x∗).

Remark 3.7. The general proximal mapping RH,η
T,λ reduces to the

(a) proximal mapping RH
M which is introduced in [18], when T = M and

η(x, y) = x− y.

(b) resolvent operator RH,η
M,λ [7], when T = M and X is a Hilbert space.

(c) resolvent operator Rg
M,λ [20], if T = M , H = g and X is a Hilbert space.

(d) resolvent operator RH
M,λ which is introduced in [5], if X is a Hilbert space,

T = M and η(x, y) = x− y.

(e) η-proximal mapping of ϕ [3], if X is a Hilbert space and T = ∂ϕ, where ϕ :
X −→ (−∞,+∞] is a lower semicontinuous subdifferentiable proper functional.
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(f) resolvent of maximal monotone operator [19], when X is a Hilbert space,
H = I and η(x, y) = x− y.

Theorem 3.8. Suppose that η : X × X −→ X is a γ-Lipschitz continuous
mapping, H : X −→ X∗ is an r-strongly η-monotone operator and T : X ( X∗

is a general β-strongly (H, η)-monotone operator. Then the general proximal

mapping RH,η
T,λ : X∗ −→ X is a γ

r+λβ
-Lipschitz continuous operator.

Proof. For any two points x∗, y∗ ∈ X∗ with ‖RH,η
T,λ (x∗)−RH,η

T,λ (y∗)‖ 6= 0. Since

RH,η
T,λ (x∗) = (H + λT )−1(x∗) and RH,η

T,λ (y∗) = (H + λT )−1(y∗),

so

x∗ −H(RH,η
T,λ (x∗))

λ
∈ T (RH,η

T,λ (x∗)) and
y∗ −H(RH,η

T,λ (y∗))

λ
∈ T (RH,η

T,λ (y∗)).

T is a general β-strongly (H, η)-monotone operator, so

〈
x∗ −H(RH,η

T,λ (x∗))

λ
−
y∗ −H(RH,η

T,λ (y∗))

λ
, η(RH,η

T,λ (x∗), RH,η
T,λ (y∗))〉 ≥ β‖RH,η

T,λ (x∗)−RH,η
T,λ (y∗)‖2.

Therefore,

〈x∗ − y∗, η(RH,η
T,λ (x∗), RH,η

T,λ (y∗))〉 ≥ 〈 H(RH,η
T,λ (x∗))−H(RH,η

T,λ (y∗)), η(RH,η
T,λ (x∗), RH,η

T,λ (y∗))〉

+ λβ‖RH,η
T,λ (x∗)−RH,η

T,λ (y∗)‖2.

Since η : X ×X −→ X is γ-Lipschitz and H is r-strongly η-monotone,

γ‖x∗ − y∗‖‖RH,η
T,λ (x∗)−RH,η

T,λ (y∗)‖ ≥ ‖x∗ − y∗‖‖η(RH,η
T,λ (x∗), RH,η

T,λ (y∗))‖

≥ 〈x∗ − y∗, η(RH,η
T,λ (x∗), RH,η

T,λ (y∗))〉

≥ 〈H(RH,η
T,λ (x∗))−H(RH,η

T,λ (y∗)), η(RH,η
T,λ (x∗), RH,η

T,λ (y∗))〉

+λβ‖RH,η
T,λ (x∗)−RH,η

T,λ (y∗)‖2

≥ (r + λβ)‖RH,η
T,λ (x∗)−RH,η

T,λ (y∗)‖2.

That RH,η
T,λ is γ

r+λβ
-Lipschitz continuous follows from the fact that ‖RH,η

T,λ (x∗) −
RH,η

T,λ (y∗)‖ 6= 0.

Similar to the proof of Theorem 3.8, one can deduce the following results.

Theorem 3.9. [1] Suppose H : X −→ X∗ is a strictly η-monotone operator,
η : X × X −→ X is a γ-Lipschitz continuous mapping and also suppose that
T : X ( X∗ is a general β-strongly (H, η)-monotone operator. Then the general

proximal mapping RH,η
T,λ : X∗ −→ X is a γ

λβ
-Lipschitz continuous operator.

Theorem 3.10. [1] Suppose H : X −→ X∗ is an r-strongly η-monotone operator,
η : X × X −→ X is a γ-Lipschitz continuous mapping and also suppose that
T : X ( X∗ is a general (H, η)-monotone operator. Then the general proximal

mapping RH,η
T,λ : X∗ −→ X is a γ

r
-Lipschitz continuous operator.
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Remark 3.11. Theorem 3.9 and Theorem 3.10 are extended versions of Theorem
2.2 in [5], Lemma 2.2 in [7], Theorem 2.2 in [20] and Theorem 3.2 in [18].

4. Variational Inclusion Problems

Problem 4.1. Consider three single valued mappings ψ : X −→ X, H : X −→
X∗ and S : X ×X −→ X∗. Also, consider two set-valued mappings M : X ( X
and T : X ( X∗. Suppose T is an (H, η)-monotone operator. Our problem is
finding

x ∈ X and y ∈M(x) for which 0 ∈ S(x, y) + T (ψ(x)).

Remark 4.2. For appropriate and suitable choices of X,ψ,H, S,M, η and T one
can obtain many known and new classes of variational inequalities and variational
inclusions as special cases of the Problem 4.1. For example see [5, 18].

Lemma 4.3. Suppose H : X −→ X∗ is a strictly η-monotone operator and
T : X ( X∗ is a general (H, η)-monotone operator. Then (x, y) ∈ X ×M(x) is

a solution of Problem (4.1) if and only if ψ(x) = RH,η
T,λ [H(ψ(x))− λS(x, y)].

Proof. It is straightforward.

Algorithm 4.4. Consider the following four steps

Step 1: Choose x0 ∈ X and also choose y0 ∈M(x0).

Step 2: Let xn = xn−1 − ψ(xn−1) +RH
T,λ[H(ψ(xn−1))− λS(xn−1, yn−1)].

Step 3: Choose yn ∈M(xn) such that ‖yn − yn−1‖ ≤ n+1
n
D(M(xn),M(xn−1)).

Step 4: If (xn, yn) is a solution of Problem 4.1, stop, otherwise, set n := n+ 1
and return to Step 2.

Definition 4.5. A single-valued map S : X ×X −→ X∗ is said to be

(a) ρ-Lipschitz continuous in the first variable if for all y ∈ X the mapping
S(., y) : X −→ X is ρ-Lipschitz continuous.

(b) ξ-Lipschitz continuous in the second variable if for all x ∈ X the mapping
S(x, .) : X −→ X is ξ-Lipschitz continuous.

Lemma 4.6. Suppose X is a uniformly smooth Banach space with ρX(t) ≤ ct2

for some c > 0. Also, suppose that

(a) ψ : X −→ X is k-strongly accretive and δ-Lipschitz continuous mapping.

(b) H : X −→ X∗ is an r-strongly η-monotone and s-Lipschitz continuous
operator.

(c) T : X ( X∗ is a general β-strongly (H, η)-monotone operator.

(d) S : X × X −→ X is ρ-Lipschitz continuous in the first variable and ξ-
Lipschitz continuous in the second variable.

(e) η : X ×X −→ X is γ-Lipschitz continuous mapping.

(f) M : X ( X is D-Lipschitz continuous with constant τ .
If {xn} be as in Algorithm 4.4, then ‖xn+1 − xn‖ ≤ kn‖xn − xn−1‖, where

kn =
√

1− 2k + 64cδ2 + γ
r+λβ

(sδ + ρλ+ λτξ n+1
n

).
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Proof. The hypothesis, Proposition 2.5, Theorem 3.8 and Step 3 of Algorithm
4.4 imply that

‖xn+1 − xn‖ = ‖xn − ψ(xn) +RH,η
T,λ [H(ψ(xn))− λS(xn, yn)]− (xn−1 − ψ(xn−1)

+RH,η
T,λ [H(ψ(xn−1))− λS(xn−1, yn−1)])‖

≤ ‖xn − xn−1 − ψ(xn) + ψ(xn−1)‖
+‖RH,η

T,λ [H(ψ(xn))− λS(xn, yn)]−RH,η
T,λ [H(ψ(xn−1))− λS(xn−1, yn−1)]‖

≤
√

1− 2k + 64cδ2‖xn − xn−1‖

+
γ

r + λβ
‖(H(ψ(xn))− λS(xn, yn))− (H(ψ(xn−1))− λS(xn−1, yn−1))‖

≤
√

1− 2k + 64cδ2‖xn − xn−1‖+
γ

r + λβ
‖H(ψ(xn))−H(ψ(xn−1))‖

+
γλ

r + λβ
‖S(xn, yn)− S(xn−1, yn−1))‖

≤
√

1− 2k + 64cδ2‖xn − xn−1‖+
sδγ

r + λβ
‖xn − xn−1‖

+
γλ

r + λβ
‖S(xn, yn)− S(xn−1, yn)‖+

γλ

r + λβ
‖S(xn−1, yn)− S(xn−1, yn−1))‖

≤ (
√

1− 2k + 64cδ2 +
sδγ

r + λβ
)‖xn − xn−1‖+

ρλγ

r + λβ
‖xn − xn−1‖

+
γλξ

r + λβ
‖yn − yn−1‖

≤ (
√

1− 2k + 64cδ2 +
sδγ

r + λβ
+

ρλγ

r + λβ
)‖xn − xn−1‖+

γλξ

r + λβ
τ
n+ 1

n
‖xn − xn−1‖

≤ (
√

1− 2k + 64cδ2 +
γ

r + λβ
(sδ + ρλ+ λτξ

n+ 1

n
))‖xn − xn−1‖

Then ‖xn+1 − xn‖ ≤ kn‖xn − xn−1‖.

Theorem 4.7. Suppose X is a uniformly smooth Banach space with ρX(t) ≤ ct2

for some c > 0. Also, suppose that

(a) ψ : X −→ X is k-strongly accretive and δ-Lipschitz continuous mapping.

(b) H : X −→ X∗ be an r-strongly η-monotone and s-Lipschitz continuous
operator.

(c) T : X ( X∗ be a general β-strongly (H, η)-monotone operator.

(d) S : X×X −→ X is ρ-Lipschitz continuous in first variable and ξ-Lipschitz
continuous in second variable.

(e) η : X ×X −→ X is γ-Lipschitz continuous mapping.

(f) M : X ( X is closed valued and also M is D-Lipschitz continuous with
constant τ .



152 ALIMOHAMMADY, ROOHI

If
√

1− 2k + 64cδ2 + γ
r+λβ

(sδ + ρλ + λτξ) < 1, then the Problem 4.1 has a

solution.

Proof. Let {xn} and {yn} be as in Algorithm 4.4. According to Lemma 4.6, we
have ‖xn+1−xn‖ ≤ kn‖xn−xn−1‖, where kn =

√
1− 2k + 64cδ2 + γ

r+λβ
(sδ+ρλ+

λτξ n+1
n

). Set k =
√

1− 2k + 64cδ2 + γ
r+λβ

(sδ + ρλ + λτξ). Obviously, kn −→ k

as n −→ +∞, which our assumption implies that k < 1. Therefore, {xn} is a
Cauchy sequence and hence there exists x ∈ X for which xn −→ x. On the other
hand, by Step 3 of Algorithm 4.4, we have

‖yn − yn−1‖ ≤
n+ 1

n
D(M(xn),M(xn−1)) ≤

n+ 1

n
τ‖xn − xn−1‖.

Consequently, {yn} is a Cauchy sequence and so there exists y ∈ X for which
yn −→ y. Also

d(y,M(x)) = inf{‖y −m‖ : m ∈M(x)}
≤ ‖y − yn‖+ d(yn,M(x))

≤ ‖y − yn‖+D(M(xn),M(x))

≤ ‖y − yn‖+ τ‖xn − x‖.
‖y−yn‖+τ‖xn−x‖ −→ 0 as n −→ +∞ and than d(y,M(x)) = 0. Now, because

M(x) is closed, we have y ∈ M(x). Since RH,η
T,λ , H, ψ and S are Lipschitz con-

tinuous, so Step 3 of Algorithm 4.4 and since M is D-Lipschitz continuous with
constant ρ, we have ψ(x) = RH,η

T,λ [H(ψ(x)) − λS(x, y)]. That (x, y) is a solution
of Problem 4.1 follows from Lemma 4.3.

Remark 4.8. According to Theorem 3.9 and Theorem 3.10, by an argument sim-
ilar to the Theorem 4.7, if we consider the following condition instead of (b) in
Theorem 4.7,

(b’) H : X −→ X∗ is a strictly η-monotone operator. Then one can deduce
that :

If
√

1− 2k + 64cδ2+ γ
λβ

(sδ+ρλ+λτξ) < 1, then the Problem 4.1 has a solution.

Similarly, if we consider the following condition instead of (c) in Theorem 4.7,

(c’) T : X ( X∗ is a general (H, η)-monotone operator. Then it is easy to see
that:

If
√

1− 2k + 64cδ2+ γ
r
(sδ+ρλ+λτξ) < 1, then the Problem 4.1 has a solution.
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