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IMPLICIT VARIATIONAL-LIKE INCLUSIONS INVOLVING
GENERAL (H,n)-MONOTONE OPERATORS

M. ALIMOHAMMADY*, M. ROOHI?

ABSTRACT. In this paper, using Lipschitz continuity of general (H, n)-monotone
operators, a type of implicit variational-like inclusion problems in uniformly
smooth Banach spaces are solved.

1. INTRODUCTION

A very powerful tool of mathematical technology is variational inequality the-
ory. In recent years, variational inequalities have been extended and generalized in
different directions, using novel and innovative techniques. Useful and important
generalizations of variational inequalities are variational and quasi-variational in-
clusions. Variational inclusion theory is a branch of applicable mathematics with
a wide range of applications in the fields of optimization, control, economics,
transportation equilibrium, engineering science, industrial, physical, regional, so-
cial, pure and applied sciences. Recently, many existence results and iterative
algorithms for various variational inequality and variational inclusion problems
have been studied. For details, one can see [1-21] and the references therein.

This paper is organized as follows. In section[2]we study the required definitions
about some generalized types of monotone operators and also some preliminary
results which will be used in other sections are collecting. Section |3 is devoted
to reviewing definition, examples and some results about the new class ”gen-
eral (H,n)-monotone operators”, the proximal mapping associated with this type
of monotone operators. Moreover, some fact about Lipschitz continuity of the
proximal mapping associated with general (H,n)-monotone operators are proved.
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Finally, in section 4], using Lipschitz continuity of general proximal mappings asso-
ciated with general (H,n)-monotone operators, a type of implicit variational-like
inclusion problems in uniformly smooth Banach spaces are solved.

2. PRELIMINARIES

Let X be a real Banach space with dual space X* andletn: X x X — X isa
single valued mapping. n is called v-Lipschitz continuous mapping, if there exists
some v > 0 such that ||n(x,y)|| < 7|z —y] for all x,y € X. For a set-valued map
T:X —Y, the range of T'is Range(T) ={y €Y : 3z € X, (z,y) € T} and the
inverse T~ of T is {(y,x) : (z,y) € T}. We say that T is closed valued, if T(z)
is closed for all x € X. For a real number ¢, let ¢T' = {(z,cy) : (z,y) € T}. If
S and T are any set-valued mappings, we define S+ 7T = {(z,y + 2) : (z,y) €
S, (x,2) € T}.

Definition 2.1. A single valued map H : X — X™* is said to be

(a) monotone if (H(x) — H(y),x —y) >0 for all x,y € X.

(b) n-monotone it (H(x) — H(y),n(z,y)) > 0 for all z,y € X.

(c) strictly monotone if H is monotone and (H(x) — H(y),x —y) = 0 if and
only if z = y.

(d) strictly n-monotone if H is n-monotone and (H(z) — H(y),n(z,y)) = 0 if
and only if x = y.

(e) r- stmngly monotone if there exists some constant r > 0 such that (H(x) —

H(y),z —y) >r|x —y|? for all z,y € X.

(f) r-strongly n-monotone if there exists some constant r > 0 such that (H(z)—
H(y), 1(x,y)) > rllz — | for all 2,y € X.

(g) 6-Lipschitz if |H(z) — H(y)|| < d||x —yl| for all z,y € X.

Definition 2.2. A set-valued map T : X — X is said to be

(a) mazimal monotone if T is monotone and (I + A\T")(X) = X holds for every
A > 0.

(b) mazimal n-monotone if T is p-monotone and (I + AT)(X) = X holds for
every A > 0, if and only if 7" is n-monotone and there is no other n-monotone
set-valued mapping whose graph strictly contains the graph of T' [18].

Definition 2.3. [4, [5, [6 15] A set-valued map T : X —o X* is said to be

(a) monotone if (z*—y*,x—y) > 0forallz,y € X and all 2* € T'(z),y* € T(y).

(b) n-monotone if (x* —y*, n(z,y)) > 0 for all z,y € X and all z* € T'(z),y* €
T(y).

(c) r-strongly monotone if there exists some constant r > 0 such that (z* —
y,x —y) >r|r—yl? forall z,y € X and all 2* € T(x),y* € T(y).

(d) r-strongly n-monotone if there exists some constant r > 0 such that
(x* —y* n(z,y)) > r|lz —y||* for all x,y € X and all z* € T'(x),y* € T(y).
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The duality mapping J : X — X* is defined by
J(z) = {a" € X" : (%, 2) = ||=[]* = [|«"|*}

for every x € X. The module of smoothness of X is the function px : [0, +00) —
[0, +00) defined by

[z +yll+llz -yl

2
A Banach space X is called uniformly smooth if Pr%px—(t) = 0 if and only if

|
px (1) = sup{ Loflz]l <1, [lyll < ¢}

t
there exists a constant ¢ > 0 for which px(t) < ct?.

Definition 2.4. A single valued map H : X — X is said to be k-strongly ac-
cretive if for any x,y € X there exist j € J(x — y) for which (j, H(x) — H(y)) >
klle = yll.

Xia and Huang, proving Theorem 3.4 in [I8] showed the following useful in-
equality.

Proposition 2.5. Suppose that X is a uniformly smooth Banach space with
px(t) < ct? for somec > 0. Ifv: X — X is k-strongly accretive and §-Lipschitz
continuous mapping, then ||z —y — ¥(x) — (y)|| < V1 — 2k + 64cd2||x — y]|.

Let P(X) be the power set of X. The function D : P(X) x P(X) — [0, +0]
defined by

D(A,B) = inf [|a — b]],sup inf [|a — b
(4, B) = max{sup inf [la = b]|, sup inf [l —b][},

is called Hausdorff pseudo-metric. We note that, if D is restericted to closed
bounded subsets of X, then it is Hausdorff metric.

Definition 2.6. A set valued mapping M : X —o X is said to be D-Lipschitz
continuous with constant p, if D(M(x), M(y)) < pllz — y|| for all z,y € X.

3. GENERAL (H,n)-MONOTONE OPERATORS

Definition 3.1. [I] The set-valued map 7' : X — X* is said to be general (H,n)-
monotone operator if T' is n-monotone and (H + AT)(X) = X* holds for every
A> 0.

Remark 3.2. The general (H,n)-monotone operator reduces to the
(a) general H-monotone operator which is introduced in [I§], if n(x,y) = x —y.
(b) (H,n)-monotone operators [7], if X is a Hilbert space.

(¢) g-n-monotone mapping which is considered in [20], when X is a Hilbert
space and H = g.
(d) H-monotone operator [5], if X is a Hilbert space and n(z,y) = = — y.
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(e) maximal n-monotone mapping considered in [2, 4], when X is a Hilbert
space and H = I, the identity mapping.

Example 3.3. Let X = Rand let  : RxR — R be defined by n(z,y) = y3—a3.
Consider the set-valued mapping 7" : R —o R defined by

{—z—-1} 2>0
T(x)={ {-1,1} 2=0
{—z+1} z<0.

One can easily check that 7" is n-monotone and (I + AT)(R) # R for A > 1.
Therefore, T is not maximal n-monotone. Now, for single valued mapping H :

R — R defined by
x? z >0
H(z) = { -2 <0,
we have (H + AT)(R) = R for all A > 0, which implies that T is general (H,n)-
monotone operator.

Example 3.4. Let X = Rand let n : RxR — R be defined by n(z,y) = 2*—y3.
Consider the set-valued mapping 7' : R —o R defined by T'(z) = {x}. Then T is
n-monotone and (I + AT)(z) = {(1 + M)z} and hence (I + AT)(R) = R for all
A > 0. Therefore, T is maximal n-monotone. Now, for single valued mapping
H :R — R defined by H(z) = 2> we have (H + AT)(R) = [, +00) # R for
all A > 0, which implies that 7" is not general (H,n)-monotone operator.

Theorem 3.5. [I] Suppose that H : X — X* is a strictly n-monotone mapping
and suppose that T : X — X* is a general (H,n)-monotone operator. Then
(H+ M)t X* — X is a single-valued operator for all A > 0.

Based on Theorem |3.5] we can define the general prorimal mapping RYI{Q as
following.

Definition 3.6. [I] For a strictly n-monotone mapping H : X — X* and a
general (H,n)-monotone operator T : X —o X*, the general proximal mapping
RV X* — X is defined by Rpy(x*) = (H + AT) 7} (2*).

Remark 3.7. The general proximal mapping Ri vV reduces to the

(a) proximal mapping R which is introduced in [I§], when T" = M and
n(z,y) =z —y.

(b) resolvent operator Rf/f\ [7, when T'= M and X is a Hilbert space.

(c) resolvent operator RY,, [20], if T'= M, H = g and X is a Hilbert space.

(d) resolvent operator R, which is introduced in [3], if X is a Hilbert space,
T =M and n(xz,y) =x —y.

(e) n-proximal mapping of ¢ [3], if X is a Hilbert space and T' = d¢, where ¢ :
X — (—00,400] is a lower semicontinuous subdifferentiable proper functional.
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(f) resolvent of maximal monotone operator [19], when X is a Hilbert space,
H=1and n(x,y) =z —y.

Theorem 3.8. Suppose that n : X x X — X is a y-Lipschitz continuous
mapping, H : X — X* is an r-strongly n-monotone operator and T : X —o X*
s a geneml B-strongly (H,n)- monotone operator. Then the general proximal
mapping RT’; X*— X isa +>\ﬂ -Lipschitz continuous operator.
Proof. For any two points z*, y* € X* with HR?Q(:U*) — Rgf(y*)H # 0. Since
Ry (x*) = (H +\T) 7} (z%) and Ry (y") = (H + XT) 7' (y),
SO

ot — H(RE (2 " — H(Rp3(y*

T is a general §-strongly (H,n)-monotone operator, so
* Hm/, x * Ho e,
o)) V2RO i), B = BRI )~ RGO
Therefore,
(" =y (R (@), Re(y")) = H(Rp(a*) — H(Rp(y")), n(Rry (), Re(y")))
+ ABIIRpY (") = Ry ()1
Since 1 : X x X — X is «-Lipschitz and H is r-strongly n-monotone,
Ya* =y BN @) = Re )l = lla” =y In(Ry3 (@), Ry ()]
> (2" =y (B (2"), Re3(y7))
> (H(Ry3(") — H(Rp3(y"))n(Ry ("), Ry (y")))
MBI Rz (%) = ReXl(y)))®
(r + A0 | Ry (") — Re 3y
That RT \ s ;55-Lipschitz continuous follows from the fact that HR V(x*) —

T,’A( )| # 0.

v

Similar to the proof of Theorem [3.8 one can deduce the following results.

Theorem 3.9. [1] Suppose H : X — X* is a strictly n-monotone operator,
n: X xX — X is a y-Lipschitz continuous mapping and also suppose that
T:X —-oX*"1isa geneml B-strongly (H, 77) monotone operator. Then the general
proximal mapping RT’;? X*— X isa-& szschztz continuous operator.

Theorem 3.10. [1] Suppose H : X — X* is an r-strongly n-monotone operator,
n: X xX — X is a y-Lipschitz continuous mapping and also suppose that
T : X — X* is a general (H,n)-monotone operator. Then the general proximal
mapping R;If 1 X* — X is a 1-Lipschitz continuous operator.
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Remark 3.11. Theorem 3.9 and Theorem B.10] are extended versions of Theorem
2.2 in [5], Lemma 2.2 in [7], Theorem 2.2 in [20] and Theorem 3.2 in [1§].

4. VARIATIONAL INCLUSION PROBLEMS

Problem 4.1. Consider three single valued mappings ¢ : X — X, H : X —
X*and S : X x X — X*. Also, consider two set-valued mappings M : X —o X
and T': X — X*. Suppose T is an (H,n)-monotone operator. Our problem is
finding

r € X and y € M(x) for which 0 € S(z,y) + T(¢(x)).

Remark 4.2. For appropriate and suitable choices of X, ¢, H, S, M,n and T one
can obtain many known and new classes of variational inequalities and variational
inclusions as special cases of the Problem 1.1 For example see [5], [18].

Lemma 4.3. Suppose H : X — X* is a strictly n-monotone operator and
T:X — X* is a general (H,n)-monotone operator. Then (x,y) € X x M(x) is

a solution of Problem l) if and only if Y(x) = R?Q[H(w(x)) — AS(z,y)].
Proof. It is straightforward.

Algorithm 4.4. Consider the following four steps
Step 1: Choose xy € X and also choose yo € M (xp).
Step 2: Let @, = £p—1 — (xn1) + RENH ((2n-1)) = AS(Zn-1, Yn-1)]-
Step 3: Choose y, € M(z,) such that ||y, — yn—1| < ZED(M (), M(x,-1)).
Step 4: If (2, yn) is a solution of Problem [4.1] stop, otherwise, set n :=n + 1
and return to Step 2.

Definition 4.5. A single-valued map S : X x X — X* is said to be

(a) p-Lipschitz continuous in the first variable if for all y € X the mapping
S(.,y) : X — X is p-Lipschitz continuous.

(b) &-Lipschitz continuous in the second variable if for all x € X the mapping
S(z,.): X — X is &Lipschitz continuous.

Lemma 4.6. Suppose X is a uniformly smooth Banach space with px(t) < ct?
for some ¢ > 0. Also, suppose that

(a) ¥ : X — X is k-strongly accretive and 6-Lipschitz continuous mapping.

(b) H : X — X* is an r-strongly n-monotone and s-Lipschitz continuous
operator.

(c) T: X — X* is a general 3-strongly (H,n)-monotone operator.

(d) S : X x X — X is p-Lipschitz continuous in the first variable and &-
Lipschitz continuous in the second variable.

(e) n: X x X — X is y-Lipschitz continuous mapping.

(f) M : X — X is D-Lipschitz continuous with constant T.

If {z,} be as in Algorithm then ||xpe1 — xn|| < kpllzn — xn_1||, where

ki = V1 = 2k +64c? + 5550 + pA + A\TEREL),
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Proof. The hypothesis, Proposition [2.5] Theorem and Step 3 of Algorithm
(4.4 imply that
|ni1 = zall = 20 = (x0) + REXH (W (20)) = AS (@0, yn)] = (@01 — W (wn-1)
+RENH (20 1)) = AS (@1, Y1)

< o = 2pey — (@) + Y(Tn-1)||
HIRFIH (1 (20)) = AS (2, yn)] — REVH (W (20-1)) = AS (@1, Yn1)]
< V1 -2k + 64¢0?||z,, — 21|
) = A8, 0)) = (H (1)) = AS (s, v )|
< VIZTF O — |+ S H () = H ()]
YA
5@ ) = S )
)
< V1= 2k + 640, — wpa | + ilﬁ”””” oot
=28, ) — St gl + — (@1, Yn) — St Y1)
7’+ )\/6 ny n n b) n ’]"—‘I—A/B n ) n n ) n
S0y PAY
< 1 — 2k + 64cH2 _ _
YAE
s0y PAY YA n+1
< _ 2 —
< (V1 —2k+64cé? + T+)\5+r—|—/\5>”xn | +7’+)\ﬁ
< (V1 —2k + 64c6? + il (s5+p)\+)\7'§n+1))||m — Tp 1|
- r—+ A3 n " "

Then Hanrl - xn” < anxn - xnle'

Theorem 4.7. Suppose X is a uniformly smooth Banach space with px(t) < ct?
for some ¢ > 0. Also, suppose that

(a) ¥ : X — X is k-strongly accretive and 6-Lipschitz continuous mapping.

(b) H : X — X* be an r-strongly n-monotone and s-Lipschitz continuous
operator.

(c) T: X — X* be a general 3-strongly (H,n)-monotone operator.

(d) S: X x X — X is p-Lipschitz continuous in first variable and &-Lipschitz
continuous in second variable.

(e) n: X x X — X is y-Lipschitz continuous mapping.
(f) M : X — X is closed valued and also M is D-Lipschitz continuous with
constant T.
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If V1 — 2k + 64c6% + 5 (80 + pA + ATE) < 1, then the Problem has a

solution.

Proof. Let {z,} and {y,} be as in Algorithm[1.4] According to Lemma[4.6] we

have [|Z,11 — || < kp||l2n — 21|, where k, = V1 — 2k + 64052+ﬁ(3(5+p)\+

ATEREL) Set k = /1 — 2k + 64c6? + 55(80 + pA+ ATE). Obviously, k, — k
as n — 400, which our assumption implies that k& < 1. Therefore, {z,} is a

Cauchy sequence and hence there exists x € X for which z,, — z. On the other
hand, by Step 3 of Algorithm [£.4] we have

n+1D(M(xn),M(xn,1)) < n+1

190 — Yol < T xn — Tpal-

Consequently, {y,} is a Cauchy sequence and so there exists y € X for which
Yn — y. Also
d(y, M(z)) = inf{[ly —m|:m e M(z)}

<y = ynll + d(yn, M(2))

< ly = ynll + DM (), M ()

< Ay = yall + 7l — 2.
|y —yull + 7|20 — || — 0 as n — +oo and than d(y, M (z)) = 0. Now, because
M (z) is closed, we have y € M(x). Since Ri’)’f, H, v and S are Lipschitz con-
tinuous, so Step 3 of Algorithm and since M is D-Lipschitz continuous with

constant p, we have ¢(x) = RgQ[H(w(x)) — AS(z,y)]. That (z,y) is a solution
of Problem [.1] follows from Lemma (.3

Remark 4.8. According to Theorem [3.9) and Theorem by an argument sim-
ilar to the Theorem [1.7] if we consider the following condition instead of (b) in
Theorem [4.7]

(b)) H : X — X* is a strictly 7-monotone operator. Then one can deduce
that :

If V1 — 2k + 64c0?+ 5(s0+pA+A7E) < 1, then the Problemhas a solution.

Similarly, if we consider the following condition instead of (c) in Theorem 4.7

(¢") T : X —o X* is a general (H,n)-monotone operator. Then it is easy to see
that:

If /1 — 2k + 64c024 2 (s04 pA+ A7) < 1, then the Problem 4.1 has a solution.
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