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STABILITY OF A GENERALIZED EULER-LAGRANGE TYPE
ADDITIVE MAPPING AND HOMOMORPHISMS IN

C∗-ALGEBRAS II

ABBAS NAJATI AND CHOONKIL PARK∗

Abstract. LetX,Y be Banach modules over a C∗-algebra and let r1, · · · , rn ∈
R be given. We prove the generalized Hyers-Ulam stability of the following
functional equation in Banach modules over a unital C∗-algebra:

n∑
j=1

f
(1
2

∑
1≤i≤n,i ̸=j

rixi −
1

2
rjxj

)
+

n∑
i=1

rif(xi) = nf
(1
2

n∑
i=1

rixi

)
(0.1)

We show that if
∑n

i=1 ri ̸= 0, ri ̸= 0, rj ̸= 0 for some 1 ≤ i < j ≤ n and a
mapping f : X → Y satisfies the functional equation (0.1) then the mapping
f : X → Y is additive. As an application, we investigate homomorphisms in
unital C∗-algebras.

1. Introduction and preliminaries

The stability problem of functional equations was originated from a question
of Ulam [66] concerning the stability of group homomorphisms:

Let (G1, .) be a group and let (G2, ∗) be a metric group with the metric d(., .).
Given ϵ > 0, does there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies
the inequality d(h(x1.x2), h(x1) ∗ h(x2)) < δ for all x1, x2 ∈ G1, then there exists
a homomorphism H : G1 → G2 with d(h(x1), H(x1)) < ϵ for all x1 ∈ G1?

Hyers [15] gave a first affirmative partial answer to the question of Ulam for
Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings
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and by Th.M. Rassias [58] for linear mappings by considering an unbounded
Cauchy difference.

Theorem 1.1. (Th.M. Rassias [58]). Let f : E → E ′ be a mapping from a
normed vector space E into a Banach space E ′ subject to the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p) (1.1)

for all x, y ∈ E, where ϵ and p are constants with ϵ > 0 and p < 1. Then the
limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E ′ is the unique additive mapping which satisfies

∥f(x)− L(x)∥ ≤ 2ϵ

2− 2p
∥x∥p (1.2)

for all x ∈ E. If p < 0 then the inequality (1.1) holds for x, y ̸= 0 and (1.2) for
x ̸= 0. Also, if for each x ∈ E the mapping t 7→ f(tx) is continuous in t ∈ R,
then L is R-linear.

Theorem 1.2. (J.M. Rassias [49]–[51]). Let X be a real normed linear space and
Y a real Banach space. Assume that f : X → Y is a mapping for which there
exist constants θ ≥ 0 and p, q ∈ R such that r = p + q ̸= 1 and f satisfies the
functional inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ∥x∥p∥y∥q

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y
satisfying

∥f(x)− L(x)∥ ≤ θ

|2r − 2|
∥x∥r

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the trans-
formation t → f(tx) is continuous in t ∈ R for each fixed x ∈ X, then L is
R-linear.

The paper of Th.M. Rassias [58] has provided a lot of influence in the develop-
ment of what we call the generalized Hyers-Ulam stability of functional equations.
In 1994, a generalization of Theorems 1.1 and 1.2 was obtained by Găvruta [10],
who replaced the bounds ε(∥x∥p + ∥y∥p) and θ∥x∥p∥y∥q by a general control
function φ(x, y).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.3)

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The generalized
Hyers-Ulam stability problem for the quadratic functional equation was proved by
Skof [65] for mappings f : X → Y , where X is a normed space and Y is a Banach
space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant
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domain X is replaced by an Abelian group. Czerwik [5] proved the generalized
Hyers-Ulam stability of the quadratic functional equation. J.M. Rassias [52, 53]
introduced and investigated the stability problem of Ulam for the Euler-Lagrange
quadratic mappings (1.3) and

f(a1x1 + a2x2) + f(a2x1 − a1x2) = (a21 + a22)[f(x1) + f(x2)]. (1.4)

Grabiec [14] has generalized these results mentioned above. In addition, J.M. Ras-
sias [54] generalized the Euler-Lagrange quadratic mapping (1.4) and investigated
its stability problem. Thus these Euler-Lagrange type equations (mappings) are
called as Euler-Lagrange-Rassias functional equations (mappings).

The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results con-
cerning this problem (see [1], [4], [6], [7], [9]–[13], [16]–[22], [24]–[64] and [67]).

Recently, C. Park and J. Park [46] introduced and investigated the following
additive functional equation of Euler-Lagrange type

n∑
i=1

riL

(
n∑

j=1

rj(xi − xj)

)
+

(
n∑

i=1

ri

)
L

(
n∑

i=1

rixi

)
(1.5)

=

(
n∑

i=1

ri

)
n∑

i=1

riL(xi), r1, · · · , rn ∈ (0,∞)

whose solution is said to be a generalized additive mapping of Euler-Lagrange
type.

In this paper, we introduce the following additive functional equation of Euler-
Lagrange type which is somewhat different from (1.5):

n∑
j=1

f
(1
2

∑
1≤i≤n,i̸=j

rixi −
1

2
rjxj

)
+

n∑
i=1

rif(xi) = nf
(1
2

n∑
i=1

rixi

)
, (1.6)

where r1, · · · , rn ∈ R. Every solution of the functional equation (1.6) is said to
be a generalized Euler-Lagrange type additive mapping.

We investigate the generalized Hyers-Ulam stability of the functional equa-
tion (1.6) in Banach modules over a C∗-algebra. These results are applied to
investigate C∗-algebra homomorphisms in unital C∗-algebras.

Throughout this paper, assume that A is a unital C∗-algebra with norm ∥.∥A
and unit e, that B is a unital C∗-algebra with norm ∥.∥B, and that X and
Y are left Banach modules over a unital C∗-algebra A with norms ∥.∥X and
∥.∥Y , respectively. Let U(A) be the group of unitary elements in A and let
r1, · · · , rn ∈ R.
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For a given mapping f : X → Y, u ∈ U(A) and a given µ ∈ C, we define
Du,r1,··· ,rnf and Dµ,r1,··· ,rnf : Xn → Y by

Du,r1,··· ,rnf(x1, · · · , xn) : =
n∑

j=1

f
(1
2

∑
1≤i≤n,i̸=j

riuxi −
1

2
rjuxj

)
+

n∑
i=1

riuf(xi)

− nf
(1
2

n∑
i=1

riuxi

)
and

Dµ,r1,··· ,rnf(x1, · · · , xn) : =
n∑

j=1

f
(1
2

∑
1≤i≤n,i ̸=j

µrixi −
1

2
µrjxj

)
+

n∑
i=1

µrif(xi)

− nf
(1
2

n∑
i=1

µrixi

)
for all x1, · · · , xn ∈ X.

2. Generalized Hyers-Ulam stability of the functional equation
(1.6) in Banach modules over a C∗-algebra

Lemma 2.1. Let X and Y be linear spaces and let r1, · · · , rn be real numbers
with

∑n
k=1 rk ̸= 0 and ri ̸= 0, rj ̸= 0 for some 1 ≤ i < j ≤ n. Assume that a

mapping L : X → Y satisfies the functional equation (1.6) for all x1, · · · , xn ∈ X .
Then the mapping L is additive. Moreover, L(rkx) = rkL(x) for all x ∈ X and
all 1 ≤ k ≤ n.

Proof. Since
∑n

k=1 rk ̸= 0, putting x1 = · · · = xn = 0 in (1.6), we get L(0) = 0.
Without loss of generality, we may assume that r1, r2 ̸= 0. Letting x3 = · · · =
xn = 0 in (1.6), we get

L

(
−r1x1 + r2x2

2

)
+ L

(
r1x1 − r2x2

2

)
+ r1L(x1) + r2L(x2)

= 2L

(
r1x1 + r2x2

2

)
(2.1)

for all x1, x2 ∈ X . Letting x2 = 0 in (2.1), we get

r1L(x1) = L
(r1x1

2

)
− L

(
−r1x1

2

)
(2.2)

for all x1 ∈ X .
Similarly, by putting x1 = 0 in (2.1), we get

r2L(x2) = L
(r2x2

2

)
− L

(
−r2x2

2

)
(2.3)
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for all x1 ∈ X . It follows from (2.1), (2.2) and (2.3) that

L

(
−r1x1 + r2x2

2

)
+ L

(
r1x1 − r2x2

2

)
+ L

(r1x1
2

)
+ L

(r2x2
2

)
− L

(
−r1x1

2

)
− L

(
−r2x2

2

)
= 2L

(
r1x1 + r2x2

2

) (2.4)

for all x1, x2 ∈ X . Replacing x1 and x2 by 2x
r1

and 2y
r2

in (2.4), we get

L(−x+ y) + L(x− y) + L(x) + L(y)− L(−x)− L(−y) = 2L(x+ y) (2.5)

for all x, y ∈ X . Letting y = −x in (2.5), we get that L(−2x) + L(2x) = 0 for
all x ∈ X . So the mapping L is odd. Therefore, it follows from (2.5) that the
mapping L is additive. Moreover, let x ∈ X and 1 ≤ k ≤ n. Setting xk = x and
xl = 0 for all 1 ≤ l ≤ n, l ̸= k, in (1.6) and using the oddness of L, we get that
L(rkx) = rkL(x). �

Using the same method as in the proof of Lemma 2.1, we have an alternative
result of Lemma 2.1 when

∑n
k=1 rk = 0.

Lemma 2.2. Let X and Y be linear spaces and let r1, · · · , rn be real numbers
with ri ̸= 0, rj ̸= 0 for some 1 ≤ i < j ≤ n. Assume that a mapping L : X → Y
with L(0) = 0 satisfies the functional equation (1.6) for all x1, · · · , xn ∈ X . Then
the mapping L is additive. Moreover, L(rkx) = rkL(x) for all x ∈ X and all
1 ≤ k ≤ n.

We investigate the generalized Hyers-Ulam stability of a generalized Euler-
Lagrange type additive mapping in Banach spaces.

Throughout this paper, r1, · · · , rn will be real numbers such that ri ̸=
0, rj ̸= 0 for fixed 1 ≤ i < j ≤ n.

Theorem 2.3. Let f : X → Y be a mapping satisfying f(0) = 0 for which there
is a function φ : Xn → [0,∞) such that

φ̃ij(x, y) :=
∞∑
k=0

1

2k
φ
(
0, · · · , 2kx︸︷︷︸

i th

, 0, · · · , 2ky︸︷︷︸
j th

, 0, · · · , 0
)
<∞, (2.6)

lim
k→∞

1

2k
φ
(
2kx1, · · · , 2kxn

)
= 0, (2.7)

∥De,r1,··· ,rnf(x1, · · · , xn)∥Y ≤ φ(x1, · · · , xn) (2.8)

for all x, x1, · · · , xn ∈ X and y ∈ {0,±x}. Then there exists a unique generalized
Euler-Lagrange type additive mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ 1

4

{[
φ̃ij

(2x
ri
,
2x

rj

)
+ 2φ̃ij

( x
ri
,− x

rj

)]
+
[
φ̃ij

(2x
ri
, 0
)
+ 2φ̃ij

( x
ri
, 0
)]

+
[
φ̃ij

(
0,

2x

rj

)
+ 2φ̃ij

(
0,− x

rj

)]} (2.9)
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for all x ∈ X. Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. For each 1 ≤ k ≤ n with k ̸= i, j, let xk = 0 in (2.8).Then we get the
following inequality∥∥∥∥f (−rixi + rjxj

2

)
+ f

(
rixi − rjxj

2

)
− 2f

(
rixi + rjxj

2

)
+ rif(xi) + rjf(xj)

∥∥∥∥
Y

≤ φ(0, · · · , 0, xi︸︷︷︸
i th

, 0, · · · , 0, xj︸︷︷︸
j th

, 0, · · · , 0) (2.10)

for all xi, xj ∈ X. For convenience, set

φij(x, y) := φ(0, · · · , 0, x︸︷︷︸
i th

, 0, · · · , 0, y︸︷︷︸
j th

, 0, · · · , 0)

for all x, y ∈ X and all 1 ≤ i < j ≤ n. Letting xi = 0 in (2.10), we get∥∥∥f (−rjxj
2

)
− f

(rjxj
2

)
+ rjf(xj)

∥∥∥
Y
≤ φij(0, xj) (2.11)

for all xj ∈ X.
Similarly, letting xj = 0 in (2.10), we get∥∥∥f (−rixi

2

)
− f

(rixi
2

)
+ rif(xi)

∥∥∥
Y
≤ φij(xi, 0) (2.12)

for all xi ∈ X. It follows from (2.10), (2.11) and (2.12) that∥∥∥∥f (−rixi + rjxj
2

)
+ f

(
rixi − rjxj

2

)
− 2f

(
rixi + rjxj

2

)
+f
(rixi

2

)
+ f

(rjxj
2

)
− f

(
−rixi

2

)
− f

(
−rjxj

2

)∥∥∥
Y

≤ φij(xi, xj) + φij(xi, 0) + φij(0, xj)

(2.13)

for all xi, xj ∈ X. Replacing xi and xj by
2x
ri

and 2y
rj

in (2.13), we get that

∥f(−x+ y) + f(x− y)− 2f(x+ y)

+ f(x) + f(y)− f(−x)− f(−y)∥Y

≤ φij

(
2x

ri
,
2y

rj

)
+ φij

(
2x

ri
, 0

)
+ φij

(
0,

2y

rj

) (2.14)

for all x, y ∈ X. Putting y = x in (2.14), we get

∥2f(x)− 2f(−x)− 2f(2x)∥Y (2.15)

≤ φij

(
2x

ri
,
2x

rj

)
+ φij

(
2x

ri
, 0

)
+ φij

(
0,

2x

rj

)
for all x ∈ X. Replacing x and y by x

2
and −x

2
in (2.14), respectively, we get

∥f(x) + f(−x)∥Y ≤ φij

(
x

ri
,− x

rj

)
+ φij

(
x

ri
, 0

)
+ φij

(
0,− x

rj

)
(2.16)
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for all x ∈ X. It follows from (2.15) and (2.16) that

∥f(2x)− 2f(x)∥Y ≤ ψ(x) (2.17)

for all x ∈ X, where

ψ(x) : =
1

2

{[
φij

(2x
ri
,
2x

rj

)
+ 2φij

( x
ri
,− x

rj

)]
+
[
φij

(2x
ri
, 0
)
+ 2φij

( x
ri
, 0
)]

+
[
φij

(
0,

2x

rj

)
+ 2φij

(
0,− x

rj

)]}
.

It follows from (2.6) that

∞∑
k=0

1

2k
ψ(2kx) =

1

2

{[
φ̃ij

(2x
ri
,
2x

rj

)
+ 2φ̃ij

( x
ri
,− x

rj

)]
+
[
φ̃ij

(2x
ri
, 0
)
+ 2φ̃ij

( x
ri
, 0
)]

+
[
φ̃ij

(
0,

2x

rj

)
+ 2φ̃ij

(
0,− x

rj

)]}
<∞

(2.18)

for all x ∈ X. Replacing x by 2kx in (2.17) and dividing both sides of (2.17) by
2k+1, we get ∥∥∥ 1

2k+1
f(2k+1x)− 1

2k
f(2kx)

∥∥∥
Y
≤ 1

2k+1
ψ(2kx)

for all x ∈ X and all k ∈ Z. Therefore, we have∥∥∥ 1

2k+1
f(2k+1x)− 1

2m
f(2mx)

∥∥∥
Y
≤

k∑
l=m

∥∥∥ 1

2l+1
f(2l+1x)− 1

2l
f(2lx)

∥∥∥
Y

≤ 1

2

k∑
l=m

1

2l
ψ(2lx)

(2.19)

for all x ∈ X and all integers k ≥ m. It follows from (2.18) and (2.19) that

the sequence {f(2kx)
2k

} is Cauchy in Y for all x ∈ X, and thus converges by the
completeness of Y. Thus we can define a mapping L : X → Y by

L(x) = lim
k→∞

f(2kx)

2k

for all x ∈ X. Letting m = 0 in (2.19) and taking the limit as k → ∞ in (2.19),
we obtain the desired inequality (2.9).

It follows from (2.7) and (2.8) that

∥De,r1,··· ,rnL(x1, · · · , xn)∥Y = lim
k→∞

1

2k
∥De,r1,··· ,rnf(2

kx1, · · · , 2kxn)∥Y

≤ lim
k→∞

1

2k
φ(2kx1, · · · , 2kxn) = 0
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for all x1, · · · , xn ∈ X. Therefore, the mapping L : X → Y satisfies the equation
(1.6) and L(0) = 0. Hence by Lemma 2.2, L is a generalized Euler-Lagrange type
additive mapping and L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

To prove the uniqueness, let T : X → Y be another generalized Euler-Lagrange
type additive mapping with T (0) = 0 satisfying (2.9). By Lemma 2.2, the map-
ping T is additive. Therefore, it follows from (2.9) and (2.18) that

∥L(x)− T (x)∥Y = lim
k→∞

1

2k
∥∥f(2kx)− T (2kx)

∥∥
Y
≤ 1

2
lim
k→∞

1

2k

∞∑
l=0

1

2l
ψ(2l+kx)

=
1

2
lim
k→∞

∞∑
l=k

1

2l
ψ(2lx) = 0.

So L(x) = T (x) for all x ∈ X. �

Theorem 2.4. Let f : X → Y be a mapping satisfying f(0) = 0 for which there
is a function φ : Xn → [0,∞) satisfying (2.6), (2.7) and

∥Du,r1,··· ,rnf(x1, · · · , xn)∥ ≤ φ(x1, · · · , xn) (2.20)

for all x1, · · · , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear
generalized Euler-Lagrange type additive mapping L : X → Y satisfying (2.9) for
all x ∈ X. Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. By Theorem 2.3, there exists a unique generalized Euler-Lagrange type
additive mapping L : X → Y satisfying (2.9) and moreover L(rkx) = rkL(x) for
all x ∈ X and all 1 ≤ k ≤ n.

By the assumption, for each u ∈ U(A), we get∥∥Du,r1,··· ,rnL(0, · · · , 0, x︸︷︷︸
i th

, 0 · · · , 0)
∥∥
Y

= lim
k→∞

1

2k
∥∥Du,r1,··· ,rnf(0, · · · , 0, 2kx︸︷︷︸

i th

, 0 · · · , 0)
∥∥
Y

≤ lim
k→∞

1

2k
φ(0, · · · , 0, 2kx︸︷︷︸

i th

, 0 · · · , 0) = 0

for all x ∈ X. So
riuL(x) = L(riux)

for all u ∈ U(A) and all x ∈ X. Since L(rix) = riL(x) for all x ∈ X and ri ̸= 0,

L(ux) = uL(x)

for all u ∈ U(A) and all x ∈ X.
By the same reasoning as in the proofs of [40] and [42],

L(ax+ by) = L(ax) + L(by) = aL(x) + bL(y)

for all a, b ∈ A (a, b ̸= 0) and all x, y ∈ X. Since L(0x) = 0 = 0L(x) for all x ∈ X,
the unique generalized Euler-Lagrange type additive mapping L : X → Y is an
A-linear mapping. �
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Corollary 2.5. Let δ ≥ 0, {ϵk}k∈J and {pk}k∈J be real numbers such that ϵk ≥ 0
and 0 < pk < 1 for all k ∈ J, where J ⊆ {1, 2, · · · , n}. Assume that a mapping
f : X → Y with f(0) = 0 satisfies the inequality

∥Du,r1,··· ,rnf(x1, · · · , xn)∥Y ≤ δ +
∑
k∈J

ϵk∥xk∥pkX

for all x1, · · · , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear
generalized Euler-Lagrange type additive mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤


Mij(x), i, j ∈ J ;
Mi(x), i ∈ J, j /∈ J ;
Mj(x), j ∈ J, i /∈ J ;
M, i, j /∈ J .

for all x ∈ X, where

Mij(x) =
9

2
δ +

∑
k∈{i,j}

(2 + 2pk)ϵk
(2− 2pk)rpkk

∥x∥pkX

Mi(x) =
9

2
δ +

(2 + 2pi)ϵi
(2− 2pi)rpii

∥x∥piX

Mj(x) =
9

2
δ +

(2 + 2pj)ϵj
(2− 2pj)r

pj
j

∥x∥pjX , M =
9

2
δ.

Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. Define φ(x1, · · · , xn) := δ+
∑

k∈J ϵk∥xk∥
pk
X , and apply Theorem 2.4. Then

we get the desired result. �

Corollary 2.6. Let δ, ϵ ≥ 0, p, q > 0 with λ = p+ q < 1. Assume that a mapping
f : X → Y with f(0) = 0 satisfies the inequality

∥Du,r1,··· ,rnf(x1, · · · , xn)∥Y ≤ δ + ϵ∥xi∥pX∥xj∥
q
X

for all x1, · · · , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear
generalized Euler-Lagrange type additive mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ 9

2
δ +

(2 + 2λ)ϵ

2(2− 2λ)rpi r
q
j

∥x∥λX

for all x ∈ X. Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. Define φ(x1, · · · , xn) := δ + ϵ∥xi∥pX∥xj∥
q
X . Applying Theorem 2.4, we ob-

tain the desired result. �
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Theorem 2.7. Let f : X → Y be a mapping satisfying f(0) = 0 for which there
is a function ϕ : Xn → [0,∞) such that

ϕ̃ij(x, y) :=
∞∑
k=1

2kϕ
(
0, · · · , x

2k︸︷︷︸
i th

, 0, · · · , y

2k︸︷︷︸
j th

, 0, · · · , 0
)
<∞, (2.21)

lim
k→∞

2kϕ
(x1
2k
, · · · , xn

2k

)
= 0, (2.22)

∥De,r1,··· ,rnf(x1, · · · , xn)∥Y ≤ ϕ(x1, · · · , xn) (2.23)

for all x, x1, · · · , xn ∈ X and y ∈ {0,±x}. Then there exists a unique generalized
Euler-Lagrange type additive mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ 1

4

{[
ϕ̃ij

(2x
ri
,
2x

rj

)
+ 2ϕ̃ij

( x
ri
,− x

rj

)]
+
[
ϕ̃ij

(2x
ri
, 0
)
+ 2ϕ̃ij

( x
ri
, 0
)]

+
[
ϕ̃ij

(
0,

2x

rj

)
+ 2ϕ̃ij

(
0,− x

rj

)]} (2.24)

for all x ∈ X. Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. By a similar method to the proof of Theorem 2.3, we have the following
inequality

∥f(2x)− 2f(x)∥Y ≤ Ψ(x) (2.25)

for all x ∈ X, where

Ψ(x) : =
1

2

{[
ϕij

(2x
ri
,
2x

rj

)
+ 2ϕij

( x
ri
,− x

rj

)]
+
[
ϕij

(2x
ri
, 0
)
+ 2ϕij

( x
ri
, 0
)]

+
[
ϕij

(
0,

2x

rj

)
+ 2ϕij

(
0,− x

rj

)]}
.

It follows from (2.21) that
∞∑
k=1

2kΨ
( x
2k

)
=

1

2

{[
ϕ̃ij

(2x
ri
,
2x

rj

)
+ 2ϕ̃ij

( x
ri
,− x

rj

)]
+
[
ϕ̃ij

(2x
ri
, 0
)
+ 2ϕ̃ij

( x
ri
, 0
)]

+
[
ϕ̃ij

(
0,

2x

rj

)
+ 2ϕ̃ij

(
0,− x

rj

)]}
<∞

(2.26)

for all x ∈ X. Replacing x by x
2k+1 in (2.25) and multiplying both sides of (2.25)

by 2k, we get ∥∥∥2k+1f
( x

2k+1

)
− 2kf

( x
2k
)∥∥∥

Y
≤ 2kΨ

( x

2k+1

)
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for all x ∈ X and all k ∈ Z. Therefore, we have∥∥∥2k+1f
( x

2k+1

)
− 2mf

( x
2m
)∥∥∥

Y
≤

k∑
l=m

∥∥∥2l+1f
( x

2l+1

)
− 2lf

( x
2l
)∥∥∥

Y

≤
k∑

l=m

2lΨ
( x

2l+1

) (2.27)

for all x ∈ X and all integers k ≥ m. It follows from (2.26) and (2.27) that the
sequence {2kf( x

2k
)} is Cauchy in Y for all x ∈ X, and thus converges by the

completeness of Y. Thus we can define a mapping L : X → Y by

L(x) = lim
k→∞

2kf
( x
2k

)
for all x ∈ X. Letting m = 0 in (2.27) and taking the limit as k → ∞ in (2.27),
we obtain the desired inequality (2.24).

The rest of the proof is similar to the proof of Theorem 2.3. �

Theorem 2.8. Let f : X → Y be a mapping with f(0) = 0 for which there is a
function ϕ : Xn → [0,∞) satisfying (2.21), (2.22) and

∥Du,r1,··· ,rnf(x1, · · · , xn)∥ ≤ ϕ(x1, · · · , xn) (2.28)

for all x1, · · · , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear
generalized Euler-Lagrange type additive mapping L : X → Y satisfying (2.24)
for all x ∈ X. Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. The proof is similar to the proof of Theorem 2.4. �

Corollary 2.9. Let {ϵk}k∈J and {pk}k∈J be real numbers such that ϵk ≥ 0 and
pk > 1 for all k ∈ J, where J ⊆ {1, 2, · · · , n}. Assume that a mapping f : X → Y
with f(0) = 0 satisfies the inequality

∥Du,r1,··· ,rnf(x1, · · · , xn)∥Y ≤
∑
k∈J

ϵk∥xk∥pkX

for all x1, · · · , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear
generalized Euler-Lagrange type additive mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤


Nij(x), i, j ∈ J ;
Ni(x), i ∈ J, j /∈ J ;
Nj(x), j ∈ J, i /∈ J ;
N, i, j /∈ J .
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for all x ∈ X, where

Nij(x) =
∑

k∈{i,j}

(2pk + 2)ϵk
(2pk − 2)rpkk

∥x∥pkX

Ni(x) =
(2pi + 2)ϵi
(2pi − 2)rpii

∥x∥piX

Nj(x) =
(2pj + 2)ϵj
(2pj − 2)r

pj
j

∥x∥pjX .

Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. Define ϕ(x1, · · · , xn) :=
∑

k∈J ϵk∥xk∥
pk
X . Applying Theorem 2.8, we obtain

the desired result. �

Corollary 2.10. Let ϵ ≥ 0, p, q > 0 with λ = p+ q > 1. Assume that a mapping
f : X → Y with f(0) = 0 satisfies the inequality

∥Du,r1,··· ,rnf(x1, · · · , xn)∥Y ≤ ϵ∥xi∥pX∥xj∥
q
X

for all x1, · · · , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear
generalized Euler-Lagrange type additive mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ (2λ + 2)ϵ

2(2λ − 2)rpi r
q
j

∥x∥λX

for all x ∈ X. Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. Define ϕ(x1, · · · , xn) := ϵ∥xi∥pX∥xj∥
q
X . Applying Theorem 2.8, we obtain

the desired result. �

Remark 2.11. In Theorems 2.7, 2.8 and Corollaries 2.9, 2.10 one can assume
that

∑n
k=1 rk ̸= 0 instead of f(0) = 0.

3. Homomorphisms in unital C∗-algebras

In this section, we investigate C∗-algebra homomorphisms in unital C∗-algebras.
We will use the following lemma in the proof of the next theorem.

Lemma 3.1. [42] Let f : A→ B be an additive mapping such that f(µx) = µf(x)
for all x ∈ A and all µ ∈ S1 := {λ ∈ C : |λ| = 1 }. Then the mapping f : A→ B
is C-linear.
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Theorem 3.2. Let ϵ ≥ 0 and {pk}k∈J be real numbers such that pk > 0 for all
k ∈ J, where J ⊆ {1, 2, · · · , n} and |J | ≥ 3. Let f : A → B be a mapping with
f(0) = 0 for which there is a function φ : An → [0,∞) satisfying (2.7) and

∥Dµ,r1,··· ,rnf(x1, · · · , xn)∥B ≤ ϵ
∏
k∈J

∥xk∥pkA (3.1)

∥∥f(2ku∗)− f(2ku)∗
∥∥
B
≤ φ(2ku, · · · , 2ku︸ ︷︷ ︸

n times

), (3.2)

∥∥f(2kux)− f(2ku)f(x)
∥∥
B
≤ φ(2kux, · · · , 2kux︸ ︷︷ ︸

n times

) (3.3)

for all x, x1, · · · , xn ∈ A, all u ∈ U(A), all k ∈ N and all µ ∈ S1. Then the
mapping f : A→ B is a C∗-algebra homomorphism.

Proof. Since |J | ≥ 3, letting µ = 1 and xk = 0 for all 1 ≤ k ≤ n, k ̸= i, j, in (3.1),
we get

f

(
−rixi + rjxj

2

)
+ f

(
rixi − rjxj

2

)
+ rif(xi) + rjf(xj) = 2f

(
rixi + rjxj

2

)
for all xi, xj ∈ A. By the same reasoning as in the proof of Lemma 2.1, the
mapping f is additive and f(rkx) = rkf(x) for all x ∈ A and k = i, j. So by
letting xi = x and xk = 0 for all 1 ≤ k ≤ n, k ̸= i, in (3.1), we get that
f(µx) = µf(x) for all x ∈ A and all µ ∈ S1. Therefore, by Lemma 3.1, the
mapping f is C-linear. Hence it follows from (2.7), (3.2) and (3.3) that

∥f(u∗)− f(u)∗∥B = lim
k→∞

1

2k
∥∥f(2ku∗)− f(2ku)∗

∥∥
B

≤ lim
k→∞

1

2k
φ(2ku, · · · , 2ku︸ ︷︷ ︸

n times

) = 0,

∥f(ux)− f(u)f(x)∥B = lim
k→∞

1

2k
∥∥f(2kux)− f(2ku)f(x)

∥∥
B

≤ lim
k→∞

1

2k
φ(2kux, · · · , 2kux︸ ︷︷ ︸

n times

) = 0

for all x ∈ A and all u ∈ U(A). So f(u∗) = f(u)∗ and f(ux) = f(u)f(x) for all
x ∈ A and all u ∈ U(A). Since f is C-linear and each x ∈ A is a finite linear
combination of unitary elements (see [23]), i.e., x =

∑m
k=1 λkuk, where λk ∈ C

and uk ∈ U(A) for all 1 ≤ k ≤ n, we have

f(x∗) = f

(
m∑
k=1

λku
∗
k

)
=

m∑
k=1

λkf (u
∗
k) =

m∑
k=1

λkf(uk)
∗

=

(
m∑
k=1

λkf(uk)

)∗

= f

(
m∑
k=1

λkuk

)∗

= f(x)∗,
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f(xy) = f

(
m∑
k=1

λkuky

)
=

m∑
k=1

λkf(uky)

=
m∑
k=1

λkf(uk)f(y) = f

(
m∑
k=1

λkuk

)
f(y)

= f(x)f(y)

for all x, y ∈ A.
Therefore, the mapping f : A→ B is a C∗-algebra homomorphism. �

The following theorem is an alternative result of Theorem 3.2.

Theorem 3.3. Let ϵ ≥ 0 and {pk}k∈J be real numbers such that pk > 0 for all
k ∈ J, where J ⊆ {1, 2, · · · , n} and |J | ≥ 3. Let f : A → B be a mapping with
f(0) = 0 for which there is a function φ : An → [0,∞) satisfying (2.22) and

∥Dµ,r1,··· ,rnf(x1, · · · , xn)∥B ≤ ϵ
∏
k∈J

∥xk∥pkA

∥∥∥f(u∗
2k
)
− f

( u
2k
)∗∥∥∥

B
≤ ϕ

( u
2k
, · · · , u

2k︸ ︷︷ ︸
n times

)
, (3.4)

∥∥∥f(ux
2k
)
− f

( u
2k
)
f(x)

∥∥∥
B
≤ ϕ

( ux
2k
, · · · , ux

2k︸ ︷︷ ︸
n times

)
(3.5)

for all x, x1, · · · , xn ∈ A, all u ∈ U(A), all k ∈ N and all µ ∈ S1. Then the
mapping f : A→ B is a C∗-algebra homomorphism.

Remark 3.4. In Theorems 3.2 and 3.3, one can assume that
∑n

k=1 rk ̸= 0 instead
of f(0) = 0.

Theorem 3.5. Let f : A → B be a mapping with f(0) = 0 for which there is a
function φ : An → [0,∞) satisfying (2.6), (2.7), (3.2), (3.3) and

∥Dµ,r1,··· ,rnf(x1, · · · , xn)∥B ≤ φ(x1, · · · , xn), (3.6)

for all x1, · · · , xn ∈ A and all µ ∈ S1. Assume that limk→∞
1
2k
f(2ke) is invertible.

Then the mapping f : A→ B is a C∗-algebra homomorphism.

Proof. Consider the C∗-algebras A and B as left Banach modules over the unital
C∗-algebra C. By Theorem 2.4, there exists a unique C-linear generalized Euler-
Lagrange type additive mapping H : A→ B defined by

H(x) = lim
k→∞

1

2k
f(2kx)
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for all x ∈ A. By (2.7), (3.2) and (3.3), we get

∥H (u∗)−H(u)∗∥B = lim
k→∞

1

2k

∥∥∥f (2ku∗)− f
(
2ku
)∗ ∥∥∥

B

≤ lim
k→∞

1

2k
φ(2ku, · · · , 2ku︸ ︷︷ ︸

n times

) = 0,

∥H(ux)−H(u)f(x)∥B = lim
k→∞

1

2k
∥∥f (2kux)− f(2ku)f(x)

∥∥
B

≤ lim
k→∞

1

2k
φ(2kux, · · · , 2kux︸ ︷︷ ︸

n times

) = 0

for all u ∈ U(A) and all x ∈ A. So H (u∗) = H(u)∗ and H(ux) = H(u)f(x) for
all u ∈ U(A) and all x ∈ A. Therefore, by the additivity of H, we have

H(ux) = lim
k→∞

1

2k
H
(
2kux

)
= H(u) lim

k→∞

1

2k
f
(
2kx
)
= H(u)H(x) (3.7)

for all u ∈ U(A) and all x ∈ A. Since H is C-linear and each x ∈ A is a finite
linear combination of unitary elements, i.e., x =

∑m
k=1 λkuk, where λk ∈ C and

uk ∈ U(A) for all 1 ≤ k ≤ n, it follows from (3.7) that

H(xy) = H

(
m∑
k=1

λkuky

)
=

m∑
k=1

λkH(uky)

=
m∑
k=1

λkH(uk)H(y) = H

(
m∑
k=1

λkuk

)
H(y)

= H(x)H(y),

H (x∗) = H

(
m∑
k=1

λku
∗
k

)
=

m∑
k=1

λkH(u∗k) =
m∑
k=1

λkH(uk)
∗

=

(
m∑
k=1

λkH(uk)

)∗

= H
( m∑

k=1

λkuk
)∗

= H(x)∗

for all x, y ∈ A. Since H(e) = limk→∞
1
2k
f(2ke) is invertible and

H(e)H(y) = H(ey) = H(e)f(y)

for all y ∈ A, H(y) = f(y) for all y ∈ A.
Therefore, the mapping f : A→ B is a C∗-algebra homomorphism. �

The following theorem is an alternative result of Theorem 3.5.

Theorem 3.6. Let f : A → B be a mapping with f(0) = 0 for which there is a
function ϕ : An → [0,∞) satisfying (2.21), (2.22), (3.4), (3.5) and

∥Dµ,r1,··· ,rnf(x1, · · · , xn)∥B ≤ ϕ(x1, · · · , xn),
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for all x1, · · · , xn ∈ A and all µ ∈ S1. Assume that limk→∞ 2kf( e
2k
) is invertible.

Then the mapping f : A→ B is a C∗-algebra homomorphism.

Corollary 3.7. Let {ϵk}k∈J and {pk}k∈J be real numbers such that ϵk ≥ 0 and
pk > 1 (0 < pk < 1) for all k ∈ J, where J ⊆ {1, 2, · · · , n}. Assume that a
mapping f : A→ B with f(0) = 0 satisfies the inequalities

∥Dµ,r1,··· ,rnf(x1, · · · , xn)∥B ≤
∑
k∈J

ϵk∥xk∥pkA ,∥∥∥f( u∗
2m
)
− f

( u
2m
)∗∥∥∥

B
≤
∑
k∈J

ϵk
2mpk(

respectively, ∥f(2mu∗)− f(2mu)∗∥B ≤
∑
k∈J

ϵk2
mpk
)
,∥∥∥f(ux

2m
)
− f

( u
2m
)
f(x)

∥∥∥
B
≤
∑
k∈J

ϵk
2mpk

∥x∥pkA(
respectively, ∥f(2mux)− f(2mu)f(x)∥B ≤

∑
k∈J

ϵk2
mpk∥x∥pkA

)
for all x1, · · · , xn ∈ A, all u ∈ U(A), all m ∈ N and all µ ∈ S1. Assume that
limk→∞ 2kf( e

2k
)
(
respectively, limk→∞

1
2k
f(2ke)

)
is invertible. Then the mapping

f : A→ B is a C∗-algebra homomorphism.

Proof. The result follows from Theorem 3.6 (respectively, Theorem 3.5). �

Remark 3.8. In Theorem 3.6 and Corollary 3.7, one can assume that
∑n

k=1 rk ̸=
0 instead of f(0) = 0.

Theorem 3.9. Let f : A → B be a mapping with f(0) = 0 for which there is a
function φ : An → [0,∞) satisfying (2.6), (2.7), (3.2), (3.3) and

∥Dµ,r1,··· ,rnf(x1, · · · , xn)∥B ≤ φ(x1, · · · , xn) (3.8)

for µ = i, 1 and all x1, · · · , xn ∈ A. Assume that limk→∞
1
2k
f(2ke) is invertible

and for each fixed x ∈ A the mapping t 7→ f(tx) is continuous in t ∈ R. Then
the mapping f : A→ B is a C∗-algebra homomorphism.

Proof. Put µ = 1 in (3.8). By the same reasoning as in the proof of Theorem
2.3, there exists a unique generalized Euler–Lagrange type additive mapping H :
A→ B defined by

H(x) = lim
k→∞

f(2kx)

2k

for all x ∈ A. By the same reasoning as in the proof of [58], the generalized
Euler-Lagrange type additive mapping H : A→ B is R-linear.
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By the same method as in the proof of Theorem 2.4, we have∥∥∥∥∥∥Dµ,r1,··· ,rnH(0, · · · , 0, x︸︷︷︸
j th

, 0 · · · , 0)

∥∥∥∥∥∥
Y

= lim
k→∞

1

2k

∥∥∥∥∥∥Dµ,r1,··· ,rnf(0, · · · , 0, 2kx︸︷︷︸
j th

, 0 · · · , 0)

∥∥∥∥∥∥
Y

≤ lim
k→∞

1

2k
φ(0, · · · , 0, 2kx︸︷︷︸

j th

, 0 · · · , 0) = 0

for all x ∈ A. So

rjµH(x) = H(rjµx)

for all x ∈ A. Since H(rjx) = rjH(x) for all x ∈ X and rj ̸= 0,

H(µx) = µH(x)

for µ = i, 1 and all x ∈ A.
For each element λ ∈ C we have λ = s+ it, where s, t ∈ R. Thus

H(λx) = H(sx+ itx) = sH(x) + tH(ix)

= sH(x) + itH(x) = (s+ it)H(x)

= λH(x)

for all λ ∈ C and all x ∈ A. So

H(ζx+ ηy) = H(ζx) +H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C and all x, y ∈ A. Hence the generalized Euler-Lagrange type
additive mapping H : A→ B is C-linear.

The rest of the proof is the same as in the proof of Theorem 3.5. �

The following theorem is an alternative result of Theorem 3.9.

Theorem 3.10. Let f : A→ B be a mapping with f(0) = 0 for which there is a
function ϕ : An → [0,∞) satisfying (2.21), (2.22), (3.4), (3.5) and

∥Dµ,r1,··· ,rnf(x1, · · · , xn)∥B ≤ ϕ(x1, · · · , xn), (3.9)

for µ = i, 1 and all x, x1, · · · , xn ∈ A. Assume that limk→∞ 2kf( e
2k
) is invertible

and for each fixed x ∈ A the mapping t 7→ f(tx) is continuous in t ∈ R. Then
the mapping f : A→ B is a C∗-algebra homomorphism.

Remark 3.11. In Theorem 3.10, one can assume that
∑n

k=1 rk ̸= 0 instead of
f(0) = 0.
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11. P. Gǎvruta, On the stability of some functional equations, in: Stability of Mappings of
Hyers-Ulam Type, Hadronic Press lnc. Palm Harbor, Florida (1994), 93–98.
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