The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

COMMENT ON AND A CHARACTERIZATION OF THE CONCEPT OF COMPLETE RESIDUATED LATTICE

FATHEI M. ZEYADA¹ AND M. A. ABD-ALLAH²

ABSTRACT. We prove that some properties of the definition of complete residuated lattice [2,4] can be derived from the other properties. Furthermore we prove that the concept of strictly two-sided commutative quantale [1,3] and the concept of complete residuated lattice are equivalent notions.

1. INTRODUCTION

Definition 1. A structure $(L, \lor, \land, \ast, \rightarrow, \bot, \top)$ is called a complete residuated lattice iff

(1) $(L, \lor, \land, \bot, \top)$ is a complete lattice whose greatest and least element are \top, \bot respectively,

(2) $(L,*,\top)$ is a commutative monoid, i.e.,

(a) * is a commutative and associative binary operation on L, and

(b) $\forall a \in L, a * \top = \top * a = a$,

(3)(a) * is isotone,

(b) \rightarrow is a binary operation on L which is antitone in the first and isotone in the second variable,

(c) \rightarrow is couple with * as: $a * b \leq c$ iff $a \leq b \rightarrow c \quad \forall a, b, c \in L$.

The following proposition illustrates that the conditions (3)(a) and (3)(b) are consequences from the other conditions. Therefore conditions (3)(a) and (3)(b) should be omit from Definition 1 to be consistent.

Key words and phrases. Complete residuated lattice; Quantale; Complete MV-algebra.

Date: Received:March 2008; Revised: May 2008

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 42A20; Secondary 42A32.

Proposition 1. The conditions (3)(a) and (3)(b) are obtained from the commutativety of * and from (3)(c).

Proof. Let $a_1, a_2, b \in L$ *s.t.* $a_1 \leq a_2$.

(3)(a) Since $a_2 * b \le a_2 * b$, then $a_2 \le b \to (a_2 * b)$ and so $a_1 \le b \to (a_2 * b)$. So $a_1 * b \le a_2 * b$. Since * is commutative, then $b * a_1 \le b * a_2$. Hence * is isotone.

(3)(b) Since $a_2 \to b \leq a_2 \to b$, then $(a_2 \to b) * a_2 \leq b$. So, $(a_2 \to b) * a_1 \leq b$ which implies that $a_2 \to b \leq a_1 \to b$, i.e., \to is antitone in the first variable. Since $b \to a_1 \leq b \to a_1$, then $(b \to a_1) * b \leq a_1 \leq a_2$. So, $b \to a_1 \leq b \to a_2$, *i.e.*, \to is isotone in the second variable.

For the following definition we refer to [1,3].

Definition 2. A structure $(L, \lor, \land, *, \rightarrow, \bot, \top)$ is called a strictly two-sided commutative quantale iff

(1) $(L, \lor, \land, \bot, \top)$ is a complete lattice whose greatest and least element are \top, \bot respectively,

(2) $(L,*,\top)$ is a commutative monoid,

(3)(a) * is distributive over arbitrary joins, i.e., $a * \bigvee_{j \in J} b_j = \bigvee_{j \in J} (a * b_j) \ \forall a \in L$, $\forall \{b_j | j \in J\} \subseteq L$,

(b) \rightarrow is a binary operation on L defined by : $a \rightarrow b = \bigvee_{\lambda * a \leq b} \lambda \quad \forall a, b \in L$.

Lemma 1. In any strictly two-sided commutative quantale $(L, \lor, \land, *, \rightarrow, \bot, \top)$, * is isotone.

Proof. Let $a_1, a_2, b \in L$ s.t. $a_1 \leq a_2$. Now, $b * a_2 = b * (a_1 \lor a_2) = (b * a_1) \lor (b * a_2)$. Then $b * a_1 \leq b * a_2$. nce * is commutative, then $a_1 * b \leq a_2 * b$. Hence * is isotone.

Theorem 1. A structure $(L, \lor, \land, *, \rightarrow, \bot, \top)$ is complete residuated lattice iff it is strictly two-sided commutative quantale.

Proof. \implies : First, since for every $\lambda \in L$ s.t. $a * \lambda \leq b$ we have $\lambda \leq a \to b$. Then $\forall_{\lambda * a \leq b} \lambda \leq a \to b$. Since $a \to b \leq a \to b$, then $(a \to b) * a \leq b$. So, $a \to b \in \{\lambda \in L \mid \lambda * a \leq b\}$. Hence $\forall_{\lambda * a < b} \lambda = a \to b$.

Second, since * is isotone, then $\forall_{j\in J}(a * b_j) \leq a * \forall_{j\in J}b_j$. Now, $\forall j \in J, b_j \leq a \rightarrow (a * b_j)$ which implies that $\forall_{j\in J}b_j \leq a \rightarrow \forall_{j\in J}(a * b_j)$. Thus $a * \forall_{j\in J}b_j \leq \forall_{j\in J}(a * b_j)$. Hence $a * \forall_{j\in J}b_j = \forall_{j\in J}(a * b_j)$.

 $\underline{\leftarrow}: \text{Let } a * b \leq c. \text{ Then } b \to c = \vee_{\lambda * b \leq c} \lambda \geq a. \text{ Conversely, let } a \leq b \to c.$ Then, $a \leq \vee_{\lambda * b \leq c} \lambda$. So from Lemma 1, $a * b \leq (\vee_{\lambda * b \leq c} \lambda) * b = \vee_{\lambda * b \leq c} (\lambda * b) \leq c.$

Definition 3 [1]. A structure $(L, \lor, \land, *, \rightarrow, \bot, \top)$ is called a complete MV- algebra iff the following conditions are satisfied:

- (1) $(L, \lor, \land, \ast, \rightarrow, \bot, \top)$ is a strictly two-sided commutative quantale;
- (2) $\forall a, b \in L, (a \to b) \to b = a \lor b.$

Corollary 1. $(L, \lor, \land, *, \rightarrow, \bot, \top)$ is a complete MV- algebra iff $(L, \lor, \land, *, \rightarrow, \bot, \top)$ is a complete residuated lattice satisfies the additinal property (MV) $(a \rightarrow b) \rightarrow b = a \lor b \forall a, b \in L$.

References

- U.Höhle, Characterization of L-topologies by L-valued neighborhoods, in: U. Höhle, S.E.Rodabaugh (Eds.), The Handbooks of Fuzzy Sets Series, Vol.3, Kluwer ACademic Publishers, Dordrecht, 1999.pp.389-432.
- 2. J.Pavelka, On fuzzy logic II, Z. Math. Logic Gvundlagen Math. 25:119-134(1979).
- K.I. Rosenthal, Quantales and their applications, Pitman Research Notes in Mathematics 234(Longman, Burnt Mill, Harlow 1990).
- 4. M.S.Ying, Fuzzifying topology based on complete residuated lattice-valued logic (I), Fuzzy Sets and Systems 56(1993)337-373.

¹ Center of Mathematics and Theoretical Computer Sciences Assiut, Egypt

 2 Department of Mathematics, Faculty of Science, Al Azhar University, Assiut, Egypt