A NOTE ON D_{11}-MODULES

Y. TALEBI ${ }^{1 *}$ AND M. VEYLAKI ${ }^{2}$

Abstract. Let M be a right R-module. M is called D_{11}-module if every submodule of M has a supplement which is a direct summand of M and M is called a D_{11}^{+}- module if every direct summand of M is a D_{11} - module. In this paper we study some properties of D_{11} modules.

1. Introduction and preliminaries

Throughout this article, all rings are associative and have an identity, and all modules are unitary right R-modules. Let M be an R - module. An R - module N is said to be subgenerated by M, if N is isomorphic to a submodule of an $M-$ generated module. We denote by $\sigma[M]$ the full subcategory of $\operatorname{Mod}-R$ whose objects are all R - modules subgenerated by M (see [6]). The injective hull of any module $N \in \sigma[M]$ is denoted by \hat{N}. The module $N \in \sigma[M]$ is said to be $M-$ small if $N \ll \hat{N}$. Talebi and Vanaja in [4] defined:
$\bar{Z}_{M}(N)=\operatorname{Re}(N, S)=\bigcap\{\operatorname{ker}(g) \mid g \in \operatorname{Hom}(N, L), L \in S\}$ where S denoted the class of all M-small modules. They call N, M-cosingular if $\bar{Z}_{M}(N)=0$ and N non- M-cosingular if $\bar{Z}_{M}(N)=N$. Clearly, every M - small module in $\sigma[M]$ is M-cosingular. A submodule L is called small in M (denoted by $L \ll M$), if for every proper submodule K of $M, L+K=M$ implies $K=M$ see [1]. In [2] complement of a submodule which is direct summand studied, but in this note we show when supplement submodule is direct summand. For two submodules N and K of M, N is called a supplement of K in M if, N is minimal with the property $M=K+N$, equivalently $M=K+N$ and $N \cap L \ll N$. A module M is called supplemented if, every submodule of M has a supplement in M. A module M is called a D_{11}-module if every submodule of M has a supplement which is

[^0]direct summand of $M . M$ is called D_{11}^{+}module if any direct summand of M is D_{11}. A module M is called amply supplemented if for any two submodules A and B of M with $M=A+B$,there exists a supplement P of A in M which is contained in B.

2. Main Results

Definition 2.1. We call N lies above K iff $N / K \ll M / K$. A submodule N of M is coclosed in M iff N has no proper submodule K such that N lies above K.

Definition 2.2. A module M is called $F I$-lifting if every fully invariant submodule of M lies above a direct summand.

Theorem 2.3. Let $M=M_{1} \oplus M_{2}$, where M_{1} is a fully invariant coclosed submodule of M. If the intersection of M_{2} with any direct summand of M (such K_{2})is a direct summand of K_{2}, then M has D_{11} if and only if both M_{1} and M_{2} have D_{11}.

Proof. Assume that M_{1} and M_{2} have D_{11}, by [5, 2.5], any finite direct sum of modules with D_{11} is a D_{11}-module. So M is D_{11}-module. Now suppose that M has D_{11}. Since M_{1} is a fully invariant coclosed submodule of M, by [5, 2.4], M_{1} has D_{11}. Let $Y \leq M_{2}$. Since M has D_{11}, there exists a decomposition $M=K_{1} \oplus K_{2}$ such that K_{2} is a supplement of Y in M, that is, $K_{2}+Y=M$ and $K_{2} \cap Y \ll K_{2}$. Thus $M_{2}=M_{2} \cap M=M_{2} \cap\left(K_{2}+Y\right)=Y+\left(K_{2} \cap M_{2}\right)$. And $\left(K_{2} \cap M_{2}\right) \cap Y=K_{2} \cap Y \ll K_{2}$. By assumption, $K_{2} \cap M_{2}$ is a direct summand of K_{2}. So $K_{2} \cap Y \ll K_{2} \cap M_{2}$. Hence M_{2} has D_{11}.

Theorem 2.4. Let M be a D_{11} - module and X be a fully invariant coclosed submodule of M and $\bar{M}=M / X$. Then \bar{M} has D_{11}.

Proof. Let $\bar{A} \leq \bar{M}$. Then $\bar{A}=A / X$ for some $A \leq M_{R}$. Since M has D_{11}, there exists a decomposition $M=M_{1} \oplus M_{2}$ such that M_{1} is a supplement of A in M, that is, $A+M_{1}=M$ and $A \cap M_{1} \ll M_{1}$. Thus $M=M_{1} \oplus M_{2}, M / X=\left(M_{1} \oplus\right.$ $\left.M_{2}\right) / X=\left(M_{1}+X\right) / X \oplus\left(M_{2}+X\right) / X$. Hence $\left(M_{1}+X\right) / X$ is a direct summand of M / X. We have $A+M_{1}=M$. It follows that $A / X+\left(M_{1}+X\right) / X=M / X$. We claim that $\left(\left(A \cap M_{1}\right)+X\right) / X \ll\left(M_{1}+X\right) / X$. Let $B / X \subseteq\left(M_{1}+X\right) / X$ for some $B \subseteq M_{1}+X$, such that $\left(\left(A \cap M_{1}\right)+X\right) / X+B / X=\left(M_{1}+X\right) / X$. Then $\left(\left(A \cap M_{1}\right)+B+X\right) / X=\left(M_{1}+X\right) / X$. Hence $\left(A \cap M_{1}\right)+B=M_{1}+X$. Since $\left(A \cap M_{1}\right) \ll M_{1},\left(A \cap M_{1}\right) \ll M_{1}+X$. So $B=M_{1}+X$. Hence $B / X=\left(M_{1}+X\right) / X$. Therefore \bar{M} has D_{11}.

3. D_{11} - Modules and $\bar{Z}^{2}(M)$

Let $N \in \sigma[M]$. Note that for every direct summand A of $N, \overline{Z_{M}^{2}}(A)=\overline{Z_{M}^{2}}(N) \cap$ A, [4, 2.1(4)]. M is called amply supplemented if for any two submodules N and L of M with $N+L=M, N$ contains a supplement of L in M. Also for each decomposition $N=N_{1} \oplus N_{2}$ of N, we have that $\overline{Z_{M}^{2}}(N)=\left(\overline{Z_{M}^{2}}(N) \cap N_{1}\right) \oplus$ $\left(\overline{Z_{M}^{2}}(N) \cap N_{2}\right)$.

Theorem 3.1. Let $N \in \sigma[M]$ be an amply supplemented D_{11} - module and X is a fully invariant coclosed submodule of N. Then $N=N_{1} \oplus N_{2}$, where $X / N_{1} \ll$ N / N_{1}. Moreover:
(i) $\overline{Z_{M}^{2}}\left(N_{1}\right)$ has D_{11} implies N_{1} has D_{11}.
(ii) $Z_{M}^{2}\left(N_{2}\right)$ has D_{11} implies N_{2} has D_{11}.
(iii) $N_{1} \leq N ;\left(\overline{Z_{M}^{2}}(N) \leq N_{1}\right)$ implies both N_{1} and N_{2} have D_{11}.
(iv) $\overline{Z_{M}^{2}}(N) \leq N_{2}$ implies both N_{1} and N_{2} have D_{11}.

Proof. Since N has D_{11} there exists a decomposition $N=N_{1} \oplus N_{2}$ such that, $X+N_{2}=N$ and $X \cap N_{2} \ll N_{2}$. Since X is a fully invariant coclosed submodule of $N, X \cap\left(N_{1} \oplus N_{2}\right)=\left(X \cap N_{1}\right) \oplus\left(X \cap N_{2}\right)$. Then by [3, 2.3], $X=\left(X+N_{1}\right) \cap(X+$ $\left.N_{2}\right)=X+N_{1}$. Hence $N_{1} \leq X$. Thus we have X lies above a direct summand of N_{1}. Therefore by definition N is $F I$-lifting. So $N=N_{1} \oplus N_{2} ; X / N_{1} \ll N / N_{1}$.
(i) We prove first $\overline{Z_{M}^{2}}(N)$ is a direct summand of N. Since N has D_{11}, there exists a decomposition $N=K \oplus L$ such that $K+\overline{Z_{M}^{2}}(N)=N$ and $K \cap \overline{Z_{M}^{2}}(N)=$ $\overline{Z_{M}^{2}}(K) \ll K$. Then $\overline{Z_{M}^{2}}(K)$ is M-small and so, M-cosingular. On the other hand, by [4, 3.4], $\overline{Z_{M}^{2}}(N)$ is a non- M--cosingular submodule of N. So, by [4, 2.4], $\overline{Z_{M}^{2}}(K)$ is non- M-cosingular. Hence $\overline{Z_{M}^{2}}(K)=0$. Therefore $N=K+\overline{Z_{M}^{2}}(N)=$ $K \oplus \overline{Z_{M}^{2}}(N)$. Now from Theorem 2.3, both $\overline{Z_{M}^{2}}(N)$ and K have D_{11}. As $N=$ $N_{1} \oplus N_{2}, \overline{Z_{M}^{2}}(N)=\overline{Z_{M}^{2}}\left(N_{1}\right) \oplus \overline{Z_{M}^{2}}\left(N_{2}\right)$. So $N=N_{1} \oplus N_{2}=\overline{Z_{M}^{2}}\left(N_{1}\right) \oplus T$. Then $N_{1}=N_{1} \cap N=N_{1} \cap\left[Z_{M}^{2}\left(N_{1}\right) \oplus T\right]=\overline{Z_{M}^{2}}\left(N_{1}\right) \oplus\left[N_{1} \cap T\right]$. Hence $\bar{Z}_{M}^{2}\left(N_{1}\right)$ is a direct summand of N_{1}. Suppose that $N_{1}=Z_{M}^{2}\left(N_{1}\right) \oplus K_{1}$. Similarly, $N_{2}=Z_{M}^{2}\left(N_{2}\right) \oplus K_{2}$. Thus $N=N_{1} \oplus N_{2}=\overline{Z_{M}^{2}}\left(N_{1}\right) \oplus \overline{Z_{M}^{2}}\left(N_{2}\right) \oplus K_{1} \oplus K_{2}=\overline{Z_{M}^{2}}(N) \oplus K$. It follows that $K_{1} \oplus K_{2} \cong K$. Since K has D_{11}, then K_{1} and K_{2} have $D_{11 .}$. By assumption $\overline{Z_{M}^{2}}\left(N_{1}\right)$ has D_{11} and K_{1} has D_{11}, hence by Theorem $2.3 N_{1}=\overline{Z_{M}^{2}}\left(N_{1}\right) \oplus K_{1}$ has D_{11}.
(ii)It is similar to part (i).
(iii) It follows from Theorem 2.3.
(iv) $\overline{Z_{M}^{2}}(N) \subseteq N_{2}$ implies that $N_{1} \cap \overline{Z_{M}^{2}}(N)=\overline{Z_{M}^{2}}\left(N_{1}\right)=0$. So from $\overline{Z_{M}^{2}}(N)=$ $\overline{Z_{M}^{2}}\left(N_{1}\right) \oplus \overline{Z_{M}^{2}}\left(N_{2}\right)$, we obtain that $\overline{Z_{M}^{2}}(N)=\overline{Z_{M}^{2}}\left(N_{2}\right)$. Hence $\overline{Z_{M}^{2}}\left(N_{1}\right)=0$ has D_{11} and $\overline{Z_{M}^{2}}\left(N_{2}\right)$ has D_{11}. By parts (i) and (ii) N_{1} and N_{2} are D_{11}-modules.

Acknowledgements. This research partially is supported by the "research center in Algebraic Hyperstructure and Fuzzy Mathematics University of Mazandaran, Babolsar, Iran".

References

1. F.W.Anderson and K.R.Fuller, Rings and categories of modules. Berlin, New York,Springerverlag,(1992). 1
2. G.F.Birkenmeier and A.Tercan, When some complement of a submodule is a summand Comm.Algebra 35 (2007)597-611. 1
3. A.Ozcan and A. Harmanic Duo modules Glasgow Math. J. 48(3)(2006) 535-545. 3
4. Y.Talebi and N.Vanaja, The Torsion theory cogenerated by M-small modules. Comm.Algebra 30(3)(2002),1449-1460. 1, 3, 3
5. Y.Wang, A Note on modules with (D_{11}^{+}). Southeast Asian Bulletin of Mathematics (2004) 28 999-1002. 2
6. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia,(1991). 1
${ }^{1}$ Department of Mathematics, University of Mazandaran, Babolsar, Iran.
E-mail address: talebi@umz.ac.ir
${ }^{2}$ Department of Mathematics, University of Mazandaran, Babolsar, Iran. E-mail address: mrveylaki@gmail.com

[^0]: Date: Received: 27 September 2008.

 * Corresponding author.

 2000 Mathematics Subject Classification. Primary 16D90; Secondary 16D99.
 Key words and phrases. $D_{11^{-}}$module, $D_{11^{-}}^{+}$module.

