The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

A NOTE ON D_{11} -MODULES

Y. TALEBI^{1*} AND M. VEYLAKI²

ABSTRACT. Let M be a right R-module. M is called D_{11} -module if every submodule of M has a supplement which is a direct summand of M and Mis called a D_{11}^+ -module if every direct summand of M is a D_{11} -module. In this paper we study some properties of D_{11} modules.

1. INTRODUCTION AND PRELIMINARIES

Throughout this article, all rings are associative and have an identity, and all modules are unitary right R-modules. Let M be an R-module. An R-module N is said to be subgenerated by M, if N is isomorphic to a submodule of an M-generated module. We denote by $\sigma[M]$ the full subcategory of Mod-R whose objects are all R-modules subgenerated by M (see [6]). The injective hull of any module $N \in \sigma[M]$ is denoted by \hat{N} . The module $N \in \sigma[M]$ is said to be M-small if $N \ll \hat{N}$. Talebi and Vanaja in [4] defined:

 $\overline{Z}_M(N) = Re(N, S) = \bigcap \{ \ker(g) | g \in Hom(N, L), L \in S \}$ where S denoted the class of all M-small modules. They call N, M-cosingular if $\overline{Z}_M(N) = 0$ and N non-M-cosingular if $\overline{Z}_M(N) = N$. Clearly, every M- small module in $\sigma[M]$ is M-cosingular. A submodule L is called small in M (denoted by $L \ll M$), if for every proper submodule K of M, L + K = M implies K = M see [1]. In [2] complement of a submodule which is direct summand studied, but in this note we show when supplement submodule is direct summand. For two submodules N and K of M, N is called a *supplement* of K in M if, N is minimal with the property M = K + N, equivalently M = K + N and $N \cap L \ll N$. A module M is called *supplemented* if, every submodule of M has a supplement in M. A module M is called a D_{11} -module if every submodule of M has a supplement which is

Date: Received: 27 September 2008.

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 16D90; Secondary 16D99.

Key words and phrases. D_{11} - module, D_{11}^+ - module.

direct summand of M. M is called D_{11}^+ -module if any direct summand of M is D_{11} . A module M is called amply supplemented if for any two submodules A and B of M with M = A + B, there exists a supplement P of A in M which is contained in B.

2. Main results

Definition 2.1. We call N lies above K iff $N/K \ll M/K$. A submodule N of M is coclosed in M iff N has no proper submodule K such that N lies above K.

Definition 2.2. A module M is called FI-lifting if every fully invariant submodule of M lies above a direct summand.

Theorem 2.3. Let $M = M_1 \oplus M_2$, where M_1 is a fully invariant coclosed submodule of M. If the intersection of M_2 with any direct summand of M (such K_2) is a direct summand of K_2 , then M has D_{11} if and only if both M_1 and M_2 have D_{11} .

Proof. Assume that M_1 and M_2 have D_{11} , by [5, 2.5], any finite direct sum of modules with D_{11} is a D_{11} -module. So M is D_{11} -module. Now suppose that M has D_{11} . Since M_1 is a fully invariant coclosed submodule of M, by [5, 2.4], M_1 has D_{11} . Let $Y \leq M_2$. Since M has D_{11} , there exists a decomposition $M = K_1 \oplus K_2$ such that K_2 is a supplement of Y in M, that is, $K_2 + Y = M$ and $K_2 \cap Y \ll K_2$. Thus $M_2 = M_2 \cap M = M_2 \cap (K_2 + Y) = Y + (K_2 \cap M_2)$. And $(K_2 \cap M_2) \cap Y = K_2 \cap Y \ll K_2$. By assumption, $K_2 \cap M_2$ is a direct summand of K_2 . So $K_2 \cap Y \ll K_2 \cap M_2$. Hence M_2 has D_{11} .

Theorem 2.4. Let M be a D_{11} -module and X be a fully invariant coclosed submodule of M and $\overline{M} = M/X$. Then \overline{M} has D_{11} .

Proof. Let $\overline{A} \leq \overline{M}$. Then $\overline{A} = A/X$ for some $A \leq M_R$. Since M has D_{11} , there exists a decomposition $M = M_1 \oplus M_2$ such that M_1 is a supplement of A in M, that is, $A + M_1 = M$ and $A \cap M_1 \ll M_1$. Thus $M = M_1 \oplus M_2$, $M/X = (M_1 \oplus M_2)/X = (M_1 + X)/X \oplus (M_2 + X)/X$. Hence $(M_1 + X)/X$ is a direct summand of M/X. We have $A + M_1 = M$. It follows that $A/X + (M_1 + X)/X = M/X$. We claim that $((A \cap M_1) + X)/X \ll (M_1 + X)/X$. Let $B/X \subseteq (M_1 + X)/X$ for some $B \subseteq M_1 + X$, such that $((A \cap M_1) + X)/X + B/X = (M_1 + X)/X$. Then $((A \cap M_1) + B + X)/X = (M_1 + X)/X$. Hence $(A \cap M_1) + B = M_1 + X$. Since $(A \cap M_1) \ll M_1$, $(A \cap M_1) \ll M_1 + X$. So $B = M_1 + X$. Hence $B/X = (M_1 + X)/X$. Therefore \overline{M} has D_{11} .

3. D_{11} - Modules and $\overline{Z}^2(M)$

Let $N \in \sigma[M]$. Note that for every direct summand A of N, $Z_M^2(A) = Z_M^2(N) \cap A$, [4, 2.1(4)]. M is called amply supplemented if for any two submodules N and L of M with N + L = M, N contains a supplement of L in M. Also for each decomposition $N = N_1 \oplus N_2$ of N, we have that $\overline{Z}_M^2(N) = (\overline{Z}_M^2(N) \cap N_1) \oplus (\overline{Z}_M^2(N) \cap N_2)$.

Theorem 3.1. Let $N \in \sigma[M]$ be an amply supplemented D_{11} -module and X is a fully invariant coclosed submodule of N. Then $N = N_1 \oplus N_2$, where $X/N_1 \ll N/N_1$. Moreover:

(i) $\overline{Z_M^2}(N_1)$ has D_{11} implies N_1 has D_{11} . (ii) $\overline{Z_M^2}(N_2)$ has D_{11} implies N_2 has D_{11} . (iii) $N_1 \leq N$; $(\overline{Z_M^2}(N) \leq N_1)$ implies both N_1 and N_2 have D_{11} . (iv) $\overline{Z_M^2}(N) \leq N_2$ implies both N_1 and N_2 have D_{11} .

Proof. Since N has D_{11} there exists a decomposition $N = N_1 \oplus N_2$ such that, $X + N_2 = N$ and $X \cap N_2 \ll N_2$. Since X is a fully invariant coclosed submodule of $N, X \cap (N_1 \oplus N_2) = (X \cap N_1) \oplus (X \cap N_2)$. Then by [3, 2.3], $X = (X + N_1) \cap (X + N_2) = X + N_1$. Hence $N_1 \leq X$. Thus we have X lies above a direct summand of N_1 . Therefore by definition N is FI-lifting. So $N = N_1 \oplus N_2$; $X/N_1 \ll N/N_1$.

(i) We prove first $Z_M^2(N)$ is a direct summand of N. Since N has D_{11} , there exists a decomposition $N = K \oplus L$ such that $K + Z_M^2(N) = N$ and $K \cap Z_M^2(N) = Z_M^2(K) \ll K$. Then $Z_M^2(K)$ is M-small and so, M-cosingular. On the other hand, by $[4, 3.4], Z_M^2(N)$ is a non-M--cosingular submodule of N. So, by $[4, 2.4], Z_M^2(K)$ is non-M-cosingular. Hence $Z_M^2(K) = 0$. Therefore $N = K + Z_M^2(N) = K \oplus Z_M^2(N)$. Now from Theorem 2.3, both $Z_M^2(N)$ and K have D_{11} . As $N = N_1 \oplus N_2, Z_M^2(N) = Z_M^2(N_1) \oplus Z_M^2(N_2)$. So $N = N_1 \oplus N_2 = Z_M^2(N_1) \oplus T$. Then $N_1 = N_1 \cap N = N_1 \cap [Z_M^2(N_1) \oplus T] = Z_M^2(N_1) \oplus [N_1 \cap T]$. Hence $Z_M^2(N_1)$ is a direct summand of N_1 . Suppose that $N_1 = Z_M^2(N_1) \oplus K_1$. Similarly, $N_2 = Z_M^2(N_2) \oplus K_2$. Thus $N = N_1 \oplus N_2 = Z_M^2(N_1) \oplus Z_M^2(N_2) \oplus K_1 \oplus K_2 = Z_M^2(N) \oplus K$. It follows that $K_1 \oplus K_2 \cong K$. Since K has D_{11} , then K_1 and K_2 have D_{11} . By assumption $Z_M^2(N_1)$ has D_{11} and K_1 has D_{11} , hence by Theorem 2.3 $N_1 = Z_M^2(N_1) \oplus K_1$ has D_{11} .

(ii)It is similar to part (i).

(*iii*) It follows from Theorem 2.3.

 $(iv) \ \bar{Z}_{M}^{2}(N) \subseteq N_{2}$ implies that $N_{1} \cap \bar{Z}_{M}^{2}(N) = \bar{Z}_{M}^{2}(N_{1}) = 0$. So from $\bar{Z}_{M}^{2}(N) = \bar{Z}_{M}^{2}(N_{1}) \oplus \bar{Z}_{M}^{2}(N_{2})$, we obtain that $\bar{Z}_{M}^{2}(N) = \bar{Z}_{M}^{2}(N_{2})$. Hence $\bar{Z}_{M}^{2}(N_{1}) = 0$ has D_{11} and $\bar{Z}_{M}^{2}(N_{2})$ has D_{11} . By parts (i) and (ii) N_{1} and N_{2} are D_{11} -modules.

Acknowledgements. This research partially is supported by the "research center in Algebraic Hyperstructure and Fuzzy Mathematics University of Mazandaran, Babolsar, Iran".

References

 F.W.Anderson and K.R.Fuller, *Rings and categories of modules*. Berlin, New York, Springerverlag, (1992).

- 2. G.F.Birkenmeier and A.Tercan, When some complement of a submodule is a summand Comm.Algebra **35** (2007)597-611. 1
- 3. A.Ozcan and A. Harmanic Duo modules Glasgow Math. J. 48(3)(2006) 535-545. 3
- 4. Y.Talebi and N.Vanaja, *The Torsion theory cogenerated by M-small modules*. Comm.Algebra **30**(3)(2002),1449-1460. 1, 3, 3
- 5. Y.Wang, A Note on modules with (D_{11}^+) . Southeast Asian Bulletin of Mathematics (2004) 28 999-1002. 2
- R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia,(1991).

 1 Department of Mathematics, University of Mazandaran, Babolsar, Iran. $E\text{-mail}\ address: \texttt{talebiQumz.ac.ir}$

² DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MAZANDARAN, BABOLSAR, IRAN. *E-mail address:* mrveylaki@gmail.com