J. Nonlinear Sci. Appl. 2 (2009), no. 4, 225–233

The Journal of Nonlinear Science and Applications http://www.tjnsa.com

P-COMPACTNESS IN L-TOPOLOGICAL SPACES

FU-GUI SHI

Communicated by S. Romaguera

ABSTRACT. The concepts of P-compactness, countable P-compactness, the P-Lindelöf property are introduced in L-topological spaces by means of preopen L-sets and their inequalities when L is a complete DeMorgan algebra. These definitions do not rely on the structure of the basis lattice L and no distributivity in L is required. They can also be characterized by means of preclosed L-sets and their inequalities. Their properties are researched. Further when L is a completely distributive DeMorgan algebra, their many characterizations are presented.

1. INTRODUCTION

The notions of strong compactness, countable P-compactness and strongly Lindelöf property were introduced in general topology by means of preopen sets (see [5, 10, 16]). Nanda [11] generalized the notion of strong compactness in [5] to [0, 1]-topological spaces based on Chang's compactness [1] which is not a good extension. Kudri and Warner [6] introduced strong compact *L*-fuzzy subsets based on their compactness which is equivalent to the notion of strong fuzzy compactness in [7, 8, 17].

In [13, 15], a new definition of fuzzy compactness is presented in *L*-topological spaces by means of an inequality, which does not depend on the structure of L and no distributivity is required in L. When L is a completely distributive DeMorgan algebra, it is equivalent to the notion of fuzzy compactness in [7, 8, 17].

Lowen [9] introduced the notion of strong fuzzy compactness which is a generalization of the notion of compactness in general topology but different from the notion of strong

²⁰⁰⁰ Mathematics Subject Classification. 03E72, 54A40, 54D30.

Key words and phrases. L-topology, fuzzy compactness, P-compactness, countable P-compactness, P-Lindelöf property.

FU-GUI SHI

compactness [5, 11]. In order to distinguish them, we call strong compactness in [5] as P-compactness and call strongly Lindelöf property in [10] as the P-Lindelöf property.

In this paper, our aim is to extend the notion of P-compactness to L-topology by means of preopen L-sets and their inequality. We also extend countable P-compactness [16] and the P-Lindelöf property to L-topology. These definitions do not rely on the structure of the basis lattice L and no distributivity in L is required.

2. Preliminaries

Throughout this paper $(L, \bigvee, \bigwedge, ')$ is a complete DeMorgan algebra. X is a nonempty set. L^X is the set of all L-fuzzy sets (or L-sets for short) on X.

An element a in L is called prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. a in L is called co-prime element if a' is a prime element [3]. The set of non-unit prime elements in L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by M(L).

The binary relation \prec in L is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [2]. In a completely distributive DeMorgan algebra L, each element b is a sup of $\{a \in L \mid a \prec b\}$. $\{a \in L \mid a \prec b\}$ is called the greatest minimal family of b in the sense of [7, 17], and denoted by $\beta(b)$. Moreover, for $b \in L$, we define $\beta^*(b) = \beta(b) \cap M(L)$, $\alpha(b) = \{a \in L \mid a' \prec b'\}$, and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For $a \in L$ and $A \in L^X$, we use the following notations from [12].

$$A^{(a)} = \{ x \in X \mid A(x) \not\leq a \}, \ A_{(a)} = \{ x \in X \mid a \in \beta(A(x)) \}.$$

An *L*-topological space (or *L*-space for short) is a pair (X, \mathcal{T}) , where \mathcal{T} is a subfamily of L^X which contains $\underline{0}, \underline{1}$ and is closed for any suprema and finite infima. \mathcal{T} is called an *L*-topology on *X*. Each member of \mathcal{T} is called an open *L*-set and its complement is called a closed *L*-set.

Definition 2.1 ([7, 17]). For a topological space (X, τ) , let $\omega_L(\tau)$ denote the family of all the lower semi-continuous maps from (X, τ) to L, i.e., $\omega_L(\tau) = \{A \in L^X \mid A^{(a)} \in \tau, a \in L\}$. Then $\omega_L(\tau)$ is an L-topology on X, in this case, $(X, \omega_L(\tau))$ is called topologically generated by (X, τ) .

Definition 2.2 ([7, 17]). An *L*-space (X, \mathcal{T}) is called weakly induced if $\forall a \in L, \forall A \in \mathcal{T}$, it follows that $A^{(a)} \in [\mathcal{T}]$, where $[\mathcal{T}]$ denotes the topology formed by all crisp sets in \mathcal{T} .

It is obvious that $(X, \omega_L(\tau))$ is weakly induced.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ . $2^{[\Phi]}$ denotes the set of all countable subfamilies of Φ .

Definition 2.3 ([13, 15]). Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is called (countably) fuzzy compact if for every (countable) family $\mathcal{U} \subseteq \mathcal{T}$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$

Definition 2.4 ([13, 15]). Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is said to have the Lindelöf property if for every family $\mathcal{U} \subseteq \mathcal{T}$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$

Lemma 2.5 ([13, 15]). Let L be a complete Heyting algebra, $f : X \to Y$ a map, and let $f_{L}^{\to}: L^{X} \to L^{Y}$ be the extension of f. Then for any family $\mathcal{P} \subseteq L^{Y}$, we have

$$\bigvee_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \land \bigwedge_{B \in \mathcal{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right).$$

Definition 2.6 ([13, 15]). Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{1\}$ and $G \in L^X$. A family $\mathcal{A} \subseteq L^X$ is said to be

- (1) An *a*-shading of G if for any $x \in X$, it follows that $\left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)\right) \not\leq a$.
- (2) A strong *a*-shading of G if $\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \not\leq a$.
- (3) An *a*-remote family of G if for any $x \in X$, it follows that $\left(G(x) \land \bigwedge_{B \in \mathcal{T}} B(x)\right) \not\geq a$.
- (4) A strong *a*-remote family of G if $\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right) \not\geq a$.

Definition 2.7 ([13, 15]). Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{0\}$ and $G \in L^X$. A family $\mathcal{U} \subseteq L^X$ is called a β_a -cover of G if for any $x \in X$, it follows that $a \in \beta \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)\right)$. \mathcal{U} is called a strong β_a -cover of G if $a \in \beta \left(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)\right)\right)$.

Definition 2.8 ([13, 15]). Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{0\}$ and $G \in L^X$. A family $\mathcal{U} \subseteq L^X$ is called a Q_a -cover of G if for any $x \in X$, it follows that $G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \ge a$.

Definition 2.9 ([11]). An *L*-set *G* in an *L*-space (X, \mathcal{T}) is called preopen if $G \leq int(cl(A))$. *G* is called preclosed if *G'* is preopen.

Definition 2.10 ([11]). Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two *L*-spaces. A map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called

- (1) Precontinuous if $f_L^{\leftarrow}(G)$ is preopen in (X, \mathcal{T}_1) for every open L-set G in (Y, \mathcal{T}_2) .
- (2) M-pre-continuous (we shall call it P-irresolute) if $f_L^{\leftarrow}(G)$ is preopen in (X, \mathcal{T}_1) for every preopen L-set G in (Y, \mathcal{T}_2) .

3. P-COMPACTNESS

Lowen [9] introduced the notion of strong fuzzy compactness which is a generalization of the notion of compactness in general topology but different from the notion of strong

FU-GUI SHI

compactness [5, 11]. In order to distinguish them, we call strong compactness in [5] as Pcompactness and we extend it to *L*-topology. We also extend countable P-compactness [16] and strong Lindelöf property [10] (we call it the P-Lindelöf property) to *L*-topology.

Definition 3.1. Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is called (countably) P-compact if for every (countable) family \mathcal{U} of preopen *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$

Definition 3.2. Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is said to have the P-Lindelöf property (or be a P-Lindelöf *L*-set) if for every family \mathcal{U} of preopen *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$

Obviously we have the following theorem.

Theorem 3.3. *P*-compactness implies countably *P*-compactness and the *P*-Lindelöf property. Moreover an L-set having the *P*-Lindelöf property is *P*-compact if and only if it is countably *P*-compact.

Since an open L-set is preopen, we have the following theorem.

Theorem 3.4. For an L-set in an L-space, the following conditions are true.

- (1) P-compactness \Rightarrow fuzzy compactness;
- (2) Countably P-compactness \Rightarrow countably fuzzy compactness;
- (3) The P-Lindelöf property \Rightarrow the Lindelöf property.

From Definition 3.1 and Definition 3.2 we can obtain the following two theorems by using complement.

Theorem 3.5. Let (X, \mathcal{T}) be an L-space. $G \in L^X$ is (countably) P-compact if and only if for every (countable) family \mathcal{B} of preclosed L-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \ge \bigwedge_{\mathcal{F} \in 2^{(\mathcal{B})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right).$$

Theorem 3.6. Let (X, \mathcal{T}) be an L-space. $G \in L^X$ has the P-Lindelöf property if and only if for every family \mathcal{B} of preclosed L-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \ge \bigwedge_{\mathcal{F} \in 2^{[\mathcal{B}]}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right).$$

Definition 3.7. Let $a \in L \setminus \{0\}$ and $G \in L^X$. A subfamily \mathcal{A} of L^X is said to have a weak *a*-nonempty intersection in G if $\bigvee_{x \in X} \left(G(x) \land \bigwedge_{A \in \mathcal{A}} A(x) \right) \ge a$. \mathcal{A} is said to have the finite (countable) weak *a*-intersection property in G if every finite (countable) subfamily \mathcal{F} of \mathcal{A} has a weak *a*-nonempty intersection in G.

From Definition 3.1, Definition 3.2, Theorem 3.5 and Theorem 3.6 we immediately obtain the next two theorems.

Theorem 3.8. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

- (1) G is (countably) P-compact.
- (2) For any $a \in L \setminus \{1\}$, each (countable) preopen strong a-shading \mathcal{U} of G has a finite subfamily which is a strong a-shading of G.
- (3) For any $a \in L \setminus \{0\}$, each (countable) preclosed strong a-remote family \mathcal{P} of G has a finite subfamily which is a strong a-remote family of G.
- (4) For any $a \in L \setminus \{0\}$, each (countable) family of preclosed L-sets which has the finite weak a-intersection property in G has a weak a-nonempty intersection in G.

Theorem 3.9. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

- (1) G has the P-Lindelöf property.
- (2) For any $a \in L \setminus \{1\}$, each preopen strong a-shading \mathcal{U} of G has a countable subfamily which is a strong a-shading of G.
- (3) For any $a \in L \setminus \{0\}$, each preclosed strong a-remote family \mathcal{P} of G has a countable subfamily which is a strong a-remote family of G.
- (4) For any $a \in L \setminus \{0\}$, each family of preclosed L-sets which has the countable weak *a*-intersection property in G has a weak *a*-nonempty intersection in G.

4. Properties of P-compactness

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are (countably) P-compact, then so is $G \lor H$.

Proof. For any (countable) family \mathcal{P} of preclosed L-sets, by Theorem 3.5 we have that

$$\begin{array}{l} \bigvee\limits_{x\in X} \left((G\vee H)(x) \wedge \bigwedge\limits_{B\in\mathcal{P}} B(x) \right) \\ = & \left\{ \bigvee\limits_{x\in X} \left(G(x) \wedge \bigwedge\limits_{B\in\mathcal{P}} B(x) \right) \right\} \vee \left\{ \bigvee\limits_{x\in X} \left(H(x) \wedge \bigwedge\limits_{B\in\mathcal{P}} B(x) \right) \right\} \\ \geq & \left\{ \bigwedge\limits_{\mathcal{F}\in 2^{(\mathcal{P})}} \bigvee\limits_{x\in X} \left(G(x) \wedge \bigwedge\limits_{B\in\mathcal{F}} B(x) \right) \right\} \vee \left\{ \bigwedge\limits_{\mathcal{F}\in 2^{(\mathcal{P})}} \bigvee\limits_{x\in X} \left(H(x) \wedge \bigwedge\limits_{B\in\mathcal{F}} B(x) \right) \right\} \\ = & \bigwedge\limits_{\mathcal{F}\in 2^{(\mathcal{P})}} \bigvee\limits_{x\in X} \left((G\vee H)(x) \wedge \bigwedge\limits_{B\in\mathcal{F}} B(x) \right). \end{array}$$

This shows that $G \lor H$ is (countably) P-compact.

Analogously we have the following result.

Theorem 4.2. Let L be a complete Heyting algebra. If both G and H have the P-Lindelöf property, then $G \vee H$ has the P-Lindelöf property.

Theorem 4.3. If G is (countably) P-compact and H is preclosed, then $G \wedge H$ is (countably) P-compact.

Proof. For any (countable) family \mathcal{P} of preclosed L-sets, by Theorem 3.5 we have that

$$\begin{split} &\bigvee_{x\in X} \left((G \wedge H)(x) \wedge \bigwedge_{B\in \mathcal{P}} B(x) \right) \\ &= \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B\in \mathcal{P} \bigcup \{H\}} B(x) \right) \\ &\geq \bigwedge_{\mathcal{F}\in 2^{(\mathcal{P}\cup\{H\})}} \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B\in \mathcal{F}} B(x) \right) \\ &= \left\{ \bigwedge_{\mathcal{F}\in 2^{(\mathcal{P})}} \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B\in \mathcal{F}} B(x) \right) \right\} \wedge \left\{ \bigwedge_{\mathcal{F}\in 2^{(\mathcal{P})}} \bigvee_{x\in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B\in \mathcal{F}} B(x) \right) \right\} \\ &= \left\{ \bigwedge_{\mathcal{F}\in 2^{(\mathcal{P})}} \bigvee_{x\in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B\in \mathcal{F}} B(x) \right) \right\} \\ &= \left\{ \bigwedge_{\mathcal{F}\in 2^{(\mathcal{P})}} \bigvee_{x\in X} \left((G \wedge H)(x) \wedge \bigwedge_{B\in \mathcal{F}} B(x) \right) \right\}. \end{split}$$

This shows that $G \wedge H$ is (countably) P-compact.

Analogously we have the following result.

Theorem 4.4. If G has the P-Lindelöf property and H is preclosed, then $G \wedge H$ has the P-Lindelöf property.

Theorem 4.5. Let L be a complete Heyting algebra and let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be a Pirresolute map. If G is a P-compact (countably P-compact or P-Lindelöf) L-set in (X, \mathcal{T}_1) , then so is $f_L^{\to}(G)$ in (Y, \mathcal{T}_2) .

Proof. We need only prove that this result is true for P-compactness. Suppose that \mathcal{P} is a family of preclosed L-sets, by Lemma 2.5 and P-compactness of G we have that

$$\begin{array}{l} \bigvee_{y \in Y} \left(f_{L}^{\rightarrow}(G)(y) \wedge \bigwedge_{B \in \mathcal{P}} B(y) \right) \\ = & \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{P}} f_{L}^{\leftarrow}(B)(x) \right) \\ \geq & \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{F}} f_{L}^{\leftarrow}(B)(x) \right) \\ = & \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{y \in Y} \left(f_{L}^{\rightarrow}(G)(y) \wedge \bigwedge_{B \in \mathcal{F}} B(y) \right). \end{array}$$

Therefore $f_L^{\rightarrow}(G)$ is P-compact.

Analogously we have the following result.

Theorem 4.6. Let L be a complete Heyting algebra and let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be an precontinuous map. If G is a P-compact (countably P-compact or P-Lindelöf) L-set in (X, \mathcal{T}_1) , then $f_L^{\to}(G)$ is fuzzy compact (countably fuzzy compact or Lindelöf) in (Y, \mathcal{T}_2) .

230

5. Further characterizations of P-compactness and goodness theorem

In this section, we assume that L is a completely distributive de Morgan algebra. Analogous to the proof of Theorem 2.9 in [13] we can obtain the next theorem.

Theorem 5.1. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent.

- (1) G is (countably) P-compact.
- (2) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$), each (countable) preclosed strong a-remote family \mathcal{P} of G has a finite subfamily which is an (a strong) a-remote family of G.
- (3) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$) and any (countable) preclosed strong a-remote family \mathcal{P} of G, there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta(a)$ (or $b \in \beta^*(a)$) such that \mathcal{F} is a (strong) b-remote family of G.
- (4) For any $a \in L \setminus \{1\}$ (or $a \in P(L)$), each (countable) preopen strong a-shading \mathcal{U} of G has a finite subfamily which is an (a strong) a-shading of G.
- (5) For any $a \in L \setminus \{1\}$ (or $a \in P(L)$) and any (countable) preopen strong a-shading \mathcal{U} of G, there exist a finite subfamily \mathcal{V} of \mathcal{U} and $b \in \alpha(a)$ (or $b \in \alpha^*(a)$) such that \mathcal{V} is a (strong) b-shading of G.
- (6) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$), each (countable) preopen strong β_a -cover \mathcal{U} of G has a finite subfamily which is a (strong) β_a -cover of G.
- (7) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$) and any (countable) preopen strong β_a -cover \mathcal{U} of G, there exist a finite subfamily \mathcal{V} of \mathcal{U} and $b \in L$ (or $b \in M(L)$) with $a \in \beta(b)$ such that \mathcal{V} is a (strong) β_b -cover of G.
- (8) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$) and any $b \in \beta(a) \setminus \{0\}$, each (countable) preopen Q_a -cover of G has a finite subfamily which is a Q_b -cover of G.
- (9) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$) and any $b \in \beta(a) \setminus \{0\}$ (or $b \in \beta^*(a)$), each (countable) preopen Q_a -cover of G has a finite subfamily which is a β_b -cover of G.

Remark 5.2. Analogous to Theorem 5.1, we can obtain characterizations of the P-lindelöf property.

Lemma 5.3. Let $(X, \omega(\tau))$ be generated topologically by (X, τ) . If A is a preopen L-set in (X, τ) , then χ_A is a preopen set in $(X, \omega(\tau))$. If B is a preopen L-set in $(X, \omega(\tau))$, then $B_{(a)}$ is a preopen set in (X, τ) for every $a \in L$. In particular, if χ_A is a preopen set in $(X, \omega(\tau))$, then A is a preopen L-set in (X, τ) .

Proof. If A is a preopen set in (X, τ) , then $A \subseteq int(cl(A))$. Thus we have

$$\chi_A \le \chi_{int(cl(A))} = int(cl(\chi_A)).$$

This shows that χ_A is preopen.

If B is a preopen L-set in $(X, \omega(\tau))$, then $B \leq int(cl(B))$. This implies that $B_{(a)} \subseteq (int(cl(B)))_{(a)}$. From [15] we obtain

$$(int(cl(B)))_{(a)} \subseteq int((cl(B))_{(a)}) \subseteq int(cl(B_{(a)})).$$

Hence $B_{(a)}$ is a preopen set in (X, τ) .

The following two theorems show that P-compactness, countable P-compactness and the P-Lindelöf property are good extensions.

FU-GUI SHI

Theorem 5.4. Let (X, τ) be a topological space and let $(X, \omega(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega(\tau))$ is (countably) P-compact if and only if (X, τ) is (countably) P-compact.

Proof. Necessity. Let \mathcal{A} be a (countable) preopen cover of (X, τ) . Then $\{\chi_A \mid A \in \mathcal{A}\}$ is a family of preopen *L*-sets in $(X, \omega(\tau))$ with $\bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{U}} \chi_A(x)\right) = 1$. From (countable) P-compactness of $(X, \omega(\tau))$ we know

$$\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{x\in X} \left(\bigvee_{A\in\mathcal{V}} \chi_A(x)\right) = \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{x\in X} \left(\bigvee_{A\in\mathcal{V}} \chi_A(x)\right) = 1.$$

This implies that there exists $\mathcal{V} \in 2^{(\mathcal{U})}$ such that $\bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{V}} \chi_A(x) \right) = 1$. Hence \mathcal{V} is a cover of (X, τ) . Therefore (X, τ) is (countably) P-compact.

Sufficiency. Let \mathcal{U} be a (countable) family of preopen *L*-sets in $(X, \omega(\tau))$ and $\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x)\right) = a$. If a = 0, then we obviously have

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{V}} B(x) \right).$$

Now we suppose that $a \neq 0$. In this case, for any $b \in \beta(a) \setminus \{0\}$ we have that

$$b \in \beta\left(\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x)\right)\right) \subseteq \bigcap_{x \in X} \beta\left(\bigvee_{B \in \mathcal{U}} B(x)\right) = \bigcap_{x \in X} \bigcup_{B \in \mathcal{U}} \beta\left(B(x)\right).$$

By Lemma 5.1, this implies that $\{B_{(b)} \mid B \in \mathcal{U}\}$ is a preopen cover of (X, τ) . From (countable) P-compactness of (X, τ) we know that there exists $\mathcal{V} \in 2^{(\mathcal{U})}$ such that $\{B_{(b)} \mid B \in \mathcal{V}\}$ is a cover of (X, τ) . Hence $b \leq \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x)\right)$. Further we have that

$$b \leq \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right)$$

This implies that

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) = a = \bigvee \{ b \mid b \in \beta(a) \} \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right).$$

Therefore $(X, \omega(\tau))$ is (countably) P-compact.

Analogously we have the following result.

Theorem 5.5. Let (X, τ) be a topological space and $(X, \omega(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega(\tau))$ has the P-Lindelöf property if and only if (X, τ) has the P-Lindelöf property.

References

- [1] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182–190.
- [2] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, Indagationes Mathematicae (Proceedings), 85 (1982) 403–414.
- [3] G. Gierz, et al., A compendium of continuous lattices, Springer Verlag, Berlin, 1980.
- [4] I.M. Hanafy, βS^* -compactness in L-fuzzy topological spaces, J. Nonlinear Sci. Appl., 2 (2009) 27–37.
- [5] D. Janković, I. Reilly and M. Vamanamurthy, On strongly compact topological spaces, Questions Answers Gen. Topology, 6 (1988) 29–40.
- S.R.T. Kudri and M.W. Warner, Some good L-fuzzy compactness-related concepts and their properties II, Fuzzy Sets and Systems, 76 (1995) 157–168.
- [7] Y.M. Liu and M.K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.
- [8] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976) 621–633.
- R. Lowen, A comparision of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., 64 (1978) 446–454.
- [10] A.S. Mashhour, M.E. Abd. El-Monsef, I.A. Hasanein and T. Noiri, Strongly Lindelöf spaces, Delta Journal of Science, 8 (1984) 30–46.
- [11] N. Nanda, Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems, 42 (1991) 259–262.
- [12] F.-G. Shi, Theory of L_{β} -nested sets and L_{α} -nested and their applications, Fuzzy Systems and Mathematics, 4 (1995) 65–72 (in Chinese).
- [13] F.-G. Shi, Countable compactness and the Lindelöf property of L-fuzzy sets, Iranian Journal of Fuzzy Systems, 1 (2004) 79–88.
- [14] F.-G. Shi, A new notion of fuzzy compactness in L-topological spaces, Information Sciences, 173 (2005), 35–48.
- [15] F.-G. Shi, A new definition of fuzzy compactness, Fuzzy Sets and Systems, 158 (2007) 1486–1495.
- [16] S.S. Thakur and P. Paik, Countably P-compact spaces, Sci. Phys. Sci., 1 (1989) 48–51.
- [17] G.-J. Wang, Theory of L-fuzzy topological space, Shaanxi Normal University Press, Xi'an, 1988 (in Chinese).

FU-GUI SHI, DEPARTMENT OF MATHEMATICS, BEIJING INSTITUTE OF TECHNOLOGY, BEIJING 100081, P.R. CHINA

E-mail address: fuguishi@bit.edu.cn or f.g.shi@263.net