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ON MULTIPOINT ITERATIVE PROCESSES OF EFFICIENCY
INDEX HIGHER THAN NEWTON’S METHOD

IOANNIS K. ARGYROS1∗ AND SAÏD HILOUT2

Abstract. We provided a convergence analysis of third–order multipoint it-
erative processes of efficiency index higher than Newton’s.

Our convergence analysis is finer than the corresponding one in [8], under
the same or weaker hypotheses and computational cost.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x? of equation

F (x) = 0, (1.1)

where F is a Fréchet–differentiable operator defined on a non–empty open, and
convex D of a Banach space X with values in a Banach space Y .

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations, and
their solutions usually represent the states of the systems. For the sake of simplic-
ity, assume that a time–invariant system is driven by the equation ẋ = Q(x), for
some suitable operator Q, where x is the state. Then the equilibrium states are
determined by solving equation (1.1). Similar equations are used in the case of
discrete systems. The unknowns of engineering equations can be functions (differ-
ence, differential, and integral equations), vectors (systems of linear or nonlinear
algebraic equations), or real or complex numbers (single algebraic equations with
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single unknowns). Except in special cases, the most commonly used solution
methods are iterative–when starting from one or several initial approximations a
sequence is constructed that converges to a solution of the equation. Iteration
methods are also applied for solving optimization problems. In such cases, the
iteration sequences converge to an optimal solution of the problem at hand. Since
all of these methods have the same recursive structure, they can be introduced
and discussed in a general framework.

Motivated by optimization considerations, and the elegant work by Ezquerro
and Hernández in [8], we study the Newton–Chebyshev–type method (NCTM),
defined as follows:

x0 ∈ D,
yn = xn − Γn F (xn)
zn = xn + p (yn − xn), p ∈ (0, 1],

xn+1 = xn −
1

p2
Γn

(
(p2 + p− 1) F (xn) + F (zn)

)
, n ≥ 0,

where, Γn = F ′(xn)−1, (n ≥ 0).

Newton–type methods have been studied under various assumptions [1]–[10].
A convergence analysis was provided for (NCTM) under conditions similar to
Newton’s method. Note that (NCTM) Reduces to Newton’s method, if p = 1.

The derivation of (NCTM) as well as the justification for generating iterative
procedures of better effeciency index than Newton’s can be found in [8].

Here, we show how to provide a finer convergence analysis under the same or
weaker hypotheses than in [8].

2. Semilocal convergence analysis for (NCTM)

Let `0 > 0, ` > 0, and η ≥ 0 be given constants. Scalar sequences {tn}, {sn}
given by:

t0 = 0, s0 = η, t1 = s0 +
`0

2
(s0 − t0)

2, (2.1)

tn+1 = sn +
` (sn − tn)2

2 (1− `0 tn)
(n ≥ 2), (2.2)

s1 = t1 +
`0 ((s0 − t0)

2 + (t1 − t0)
2)

2 (1− `0 t1)
, (2.3)

sn = tn +
` ((sn−1 − tn−1)

2 + (tn − tn−1)
2)

2 (1− `0 tn)
, (n ≥ 2), (2.4)

shall be shown to be majorizing for {xn}, {yn}.
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Note that if

`0 tn < 1 (n ≥ 1), (2.5)

then, we obtain:

sn−1 ≤ tn ≤ sn ≤ tn+1 <
1

`0

(n ≥ 1). (2.6)

Sufficient conditions implying (2.5) can be found in [3], [6] (see, e.g. (2.38) for
such a condition). Hence, we arrived at:

Lemma 2.1. Under condition (2.5), scalar sequences {tn}, {sn} are non–decreasing,
bounded above by r given by:

r =
1

`0

, (2.7)

and converge to their unique least upper bound r0 satisfying

r0 ∈ [0, r]. (2.8)

We shall show the main semilocal convergence result for (NCTM).

Theorem 2.2. Let F : D ⊆ X −→ Y be a Fréchet–differentiable operator de-
fined on a non–empty, open, and convex domain D of a Banach space X with
values in a Banach space Y.

Assume:

there exist x0 ∈ D, constants `0 > 0, ` > 0, and η ≥ 0, such that for all
x, y ∈ D:

Γ0 ∈ L(Y ,X ), (2.9)

‖ Γ0 F (x0) ‖≤ η, (2.10)

‖ Γ0 (F ′(x)− F ′(x0)) ‖≤ `0 ‖ x− x0 ‖, (2.11)

‖ Γ0 (F ′(x)− F ′(y)) ‖≤ ` ‖ x− y ‖, (2.12)

U(x0, r0) = {x ∈ X : ‖ x− x0 ‖≤ r0} ⊆ D, (2.13)

hypotheses of Lemma 2.1 hold, and

`0 r0 < 1. (2.14)

Then,

(a) sequences {xn}, {yn}, (n ≥ 0) generated by (NCTM) are well defined, re-
main in U(x0, r0) for all n ≥ 0, and converge to a solution x? ∈ U(x0, r0)
of equation F (x) = 0.
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The solution x? is unique in

U(x0,
2

`0

− r0) ∩ D (2.15)

if

r0 <
2

`0

. (2.16)

Moreover the following estimates hold for all n ≥ 0:

‖ xn − x? ‖≤ r0 − tn, (2.17)

and

‖ yn − x? ‖≤ r0 − sn. (2.18)

(b) Assume F is sufficiently differentiable in D. If F has a simple solution
x? ∈ D, F ′(x)−1 exists in a neighborhood of x?, x0 is sufficiently close to
x?, p ∈ (0, 1], then (NCTM) has order of convergence at least three.

Proof. We shall show using induction on m:

‖ ym − xm ‖≤ sm − tm. (2.19)

and

‖ xm+1 − ym ‖≤ tm+1 − sm, (2.20)

Let m = 0, then (2.19) is true, since by (2.1), (NCTM), and (2.10):

‖ Γ0 F (x0) ‖≤ η = s0 − t0 < r0,

which also implies y0 ∈ U(x0, r0).

Let x ∈ U(x0, r0). Then, in view of (2.5), and (2.11), we have:

‖ Γ0 (F ′(x)− F ′(x0)) ‖≤ `0 ‖ x− x0 ‖≤ `0 r0 < 1. (2.21)

It follows from (2.21), and the Banach lemma on invertible operators [6], [7],
[9] that F ′(x)−1 ∈ L(Y ,X ), and

‖ F ′(x)−1 F ′(x0) ‖≤
1

1− `0 ‖ x− x0 ‖
≤ 1

1− `0 r0

. (2.22)

Using Taylor’s formula, and assuming xm−1, ym−1, xm, ym exist, we have:

F (zm) = (1− p) F (xm) + p

∫ 1

0

(F ′(xm + p θ (ym−xm))−F ′(xm)) (ym−xm) dθ,

(2.23)

xm+1 − ym = xm −
Γm

p2
((p2 + p− 1) F (xm) + F (zm))− xm + Γm F (xm)

= − 1

p2
Γm F (xm) +

(
1− p2 + p− 1

p2

)
Γm F (xm)

= − 1

p2
(Γm F (zm)− (1− p) Γm F (xm)).

(2.24)
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Then, by (2.23), (2.24) becomes:

xm+1 − ym = − 1

p2
Γm

(
(1− p) F (xm) + p

∫ 1

0

(F ′(xm + θ p (ym − xm))−

F ′(xm)) (ym − xm) dθ

)
+

1− p

p2
Γm F (xm)

= −1

p
Γm

∫ 1

0

(F ′(xm + θ p (ym − xm))− F ′(xm)) (ym − xm) dθ.

(2.25)
We also have:

F (xm) =
1

p

∫ 1

0

(F ′(xm−1)− F ′(xm−1 + p θ (ym−1 − xm−1))) (ym−1 − xm−1) dθ+∫ 1

0

(F ′(xm−1 + θ (xm − xm−1))− F ′(xm−1)) (xm − xm−1) dθ.

(2.26)
We have ‖ z0−x0 ‖≤ p η ≤ η ≤ r0, which imply z0 ∈ U(x0, r0). By hypothesis

(2.9), Γ0 exists. Hence, from m = 0 in (2.25), x1 is well defined. We shall show
x1 ∈ U(x0, r0).

Indeed, using (2.1), (2.10), and (2.25), we get

‖ x1 − y0 ‖≤
`0

2
‖ y0 − x0 ‖2≤ `0

2
(s0 − t0)

2 = t1 − s0 ≤ t1 − t0 ≤ r0

which shows (2.20) for m = 0, and x1 ∈ U(x0, r0).

It follows that Γ1, y1, and z1 exist.

Using (NCTM), (2.2), (2.24)–(2.26) for m = 1, and setting x = x1 in (2.22),
we get:

‖ y1 − x1 ‖ ≤ `0 (‖ y0 − x0 ‖2 + ‖ x1 − x0 ‖2)

2 (1− `0 ‖ x1 − x0 ‖)

≤ `0 ((s0 − t0)
2 + (t1 − t0)

2)

2 (1− `0 t1)
= s1 − t1

(2.27)

and

‖ x2 − y1 ‖ ≤ `

2

‖ y1 − x1 ‖2

1− `0 ‖ x1 − x0 ‖

≤ `

2

(s1 − t1)
2

1− `0 t1
= t2 − s1

(2.28)

which show (2.19), and (2.20) for m = 1.

We also have:

‖ x2 − x0 ‖ ≤ ‖ x2 − y1 ‖ + ‖ y1 − x1 ‖ + ‖ x1 − x0 ‖
≤ t2 − s1 + s1 − t1 + t1 − t0 = t2 ≤ r0,

(2.29)

which implies x2 ∈ U(x0, r0).
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Hence, Γ2 exists, and from an analogous procedure y2, z2, x3 ∈ U(x0, r0). As-
sume (2.19), (2.20), xk, yk, xk+1 ∈ U(x0, r0) hold for all k ≤ m.

Then, using (NCTM), (2.2), (2.24)–(2.26), and setting x = xm in (2.22), we
obtain as in (2.27), (2.28), respectively,

‖ ym − xm ‖ ≤ ` (‖ ym − xm ‖2 + ‖ xm − xm−1 ‖2)

2 (1− `0 ‖ xm − x0 ‖)

≤ `0 ((sm − tm)2 + (tm − tm−1)
2)

2 (1− `0 tm)
= sm − tm,

(2.30)

and

‖ xm+1 − ym ‖ ≤ `

2

‖ ym − xm ‖2

1− `0 ‖ xm − x0 ‖

≤ `

2

(sm − tm)2

1− `0 tm
= tm+1 − sm,

(2.31)

which complete the induction for (2.19), and (2.20).

We shall also show xm+1 ∈ U(x0, r0).

Indeed, we have as in (2.29):

‖ xm+1 − x0 ‖ ≤ ‖ xm+1 − ym ‖ + ‖ ym − xm ‖ + ‖ xm − x0 ‖
≤ tm+1 − sm + sm − tm + tm − t0 = tm+1 ≤ r0.

It follows from Lemma 2.1 that sequences {xm}, {ym} are Cauchy in a Banach
space X , and as such they converge to their common limit x? ∈ U(x0, r0) (since
U(x0, r0) is a closed set).

In view of the estimate

‖ ym − xm ‖ = ‖ Γm F ′(x0) F ′(x0)
−1 F (xm) ‖

≤ ‖ Γm F ′(x0) ‖ ‖ F ′(x0)
−1 F (xm) ‖≤ sm − tm,

(2.32)

we conclude by letting m −→∞, that F (x?) = 0.

Estimates (2.17), and (2.18) follow from (2.19), and (2.20), respectively by us-
ing standard majorization techniques [6], [7], [9].

The uniqueness part can be found in [2].

The part (b) of Theorem 2.2 follows from the estimate:

em+1 = xm+1 − x?

=
1

6
((p− 1) Γm F ′′′(xm) + 3 (Γm F ′′(xm))2) e3

m + O(‖ em ‖4),

(2.33)
and has been obtained in [8, Theorem 4.1].

That completes the proof of Theorem 2.2.
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Remark 2.3. We compare our results with the ones obtained in [8].

Note that

`0 ≤ ` (2.34)

holds in general, and
`

`0

can be arbitrarily large [2], [3], [6].

Case 1. Affine versus non–affine results. The results in [8] were obtained
in non–affine invariant form. The advantages of affine invariant over non–
affine results have been explained in [6].

We shall compare our results with the ones in [8] by first turning their
results into affine ones. This can simply be done by replacing operator F
by Γ0 F in their proofs. We have estimate

‖ Γ0 (F ′(x)− F ′(y)) ‖≤‖ Γ0 ‖ ‖ F ′(x)− F ′(y) ‖ ≤‖ Γ0 ‖ ` ‖ x− y ‖, (2.35)

and

` ≤‖ Γ0 ‖ `, (2.36)

where,

‖ F ′(x)− F ′(y) ‖≤ ` ‖ x− y ‖ . (2.37)

Case 2. ` = `0. Conditions (2.9)–(2.13) together with

q = ` η < .32666 (2.38)

were essentially used in [8]. In this case, condition (2.38) implies (2.5),
and our results coincide with the ones in [8].
Case 3. ` 6= `0. Denote by {tn}, {sn} majorizing sequences obtained as
{tn}, {sn}, respectively by simply replacing `0 by ` in (2.1)–(2.4). These
sequences were essentially used in [8]. However, under (2.38), an inductive
argument shows:

tn < tn, sn < sn, tn+1 − sn < tn+1 − sn, sn − tn < sn − tn, (2.39)

and

r0 < r0, (2.40)

where,

r0 = lim
n−→∞

tn. (2.41)

Hence, the radius of convergence, error bounds on the distances ‖
xn+1 − yn ‖, ‖ yn − xn ‖, ‖ xn − x? ‖, ‖ yn − x? ‖, (n ≥ 0) are im-
proved, under the same or weaker hypotheses and computational cost.
That is, the applicability of (NCTM) has been expanded.
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Case 4. The advantages obtained above extend to (MNCTM):

x0 ∈ D,
xn = xn−1 − Γn−1 F (xn−1), n = 1, 2, · · · , N0,

x0 = xN0 ,

yk−1 = xk−1 − F ′(xk−1)
−1 F (xk−1),

zk−1 = xk−1 + p (yk−1 − xk−1), p ∈ (0, 1],

xk = xk−1 −
1

p2
F ′(xk−1)

−1 ((p2 + p− 1) F (xk−1) + F (zk−1)),

where, N0 is a uniquely determined integer [8].

We leave the details of this case to the motivated reader.

Similar work, where linearly convergent method

xn+1 = xn − Γ0 F (xn) (2.42)

is used instead of quadratically convergent method, or modified Newton–like
method (MNLM)

xn+1 = xn − A(x0)
−1 F (xn)

instead of (NLM)
xn+1 = xn − A(xn)−1 F (xn)

in connection with (MNCTM) has been carried in [4], and [5], respectively.

Conclusion

In order to approximate a locally unique solution of a nonlinear equation in a
Banach space, we provided a semilocal convergence analysis for (NCTM), involv-
ing a Fréchet differentiable operator.

We provided a semilocal convergence analysis with the following advantages
over the work in [8]: larger convergence domain, weaker sufficient convergence
conditions, and tighter error bounds. Note that these advantages are obtained
under the same or weaker computational cost as in [8].
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