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CONTRACTIONS OVER GENERALIZED METRIC SPACES

I. R. SARMA1, J. M. RAO2, AND S. S. RAO3∗

Abstract. A generalized metric space (g.m.s) has been defined as a metric
space in which the triangle inequality is replaced by the ‘Quadrilateral inequal-
ity’, d(x, y) ≤ d(x, a) + d(a, b) + d(b, y) for all pairwise distinct points x, y, a
and b of X. (X, d) becomes a topological space when we define a subset A of
X to be open if to each a in A there corresponds a positive number ra such
that b ∈ A whenever d(a, b) < ra. Cauchyness and convergence of sequences
are defined exactly as in metric spaces and a g.m.s (X, d) is called complete if
every Cauchy sequence in (X, d) converges to a point of X. A.Branciari [1] has
published a paper purporting to generalize Banach’s Contraction principle in
metric spaces to g.m.s. In this paper we present a correct version and proof of
the generalization.

1. Main result

In what follows N denotes the set of natural numbers. The basic terms are
already defined in the abstract. We denote {y ∈ X : d(x, y) < r} for x in a g.m.s
(X, d) by Br(x). In [1], the following were taken for granted and used:

(1) {Br(x) : r > 0, x ∈ X} is a basis for a topology on X
(2) d is continuous in each of the coordinates and
(3) a g.m.s is a Hausdorff space.

The following examples shows that (1), (2)and (3) are false.

Example 1.1. Let A = {0, 2}, B =
{

1
n

: n ∈ N
}
, X = A∪B. Define d on X×X

as follows: d(x, y) = 0 if x = y, d(x, y) = 1 if x 6= y and {x, y} ⊆ A or {x, y} ⊆ B,
d(x, y) = d(y, x) = y if x ∈ A and y ∈ B. Then (X, d) is a complete g.m.s in which
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(a) the sequence ( 1
n
)n∈N converges to both 0 and 2 and it is not a Cauchy se-

quence,

(b) there does not exist r > 0 such that Br(0) ∩Br(2) = ∅,

(c) B 2
3
(1

3
) = {0, 2, 1

3
} and there does not exist r > 0 such that Br(0) ⊆ B 2

3
(1

3
),

(d) lim d( 1
n
, 1

2
)6= d(0, 1

2
).

Remark 1.2. Even Though the sets Br(x) do not form an open basis for a topol-
ogy on a g.m.s X, the subsets A of X satisfying the following condition form a
topology on X : To each a in A there corresponds ra > 0 such that Bra(a) ⊆ A.

Theorem 1.3. (Banach’s Contraction principle in a g.m.s). Let (X, d) be a
Hausdorff and complete g.m.s and let f : X → X be a mapping and 0 < λ < 1
satisfying the inequality d(fx, fy) ≤ λd(x, y) for all x, y in X(such a mapping is
called a contraction mapping on X and λ is called the contractive constant of f).
Then there is a unique point x in X satisfying f(x) = x (such a point is called a
fixed point of f).

Proof. Let x ∈ X, an = fn(x) for n ≥ 0 and c = inf S where
S = {d(an−1, an) : n ∈ N}. We claim that c = 0, If c 6= 0 then c < c

λ
and

hence there is a positive integer n such d(an−1, an) < c
λ

so that λd(an−1, an) < c.
By Contractive property of f we have d(fnx, fn+1x) < c a contradiction to the
minimality of c. Hence c = 0. The monotonically decreasing property of the
sequence d(an, an+1) implies that d(an, an+1) converges to 0 ..........(∗).
We claim that f has a periodic point. Suppose, to obtain a contradiction, f has
no periodic point. Then {an} is a sequence of distinct points and for m > n + 1,
we have

d(an, am) = d(fnx, fmx) ≤ d(fnx, fn+1x) + d(fn+1x, fm+1x) + d(fm+1x, fmx)

≤ (λn + λm)d(x, fx) + λd(fnx, fmx)

(By Quadrilateral inequality)

which implies (1− λ)d(an, am) ≤ (λn + λm)d(x, fx) and hence {an} is a Cauchy
sequence in (X, d) ( in view of (∗)). By Completeness, an → a for some a in X.
Also d(fan, fa) ≤ λd(an, a) and d(an, a) → 0. So d(fan, fa) = d(an+1, fa) → 0.
Hence an → a and an+1 → fa. Since (X, d) is Hausdorff it follows that a = fa,
a contradiction to the assumption that f has no periodic point. Thus f has a
periodic point say a of period n. Suppose if possible n > 1. Then d(a, fa) =
d(fna, fn+1a) < λnd(a, fa), a contradiction. So n = 1 and a is a fixed point of f .
If a, b are fixed points of f then d(a, b) = d(fa, fb) ≤ λd(a, b). Since 0 < λ < 1,
we have a = b. �

Remark 1.4. Several publications attempting to generalize fixed point theorems
in metric spaces to g.m.s are plagued by the use of (1), (2), and (3) above ( see
for example [2],[3],[4],[5] and [6]). Valid proofs for many of them can be offered as
in theorem1.3 which will be communicated soon by the authors for publication.
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Further general topological properties of a g.m.s have been extensively studied
by us and will be communicated in a forthcoming paper.
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