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ABSTRACT. Using Dotson$ convexity structure, the authors in [16], [17, [I8]
established some deterministic and random common fixed point results. In this
note, we comment that the proofs of the results in [16, [17, [18] are incomplete
and incorrect.

1. INTRODUCTION AND PRELIMINARIES

Let X be a linear space. A p-norm on X is a real-valued function (0 < p < 1),
satisfying the following conditions:

(i) [[z]l, = 0 and ||z}, = 0 & 2 =0
(ii) [Jezll, = |l
(W)= +ylly < [y + lyll,

for all z, y € X and all scalars o. The pair (X, |.||,) is called a p-normed
space. It is a metric linear space with a translation invariant metric d, defined by
dy(z,y) = ||x —yl|, for all z,y € X. If p =1, we obtain the concept of a normed
space. It is well-known that the topology of every Hausdorff locally bounded
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topological linear space is given by some p-norm, 0 < p < 1(see [7, 14}, 19]).

Let X be a metric linear space and M a nonempty subset of X. Let I : M — X
be a mapping. A mapping T': M — X is called I-Lipschitz if there exists £ > 0
such that d(Tz,Ty) < kd(Ix,ly) for any z,y € M. If k < 1 (respectively,
k = 1), then T is called I-contraction (respectively, I-nonexpansive). The map
T : M — X is said to be completely continuous if {z,} converges weakly to = im-
plies that {T'x,} converges strongly to Tx. The map T : M — X is demiclosed at
0 if for every sequence {x,} in M converging weakly to = and {Tx,} convergent
strongly to 0, we have Tz = 0. The set of best approximations of u € X from M
is defined by Py(u) = {z € M : d(z,u) = dist(u, M) = infyemd(u,y)}. The set
of fixed points of T'( resp. I) is denoted by F(7T')(resp. F(I)). A point = € M is
a common fixed (coincidence) point of I and T"if x = [x = Tx (Ix = Tx). The
set of coincidence points of I and 7' is denoted by C(I,T). Two selfmaps I and
T of M are called:

(1) commuting if [Tz = Tz for all x € M;

(2) R-weakly commuting if for all z € M there exists R > 0 such that d(ITz, TIx) <
Rd(Iz,Tz);

(3) compatible if lim,, d(T Iz, ITx,) = 0 whenever {z,} is a sequence such that
lim, Tz, = lim,, Ix, =t for some t in M;

(4) weakly compatible if they commute at their coincidence points, i.e. [Tx =
T'Ix whenever [z = Tz.

The set M is called g-starshaped with ¢ € M if the segment [¢, x] = {(1—k)q+
kx : 0 < k < 1} joining ¢ to z, is contained in M for all z € M. Suppose M is
g-starshaped with ¢ € F(I) and is both T- and [-invariant in a p-normed space
X. Then T and I are called:

(5) R-subcommuting on M if there exists a real number R > 0 such that

[Tz — Tlz|, < &|(kTz + (1 — k)q) — Iz||p for all z € M, k € (0,1]. If

R =1, then the maps are called 1-subcommuting;

(6) R-subweakly commuting on M if for all z € M, there exists a real number

R > 0 such that ||[Tx — TIz||, <R dist(Iz, [q, Tx]);

(7) Cp-commuting if ITx = Tz forallx € C,(I,T), where Cy(1,T) = U{C(I,T}) :
0<k<1}and Tpx = (1 —k)q+ kTz.

Clearly, commuting maps are R-subweakly commuting, R-subweakly commut-
ing maps are R-subcommuting and R-subcommuting maps are Cj,-commuting
but the converse, in each case, does not hold in general (see [8, [11] and references
therein).

Following important extension of the concept of starshapedness was defined by
Dotson [4] and has been studied by many authors (see [2]-[7],[9]-[18],[20]).

Definition 1.1. (Dotsons convexity). Let M be subset of a p-normed space X
and F = {f,}zenm a family of functions from [0, 1] into M such that f,(1) = =
for each x € M. The family T is said to be contractive [4, [5, 12, 14] if there
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exists a function ¢ : (0,1) — (0,1) such that for all z,y € M and all t € (0, 1),
we have [|f.(t) — f,()|l, < [¢(H)]P|z — yll,. The family F is said to be jointly
(weakly) continuous if t — t; in [0,1] and z — x¢ (z — z¢ weakly) in M, then
fo(t) = fuo(to) (fo(t) — fuo(to) weakly) in M. We observe that if M C X is
g-starshaped and f,(t) = (1 —t)q + tz, (x € M;t € [0,1]), then F = {f,}sem
is a contractive jointly continuous and jointly weakly continuous family with
¢(t) = t. Thus the class of subsets of X with the property of contractiveness and
joint continuity contains the class of starshaped sets which in turn contains the
class of convex sets (see [3, 4, 6, 12, 14]).

2. MAIN RESULTS

In the papers [16, 17] under consideration, the author defines the so called
(S)-convex structure for a linear space X which is absurd as starshaped sets
and hence linear spaces satisfy the so called (S)-convex structure. Therefore, we
always define convex and starshaped structure on a nonempty subset M of X.
Thus Definition 1 in [15], Definition 2.7 in [16] and Definition 2.3 in [17] should
be modified in the context of a nonempty subset of a linear space X (see defi-
nition 1.1 above). Condition (iv) of the definition has no meanings and should
be deleted and in Condition (v) the function ¢ should be from (0,1) — (0, 1).
Similarly, Definition 2.8 [16] should be modified as follows(see [4, 6, 12, [14]):

Let T be a selfmap of the set M having a family of functions F = {f, },en as
defined above. Then T is said to satisfy the property (A), if T'(f.(t)) = fr.(t)
for all x € M and ¢ € [0, 1].

Example 2.1. An affine map T defined on g-starshaped set with T'q = ¢ satisfies
the property (A). For this note that each g-starshaped set M has a contractive
jointly continuous family of functions F = { f, },en defined by f.(t) = ta+(1—t)q,
foreachx € M and t € [0,1]. Thus f,(1) =z forall z € M. Also, if the selfmap T
of M is affine and T'q¢ = ¢, we have T'(f.(t)) = T(tx+ (1 —t)q) =tTx+ (1 —t)g =
frz(t) for all x € M and all ¢t € [0,1]. Thus T satisfies the property (A4); a
property considered first time in 2000, by Khan, the author and Thaheem (see
[12], Theorems 3.7,3.10,3.12). This signifies that (S5)-convex structure should be
introduced on a nonempty subset M of a linear space X.

Here is the main result of Nashine [16].

Theorem 2.2. Let X be a p-normed space with a (S)-convexr structure. Let
T, I:X — X, C asubset of X such that T(0C) C C and u € F(T) N F(I).
Suppose that D = Py(u) and T is I-nonexpansive on D Uwu, I satisfies property
(A), I is continuous, TI = IT on D, cl(T(D)) is compact on D. Also assume,
range of fo is contained in [(D). If D is nonempty, closed and if 1(D) C D,
then DN F(I)NF(T) # 0.

My comments to Theorem 2.2 are as follows:
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(a) The condition “range of f, is contained in I(D)” makes the result trivial. As
a matter of fact take f,(t) = ta for each o € X and ¢ € [0, 1]; now X is a linear
space with zero element so {f,} is a (5)-convex structure with range of f, equal
to X. Thus X C I[(D) C D C X.

(b) The (S)-convex structure is not a hereditary property so the set D here is
without any convexity structure and hence the statement in the proof of this
theorem “T,, is a well-defined map from D into D for each n” makes no sense; it
is worth mentioning that the entire proof depends on this important fact. Same
concerns the proof of Theorem 2 in [15].

(¢) The statement in the proof of Theorem 2.2, “Since ¢l(7'(D)) is compact, each
cl(T,(D)) is compact” needs to be verified which is crucial for the application
of Theorem 2.9 stated in [16]. Actually, when D is g¢-starshaped, it has (S)-
convex structure f,(t) = tz + (1 — t)q, for each x € D and t € [0,1]. Further,
if To,x = (1 —ky)q+ k,Tx for all z € D and a fixed sequence of real numbers
kn(0 < k, < 1) converging to 1, then ¢l(T,,(M)) is compact for each n provided
cl(T(D)) is compact.

The second and last result in [16] is the following:

Theorem 2.3. Let X be a complete p-normed space whose dual separates the
points of X with a (S)-conver structure. Let T, I : X — X, C' a subset of X
such that T(0C) C C and w € F(T)N F(I). Suppose that T is I-nonexpansive
on D Uwu, I satisfies property (A), I is weakly continuous, TI = IT on D. Also
assume that range of f, is contained in I(D). If D is nonempty, weakly compact
and if I(D) C D, then DN F(I)NF(T) # 0.

The above comments (a) and (b) apply to Theorem 2.3 as well.

(d) The author has utilized Theorem 3.2 (stated in [16]) in the proof of Theorem
2.3 (see p.b6, line 15 ) which holds for a compact metric space whereas the under-
lying set D here is assumed to be weakly compact and [ is not continuous as well.

(e) The author seems to claim in equality (3.1) that y,, — 0 which can not be
true unless T'x,, — Ty which is impossible under the assumed hypotheses. If we
assume that 7" is completely continuous to assure 1Tz, — Ty, then the condition
“I —T is demiclosed” becomes superfluous and we directly get the conclusion(see
[5, 16, 10, 12} [14]). Thus the proof of Theorem 2.3 is incomplete and incorrect.
Consequently, Remark 3.5-Remark 3.9 in [16] are invalid.

(f) For more general and comprehensive results for noncommuting maps namely,
R-subweakly commuting, R-subcommuting and C,-commuting maps defined on
the set M satisfying the Dotson$ convexity condition (or the so called (S5)-convex
structure), we refer the reader to [5, 6, 10, 11].
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Comments on the results in [17]

(9) The author defines in the proofs of Theorems 3.1 and 3.2 in [17]; T, :
Q x Py(xo) — Pu(wo) by Th(w, ) = frwe)(k,) and claims that each T, is
a random operator without proving the measurability of 7,,. The measurability
of T,, is still an open problem(see [2, 13] and references therein). Thus all the
results, Theorems 3.1-3.3 in [17], are deterministic in nature and hence are simple
corollaries to more general results in [5, 6] 10, 11].

(h) The author has utilized Lemma 2.5 (stated in [17]) in the proof of his The-
orem 3.2(see p.67, line 29) which holds for a compact metric space whereas the
underlying set Py/(zg) here is assumed to be weakly compact and ¢ is not con-
tinuous as well.

(7) The author seems to claim in lines 7 to 12 on page 68, that y,, — 0 strongly
which can not be true unless T'(w, &, (w)) — T'(w,&(w)). This is impossible as T is
not assumed to have any type of continuity. Thus the proof of Theorem 3.2 is in-
complete and incorrect. Consequently, Remark 3.5-Remark 3.7 in [17] are invalid.

Comments on the results in [18]
The proofs of all the results in [18] depends on the following statement:

If the maps I and T are compatible, then I and 7, are also compatible for
each n > 1 where T,,(z) = (1 — k,,)q + k,Tz for fixed sequence of real numbers
kn(0 < k, < 1) converging to 1.

Here we give an example to show that the above statement is not correct.

Example 2.4. Let X = R with usual norm and M = [1,00). Let I(x) =2z — 1
and T'(z) = 22, for all x € M. Let ¢ = 1. Then M is g-starshaped with Iq = q.
Note that I and T are compatible. Further C’(I,T%) = {1,2} and IT§(2) #
T% I(2), which implies that I and T% are not weakly compatible. Thus I and
T 2 are not compatible maps. Consequently, all the results proved in [18] are
incorrect.

The results in [18] can be corrected if the compatibility of I and T is replaced
by the condition of subcompatibility (see [1]).
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