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Abstract. We are concerning with a nonlinear Hammerstein quadratic inte-
gral equation. We prove the existence of at least one positive solution x ∈ L1

under Carathèodory condition. Secondly we will make a link between Peano
condition and Carathèodory condition to prove the existence of at least one
positive continuous solution. Finally the existence of the maximal and minimal
solutions will be proved.

1. Introduction and preliminaries

Quadratic integral equations are often applicable in the theory of radiative trans-
fer, kinetic theory of gases, in the theory of neutron transport and in the traffic
theory. The quadratic integral equation can be very often encountered in many
applications (see[1]-[4] and [8]-[11]).
Let I = [0, 1], L1 = L1[0, 1] be the space of Lebesgue integrable functions on
I and C = C[0, 1] be the space of continuous functions defined on I.
Recently, the existence of a solution x ∈ L1 for the nonlinear quadratic integral
equation

x(t) = a(t) + g(t, x(t))

∫ t

0

k(t, s) f(s, x(s) ds, t ∈ [0, 1]

was studied in [9] by using Lusin and Dragoni theorems and applying Schauder-
Tychonoff fixed point Theorem.
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Here we are concerning with the nonlinear Hammerstein quadratic integral equa-
tion

x(t) = a(t) + g(t, x(t))

∫ 1

0

k(t, s) f(s, x(s)) ds t ∈ [0, 1] (1.1)

by using the same assumptions assumed in [9]. Firstly, the existence of at least
one L1−positive solution of the nonlinear quadratic integral equation (1.1) will
be proved where the functions f and g satisfy Carathèodory condition.
Secondly, the existence of at least one positive continuous solution for the qua-
dratic integral equation (1.1) will be proved where g is continuous and f
satisfies Carathèodory condition.

The following theorems will be needed in our investigations (see [6],[7]and [14]).

Theorem 1.1. Tychonov’s fixed-point Theorem. Suppose B is a com-
plete, locally convex linear space and S is a closed convex subset of B. Let the
mapping T : B → B be continuous and T (S) ⊂ S. If the closure of T (S) is
compact, then T has a fixed-point in S.

Theorem 1.2. Shauder fixed-point Theorem. Let S be a convex subset of
a Banach space B, let the mapping T : S → S be compact, continuous. Then
T has at least one fixed-point in S.

Theorem 1.3. Arzela-Ascoli Theorem. Let E be a compact metric space
and C(E) the Banach space of real or complex valued continuous functions
normed by

‖ f(t) ‖ = max
t ∈ E

| f(t) |.
If A = {fn} is a sequence in C(E) such that fn is uniformly bounded and
equi-continuous. Then the closure of A is compact.

Theorem 1.4. Lusin Theorem. Let m : [0, 1] → R be a measurable function.
For any ε > 0 there exists a closed subset Aε of [0, 1], meas.(Ac

ε) < ε, such
that m restricted to Aε is continuous.

Theorem 1.5. Scorza Dragoni Theorem. Let k : [0, 1] × [0, 1] → R be a
function satisfying Carathèodory condition (i.e. measurable in t for all s ∈ [0, 1]
and continuous in s for all t ∈ [0, 1] ). For any ε > 0 there exists a closed
subset Aε of [0, 1], meas.(Ac

ε) < ε, such that k restricted to Aε × [0, 1] is
continuous.

2. L1−positive solution

Let I = [0, 1], and consider the assumptions:

(i) a : I → R+ = [0, + ∞) is integrable on I;
(ii) f, g : I × R+ → R+ satisfy Carathèodory condition (i.e. measurable

in t for all x ∈ R+ and continuous in x for all t ∈ [0, 1] ) and there
exist two functions m1, m2 ∈ L1 such that

g(t, x) ≤ m1(t), f(t, x) ≤ m2(t) ∀ (t, x) ∈ I × R+;
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(iii) k : [0, 1]× [0, 1] → R satisfies Carathèodory condition (i.e. measurable
in t for all s ∈ [0, 1] and continuous in s for all t ∈ [0, 1] ).

For the existence of at least one L1−positive solution of the nonlinear quadratic
integral equation (1.1) we have the following theorem.

Theorem 2.1. Let the assumptions (i)-(iii) be satisfied. Then the nonlinear
quadratic integral equation (1.1) has at least one L1−positive solution x .

Proof. Consider the set Q ⊂ L1 such that

Q = { x ∈ L1, |x(t)| ≤ x0(t) a.e. }
where

x0(t) = a(t) + m1(t)

∫ 1

0

k(t, s) m2(s) ds. (2.1)

The set Q can be shown to be nonempty, bounded, closed and convex in L1.
Let H be the operator defined by

(Hx)(t) = a(t) + g(t, x(t))

∫ 1

0

k(t, s) f(s, x(s)) ds, t ∈ I. (2.2)

We shall prove that H : Q → Q. For that let x ∈ Q, then

|(Hx)(t)| ≤ | a(t) | + m1(t)

∫ 1

0

k(t, s) m2(s) ds = x0(t),

so Hx ∈ Q and hence HQ ⊂ Q.
To apply Schauder fixed-point Theorem, we shall prove that HQ is relatively
compact in L1.
By using Lusin and Scorza Dragoni Theorems , we can find a closed subset An

of [0, 1], with meas.(Ac
n) < 1

n
such that a(t), m1(t), k|An×[0,1] and g|An×Q

are uniformly continuous on An.
Assume that xh is any sequence in Q, then for t1, t2 ∈ An, we have

(Hxh)(t2) − (Hxh)(t1) = a(t2) − a(t1)

+ g(t2, xh(t2))

∫ 1

0

k(t2, s) f(s, xh(s)) ds − g(t1, xh(t1))

∫ 1

0

k(t1, s) f(s, xh(s)) ds

= a(t2) − a(t1) + g(t2, xh(t2))

∫ 1

0

k(t2, s) f(s, xh(s)) ds

− g(t1, xh(t1))

∫ 1

0

k(t1, s) f(s, xh(s)) ds+ g(t1, xh(t1))

∫ 1

0

k(t2, s) f(s, xh(s)) ds

− g(t1, xh(t1))

∫ 1

0

k(t2, s) f(s, xh(s)) ds

≤ a(t2) − a(t1) + [ g(t2, xh(t2)) − g(t1, xh(t1)) ]

∫ 1

0

k(t2, s) f(s, xh(s)) ds

+ g(t1, xh(t1))

∫ 1

0

{ k(t2, s) − k(t1, s) } f(s, xh(s)) ds
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Then we get

| (Hxh)(t2)− (Hxh)(t1) | ≤ | a(t2)− a(t1) |+ m1(t1)

∫ 1

0

| k(t2, s)− k(t1, s) |m2(s) ds

+ | g(t2, xh(t2)) − g(t1, xh(t1)) |
∫ 1

0

k(t2, s) m2(s) ds

This means that the sequence {Hxh} is sequence of equi-continuous functions
on An and we can prove that this sequence is uniformly bounded.
Now

| (Hxh)(t) | = | a(t) | + m1(t)

∫ 1

0

k(t, s) m2(s) ds

≤ M1 + M2 K

∫ 1

0

m2(s) ds

where | a(t) |An ≤ M1, | m1(t) |An ≤ M2 and k|An×[0,1] ≤ K.
Hence by Arzela-Ascoli Theorem Hxh is relatively compact subset of C(An)
and this can be done for each n ∈ N. this implies the existence of convergent
subsequence {xhj

} of {xh} in each C(An). Given ε > 0 and choose n1 ∈ N
so that meas(An1) < ε, then

∫ T

0

| Hxhj
− Hxhl

| dt =

∫

Ac
n1

| Hxhj
− Hxhl

| dt

+

∫

An1

| Hxhj
− Hxhl

| dt.

Since C(An) is complete metric space, hence this subsequence is a Cauchy
sequence in each C(An), n = 1, 2, 3, ...
That is for given ε > 0 and j, l are arbitrary large we have

|| Hxhj
− Hxhl

||C(An) < ε. (2.3)

But we want to prove that the set HQ is relatively compact in L1, that is
HQ is compact in L1.
To do this, we will prove that the sequence { Hxh } is convergent in L1, since
L1 is complete metric space, then it is sufficient to prove that the subsequence
{ Hxhj

} is a Cauchy sequence in L1.
i.e. ∀ η > 0, ∃ N(η) and

∫
An

x0(t) dt < η/4 such that

|| Hxhj
− Hxhl

||L1 < η, j, l > N(η).

Now from (2.1) and (2.2) we have
∫ T

0

| Hxhj
− Hxhl

| dt =

∫

Ac
n

| Hxhj
− Hxhl

| dt

+

∫

An

| Hxhj
− Hxhl

| dt.

≤
∫

Ac
n

{ | Hxhj
| + | Hxhl

| } dt + || Hxhj
− Hxhl

||C(An)
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≤ η/4 + η/4 + || Hxhj
− Hxhl

||C(An).

Choose N such that l, j > N, then (2.3) implies that ||Hxhj
−Hxhl

||C(An) ≤ η/2.
This means that the subsequence { Hxhj

} is a Cauchy sequence in L1 which
implies that HQ is relatively compact in L1. Then H has at least one fixed
point. Hence there exists at least one solution x ∈ L1 of (1.1).
Since all conditions of Shauder’s fixed-point Theorem hold, then H has a fixed
point in Q. ¤

3. Continuous solutions

Let I = [0, 1], and consider the assumptions:

(i) a : I → R+ = [0, + ∞) is continuous on I;
(ii) f : I × R+ → R+ satisfies Carathéodory condition (i.e. measurable

in t for all x ∈ R+ and continuous in x for all t ∈ [0, 1] ) and there
exists function m ∈ L1 such that

f(t, x(t)) ≤ m(t) ∀ (t, x) ∈ I × R+;

(iii) g : I × R+ → R+ is continuous in t, x and | g(t, x) | ≤ M ;
(iv) k : [0, 1]× [0, 1] → R satisfies Carathèodory condition (i.e. measurable

in t for all s ∈ [0, 1] and continuous in s for all t ∈ [0, 1] ).

Now for the existence of at least one positive continuous solution of the nonlinear
quadratic integral equation (1.1) we have the following theorem.

Theorem 3.1. Let the assumptions (i)-(iv) be satisfied. Then the nonlinear
quadratic integral equation (1.1) has at least one positive solution x ∈ C(I).

Proof. We shall use Tychonov’s fixed point Theorem to prove this theorem
It can be verified that [7] C is complete locally convex linear space. Define a
subset S of C by

S = { x ∈ C : |x(t)| ≤ M2 }, t ∈ [0, 1],

where M2 is a positive constant. It is clear that the set S is closed and convex.
Let H be an operator defined by

(Hx)(t) = a(t) + g(t, x(t))

∫ 1

0

k(t, s) f(s, x(s)) ds, ∀ x ∈ S.

Assumptions (ii) and (iii) imply that H : S → C is continuous operator in x.
We shall prove that HS ⊂ S.
For every x ∈ S we have

| (Hx)(t)| ≤ | a(t) | + M

∫ 1

0

k(t, s) m(s) ds t ∈ [0, 1]

≤ M1 + M

∫ 1

0

k(t, s) m(s) ds = M2,
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where | a(t) | ≤ M1. Then, Hx ∈ S and hence HS ⊂ S. Also
for t1 and t2 ∈ [0, 1] we can have

(Hx)(t2) − (Hx)(t1) = a(t2) − a(t1) + g(t2, x(t2))

∫ 1

0

k(t2, s) f(s, x(s)) ds

− g(t1, x(t1))

∫ 1

0

k(t1, s) f(s, x(s)) ds + g(t1, x(t1))

∫ 1

0

k(t2, s) f(s, x(s)) ds

− g(t1, x(t1))

∫ 1

0

k(t2, s) f(s, x(s)) ds

= a(t2) − a(t1) + [g(t2, x(t2)) − g(t1, x(t1))]

∫ 1

0

k(t2, s) f(s, x(s)) ds

+ g(t1, x(t1))

∫ 1

0

[k(t2, s) − k(t1, s)] f(s, x(s)) ds

Using assumptions (ii) (iii) then, we have

| (Hx)(t2) − (Hx)(t1) | ≤ | a(t2) − a(t1) | + M

∫ 1

0

| k(t2, s) − k(t1, s) |m(s) ds

+ |g(t2, x(t2)) − g(t1, x(t1))|
∫ 1

0

k(t2, s) m(s) ds

This means that the functions of HS are equi-continuous on [0, 1], then by
Arzela-Ascoli Theorem the closure of HS is compact.
Hence, all conditions of Tychonov fixed-point Theorem hold, then H has a fixed
point in S. ¤

4. Maximal and minimal solutions

Definition 4.1. [13] Let q(t) be a solution of the nonlinear Hammerstein qua-
dratic integral equation (1.1). Then q(t) is said to be a maximal solution of (1.1)
if every solution x(t) of (1.1) satisfies the inequality x(t) < q(t) . A minimal
solution s(t) can be defined by similar way by reversing the above inequality
i.e. x(t) > s(t) .

We shall use the following lemma to prove the existence of the maximal and
minimal solutions.

Lemma 4.2. Let a(t) is continuous function on I and k(t, s) satisfies the
assumption (iv) of Theorem 3.1. Let f(t, x), g(t, x) ∈ L1 and x(t), y(t) are
continuous functions on [0, 1] satisfying

x(t) ≤ a(t) + g(t, x(t))

∫ 1

0

k(t, s) f(s, x(s)) ds,

y(t) ≥ a(t) + g(t, y(t))

∫ 1

0

k(t, s) f(s, y(s)) ds

and one of them is strict. If f(t, x), g(t, x) are monotonic nondecreasing in x,
then

x(t) < y(t), t > 0. (4.1)
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Proof. Let the conclusion (4.1) be false, then there exists t1 such that

x(t1) = y(t1), t1 > 0

and
x(t) < y(t), 0 < t < t1.

From the monotonicity of f(t, x), g(t, x) in x, we get

x(t1) ≤ a(t1) + g(t1, x(t1))

∫ 1

0

k(t1, s) f(s, x(s)) ds,

< a(t1) + g(t1, y(t1))

∫ 1

0

k(t1, s) f(s, y(s)) ds

< y(t1),

which contradicts the fact that x(t1) = y(t1) , then x(t) < y(t). ¤
Theorem 4.3. Let the assumptions of Theorem 3.1 be satisfied and if f(t, x), g(t, x)
are nondecreasing in x on I. Then there exist maximal and minimal solutions
of the nonlinear quadratic integral equation (1.1).

Proof. Firstly we shall prove the existence of the maximal solution of (1.1).
Let ε > 0 be given. Now consider the quadratic integral equation

xε (t) = a(t) + gε(t, xε(t))

∫ 1

0

k(t, s) fε(s, xε(s)) ds t ∈ [0, 1], (4.2)

where
fε(t, xε(t)) = f(t, xε(t)) + ε,

gε(t, xε(t)) = g(t, xε(t)) + ε,

Clearly the functions fε(t, xε) and gε(t, xε) satisfy assumptions (ii),(iii) of the-
orem 3.1 and therefore equation (4.2) at least a positive solution xε(t) ∈ C(I).
Let ε1 and ε2 be such that 0 < ε2 < ε1 < ε. Then

xε2 (t) = a(t) + gε2(t, xε2(t))

∫ 1

0

k(t, s) fε2(s, xε2(s)) ds

xε2 (t) = a(t) + (g(t, xε2(t)) + ε2)

∫ 1

0

k(t, s) (f(s, xε2(s)) + ε2) ds (4.3)

xε1 (t) = a(t) + (g(t, xε1(t)) + ε1)

∫ 1

0

k(t, s) (f(s, xε1(s)) + ε1) ds

xε1 (t) > a(t) + (g(t, xε1(t)) + ε2)

∫ 1

0

k(t, s) (f(s, xε1(s)) + ε2) ds. (4.4)

Applying Lemma 4.2 on (4.3) and (4.4), we have

xε2(t) < xε1(t) for t ∈ I.

As shown before the family of functions xε(t) is equi-continuous and uniformly
bounded.
Hence by Arzela-Ascoli Theorem, there exists a decreasing sequence εn such
that ε → 0 as n → ∞ and limn→∞ xεn (t) exists uniformly in I and
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denote this limit by q(t) . From the continuity of the functions fε(t, xε) and
gε(t, xε) in the second argument, we get

q(t) = lim
n→∞

xεn(t) = a(t) + g(t, q(t))

∫ 1

0

k(t, s) f(s, q(s)) ds

implies q(t) as a solution of (1.1).
Finally, we shall show that q(t) is the maximal solution of (1.1). To do this, let
x(t) be any solution of (1.1). Then

xε (t) = a(t) + gε(t, xε(t))

∫ 1

0

k(t, s) fε(s, xε(s)) ds

= a(t) + (g(t, xε(t)) + ε)

∫ 1

0

k(t, s) (f(s, xε(s)) + ε) ds

> a(t) + g(t, xε(t))

∫ 1

0

k(t, s) f(s, xε(s)) ds.

Also

x(t) = a(t) + g(t, x(t))

∫ 1

0

k(t, s) f(s, x(s)) ds

implies
x(t) < xε(t) for t ∈ I.

from the uniqueness of the maximal solution (see[13]), it is clear that xε(t) tends
to q(t) uniformly in t ∈ I as ε → 0.
By similar way as done above we can prove the existence of the minimal solution.

¤
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