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L-FUZZY NONLINEAR APPROXIMATION THEORY WITH
APPLICATION

A. YOUSEFI', M. SOLEIMANI-VAREKI?

ABSTRACT. In this paper, we show that cartesian product with a fixed compact set pre-
serve various nonlinear approximation-theoretic properties in £-fuzzy metric space. In fact,
we show that for approximative compactness and proximinality, points can be replaced by
compact sets (Theorem 2.4); also that cartesian product (Theorem 2.8), preserve the com-
pactness hierarchy properties when we operate by cartesian product with a compact subset.
Further, the set of points in an approximatively compact subset which minimize the distance
to a given compact subset is itself compact (Theorem 2.9).

1. PRELIMINARIES

The notion of fuzzy sets was introduced by Zadeh [13]. Using the idea of L-fuzzy sets
[5], the author introduced the notion of L-fuzzy metric spaces with the help of continuous
t-norms as a generalization of fuzzy metric space due to George and Veeramani [4].

In the sequel, we shall adopt usual terminology, notation and conventions of £L-fuzzy metric
spaces introduced by Saadati et al. [1, 8, [11].

Definition 1.1. ([5]) Let £ = (L, <) be a complete lattice, and U a non-empty set called
universe. An L-fuzzy set A on U is defined as a mapping A : U — L. For each u in U,
A(u) represents the degree (in L) to which u satisfies A.

Lemma 1.2. ([3]) Consider the set L* and operation <p- defined by:
L* = {(x1,29) : (z1,72) € [0,1]* and 21 + 12 < 1},

(x1,22) <p+ (y1,y2) <= o1 < y1 and xo > yo, for every (x1,x2), (y1,y2) € L*. Then
(L*, <p+) is a complete lattice .
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Definition 1.3. ([2]) An intuitionistic fuzzy set A¢, on a universe U is an object Ac, =
{(Ca(u),na(u)) : w € U}, where, for all u € U, Ca(u) € [0,1] and na(u) € [0, 1] are called
the membership degree and the non-membership degree, respectively, of v in A¢,, and
furthermore satisfy a(u) +na(u) < 1.

Classically, a triangular norm 7" on ([0, 1], <) is defined as an increasing, commutative,
associative mapping T : [0,1]> — [0, 1] satisfying T'(1,z) = z, for all z € [0,1]. These
definitions can be straightforwardly extended to any lattice £ = (L, <p). Define first 0, =
inf L and 1, = sup L.

Definition 1.4. A triangular norm (t-norm) on £ is a mapping 7 : L? — L satisfying the
following conditions:
(i) (Vz € L)(T(x,1z) = x); (boundary condition)
(i) (V(z,y) € L)(T(z,y) =T (y,2));  (commutativity)
(iii) (V(x,y,2) € L3)(T (2, T (y,2)) =T (T (z,y), 2)); (associativity)
(iv) (V(z,2",y,y) € L) (xz <p 2’ and y <p v = T (z,y) <p T(2,y)). (monotonic-
ity)

A t—norm 7 on L is said to be continuous if for any z,y € £ and any sequences {x,} and
{yn} which converge to = and y we have

Wm T (2, yn) = T (2, y)

For example, 7 (x,y) = min(x,y) and 7 (z,y) = xy are two continuous ¢—norms on [0, 1].
A t-norm can also be defined recursively as an (n + 1)-ary operation (n € N) by 7' =T
and

Tn(JJlu e 7xn+l) - T(Tn_l(xla e 7xn)7xn+1)

forn > 2 and x; € L.
We say the continuous t-norm is natural and write 7y whenever 7y (a,b) = Tn(c,d) and
a <p, cimplies b >, d.

Definition 1.5. ([3]) A t-norm 7 on L* is called t-representable if and only if there exist a
t-norm 7" and a t-conorm S on [0, 1] such that, for all x = (21, 22),y = (y1,92) € L*,

T(z,y) = (T(x1,y1), S(x2,y2)).

Definition 1.6. A negation on £ is any decreasing mapping N : L — L satisfying N'(0) =
Ipand N(1z) =0, . HN(N(x)) =z, for all x € L, then N is called an involutive negation.

Definition 1.7. The 3-tuple (X, M,7T) is said to be an L-fuzzy metric space if X is an
arbitrary (non-empty) set, 7 is a continuous t—norm on £ and M is an L-fuzzy set on
X?2x 10, +oo[ satisfying the following conditions for every x,y,z in X and ¢, s in |0, +o0:
( ) M([E Y, )>L OE;
(b) M(z,y,t) = 1, for all ¢ > 0 if and only if z = y;
( ) M(l‘ Y, )*M(y,l',t);
(d) T(M(z,y,t), M(y,z,5)) <p M(z,2,t+ s);
)

(e) M(z,y,-) :]0,00[ — L is continuous.

a
b
c
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In this case M is called an L-fuzzy metric. If M = M,y is an intuitionistic fuzzy set (see
Definition 1.3)) then the 3-tuple (X, M n,7) is said to be an intuitionistic fuzzy metric
space.

Let (X, M,T) be an L-fuzzy metric space. For ¢t € ]0,4o00[, we define the open ball
B(z,r,t) with center x € X and radius r € L\ {0, 1}, as

B(z,r,t) ={y € X : M(x,y,t) >, N(r)}.

A subset A C X is called open if for each x € A, there exist t > 0 and r € L\ {0¢, 12} such
that B(x,r,t) C A. Let 7o denote the family of all open subsets of X. Then 7, is called
the topology induced by the L-fuzzy metric M. A subset A of X is said to be LF'-bounded if
there exist ¢ > 0 and r € L\ {0z, 12} such that M(x,y,t) >; N(r) for each x,y € A.

Example 1.8. ([12]) Let (X, d) be a metric space. Denote 7 (a,b) = (a1by, min(as + be, 1))
for all @ = (a1,as) and b = (by,b) in L* and let M and N be fuzzy sets on X? x (0, 00)
defined as follows:

MM,N('T7y>t) = (M(af,y,t),N(a:,y,t)) = ( t d(l’,y)

t+md(z,y) t+d(z,y)
in which m > 1. Then (X, My, n,7) is an intuitionistic fuzzy metric space.
Example 1.9. Let X = N. Define 7 (a,b) = (max(0,a; + by — 1), a2 + by — azby) for all

a = (ai,ay) and b = (by,by) in L* and let M and N be fuzzy sets on X? x (0, 00) defined as
follows:

)7

My n(z,y,t) = (M(z,y,t), N(z,y,t)) = { (%» %) if x<uy

(2, =2) if y<u

x? x

for all z,y € X and ¢ > 0. Then (X, My n,7) is an intuitionistic fuzzy metric space.

Definition 1.10. A sequence {z,}n,en in an L-fuzzy metric space (X, M,7) is called a
Cauchy sequence, if for each e € L'\ {0.} and t > 0, there exists ng € N such that for all
m>n>mng (n>m>ng),

M(xp, 2, t) > N(€).
The sequence {x,},en is said to be convergent to x € X in the L-fuzzy metric space
(X, M, T) (denoted by x, M, x) if M(zp,z,t) = M(z,x,,t) — 1, whenever n — 400 for
every t > (.

Definition 1.11. Let (X, M, 7T) be an L-fuzzy metric space. M is said to be continuous
on X x X x]0,00] if
lim M (2, Yo, tn) = M(z,y,1)

whenever a sequence {(Z,,yn,t,)} in X X X x]0,00[ converges to a point (z,y,t) € X X
X x]0, 00[ i.e., lim, M(z,,x,t) = lim, M(y,,y,t) = 1z and lim, M(z,y,t,) = M(x,y,1).

Lemma 1.12. Let (X, M,T) be an L-fuzzy metric space. Then M is continuous function
on X x X x]0,00].

Proof. The proof is same as fuzzy metric spaces (see Proposition 1 of [9]). O
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2. MAIN RESULTS
Definition 2.1. Let (X, M, 7T) be an L-fuzzy metric space and A, B C X. We define
M(A, B,t) = sup{M(a,b,t) :a € Aand b € B}.
For a € X, we write M(a, B,t) instead of M({a}, B, ).

Definition 2.2. A sequence converges sub-sequentially if it has a convergent subsequence;
the notation x, > x,,» — x( identifies the subsequence and the point to which it converges.
Recall that a subset C' of an L£-fuzzy metric space is compact if every sequence in C' converges
sub-sequentially to an element of C. Also, given sequences x,;¥,, and a subsequence x,, of
the first sequence, the corresponding subsequence of the second is denoted 7,,,. A subset of a
L-fuzzy metric space is LF'-boundedly compact if every LF-bounded sequence in the subset
is sub-sequentially convergent. In the above notation, Y is LF-boundedly compact if for
any LF-bounded sequence vy, in Y | there is a point xy (not necessarily in Y ) for which
Yn > Yny — Xo-

Definition 2.3. For an £-fuzzy metric space (X, M, 7) and nonempty subsets B and C, a
sequence b, € B is said to converge in distance to C' if

lim M(b,, C,t) = M(B,C,1).

The subset B is approximatively compact relative to C' if every sequence b, € B which
converges in distance to C' is sub-sequentially convergent to an element of B. We call B a
subset of X approximatively compact if B is approximatively compact relative to each of
the singletons of X; B is proximinal if for every x € X some element b in B satisfies the
equation M(z,b,t) = M(x, B,t).

The first result says that points can be replaced by compact subsets in the definition of
approximative compactness.

Theorem 2.4. Let B and C' be nonempty subsets of a L-fuzzy metric space (X, M, T). If
B is approximatively compact and C' is compact, then B is approrimatively compact relative

to C.

Proof. Let b, € B be any sequence converging in distance to C' and let the sequence
cn, € C satisty

lim M(b,,cn,t) = M(B,C,t). (2.1)

n—oo

Since C is compact, ¢, > ¢,y — ¢y € C. Hence, for every € € L\ {0.} there exists ny such
that for n’ > ng

M(B,C,t) > M(by,co,t)
>1 T(M(by,cp,t —06), M(cur,co,0))
>, T(M(B,C,t—9),N(e))
for 0 € (0,t). Since e € L\{0,} and § were arbitrary, then lim,, o, M(b,, co,t) = M(B,C,t).

Therefore, b, converges in distance to ¢ so, since B is approximatively compact, b, > b,y —
by € B, that is, b, converges sub-sequentially to an element of B. [l
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Theorem 2.5. Let B and C be nonempty subsets of a L-fuzzy metric space (X, M, T). If
B is approximatively compact and LF-bounded, and C' is IF-boundedly compact, then B is
approximatively compact relative to C.

Proof. Let b, € B be any sequence converging in distance to C' and let ¢, € C satisfy
(2.1). As b, is LF-bounded, so is ¢,. Since C'is LF-boundedly compact, ¢, > ¢, — ¢o € X.
Now proceed as in the proof of last theorem. O

Theorem 2.6. ([7]) Let B and C be nonempty subsets of a L-fuzzy metric space (X, M, T).
If B is closed and LF-boundedly compact and C is LF-bounded, then B is approximatively
compact relative to C.

Lemma 2.7. ([0, 10]) Let (X, M,T) and (Y, M,T) be L-fuzzy metric spaces. If we define
M((z,y), («',y'),t) = T (M(z,2', 1), M(y, ¥, 1)),

then (X x Y,M,T) is a L-fuzzy metric space and the topology induced on X X Y is the
product topology.

Theorem 2.8. Let S and P be nonempty subsets of L-fuzzy metric spaces (X, M, Ty) and
(Y, M, Ty), respectively. Suppose that P is compact. If S is LF-boundedly compact or
approximatively compact, then so is S X P.

Proof. If S is LF-boundedly compact, we show that any sequence (s, p,) in S x P which
is LF-bounded has a convergent subsequence. Indeed, by definition of the product £-fuzzy
metric, s, is LF-bounded and since S is LF-boundedly compact, s, > s, — so € X. By
compactness of P, p, > p,» — po € P. Hence, ($p,pn) > (Spr, D) — (S0,00) € X X Y.

If S is approximatively compact, let (z,y) be any element in X x Y and suppose that (s,, p)
is a sequence in S X P which converges in distance to (x,y), that is,

Tim M((50. pa). (2,). 1) = M(S x P, (2,9).1).

By compactness of P, p, > py — po € P. Hence, lim,, o M((Sy,p0), (x,y),t) = M(S x
P, (x,y),t) so

lim 7y (M(su,z,t), M(po,y,t)) = Tn(M(S, x,t), M(P,y,1)).
Since M(po,y,t) <p M(P,y,t) then limy . M(s,,x,t) > M(S,z,t) which implies
lim, oo M(8pr, 2, t) = M(S,x,t). Hence, s, converges in distance to z and since S is
approximatively compact, s,/ > s,» — sg € S. Therefore, (s,,pn) > (Spr, Ppr) — (S0, P0) €
S x P, ie., S x P is approximatively compact. O

Theorem 2.9. Let B and C' be nonempty subsets of a L-fuzzy metric space (X, M, T). If
B is approzimatively compact and C' is compact, then K = {b € B: 3¢ e C, M(b,c,t) =
M(B,c,t)} is compact.

Proof. Let (y,) be a sequence in K and for every n € N choose ¢, in C so that y,
minimizes the distance from B to ¢,. Since C is compact, ¢, > ¢,y — ¢ € C. Hence, for
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every € € L\ {0}, there exists ng such that for all n’ > ng, M(c,/, o, t) >1 N (€), therefore,
for all n’ > ng,

M(B, Co, t) 2L M(yn’7 Co, t)
ZL 72(M(B7 COut - 25)7 M(C’n/7 Co, 6)) MM,N(Cn’7 Co, 6))
>, T*(M(B,co,t —25),N(e), N(e))

for every 0 € (0,t/2). Since e € L\ {0.} and d € (0,t/2) were arbitrary, then M(B, co,t) =
lim,y/ oo M (Y, co, t). Therefore, y,,» converges in distance to ¢y, so it converges sub-sequentially.
O
It follows that {b € B : M(b,C,t) = M(B,c,t)} is compact when C' is compact and B is
approximatively compact. Thus, in an L-fuzzy metric space, the £-fuzzy metric projection
of a compact subset into an approximatively compact subset is compact.
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