J. Nonlinear Sci. Appl. 2 (2009), no. 3, 146–151

The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

L-FUZZY NONLINEAR APPROXIMATION THEORY WITH APPLICATION

A. YOUSEFI¹, M. SOLEIMANI-VAREKI²

ABSTRACT. In this paper, we show that cartesian product with a fixed compact set preserve various nonlinear approximation-theoretic properties in \mathcal{L} -fuzzy metric space. In fact, we show that for approximative compactness and proximinality, points can be replaced by compact sets (Theorem 2.4); also that cartesian product (Theorem 2.8), preserve the compactness hierarchy properties when we operate by cartesian product with a compact subset. Further, the set of points in an approximatively compact subset which minimize the distance to a given compact subset is itself compact (Theorem 2.9).

1. Preliminaries

The notion of fuzzy sets was introduced by Zadeh [13]. Using the idea of \mathcal{L} -fuzzy sets [5], the author introduced the notion of \mathcal{L} -fuzzy metric spaces with the help of continuous *t*-norms as a generalization of fuzzy metric space due to George and Veeramani [4].

In the sequel, we shall adopt usual terminology, notation and conventions of \mathcal{L} -fuzzy metric spaces introduced by Saadati et al. [1, 8, 11].

Definition 1.1. ([5]) Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice, and U a non-empty set called universe. An \mathcal{L} -fuzzy set \mathcal{A} on U is defined as a mapping $\mathcal{A} : U \longrightarrow L$. For each u in U, $\mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A} .

Lemma 1.2. ([3]) Consider the set L^* and operation \leq_{L^*} defined by:

 $L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1\},\$

 $(x_1, x_2) \leq_{L^*} (y_1, y_2) \iff x_1 \leq y_1$ and $x_2 \geq y_2$, for every $(x_1, x_2), (y_1, y_2) \in L^*$. Then (L^*, \leq_{L^*}) is a complete lattice.

²⁰⁰⁰ Mathematics Subject Classification. 54E35, 41A65.

Key words and phrases. Nonlinear approximation; \mathcal{L} -fuzzy metric space; compactness; cartesian product; proximinal set.

Definition 1.3. ([2]) An intuitionistic fuzzy set $\mathcal{A}_{\zeta,\eta}$ on a universe U is an object $\mathcal{A}_{\zeta,\eta} = \{(\zeta_{\mathcal{A}}(u), \eta_{\mathcal{A}}(u)) : u \in U\}$, where, for all $u \in U, \zeta_{\mathcal{A}}(u) \in [0, 1]$ and $\eta_{\mathcal{A}}(u) \in [0, 1]$ are called the membership degree and the non-membership degree, respectively, of u in $\mathcal{A}_{\zeta,\eta}$, and furthermore satisfy $\zeta_{\mathcal{A}}(u) + \eta_{\mathcal{A}}(u) \leq 1$.

Classically, a triangular norm T on $([0,1], \leq)$ is defined as an increasing, commutative, associative mapping $T : [0,1]^2 \to [0,1]$ satisfying T(1,x) = x, for all $x \in [0,1]$. These definitions can be straightforwardly extended to any lattice $\mathcal{L} = (L, \leq_L)$. Define first $0_{\mathcal{L}} =$ inf L and $1_{\mathcal{L}} = \sup L$.

Definition 1.4. A triangular norm (t-norm) on \mathcal{L} is a mapping $\mathcal{T} : L^2 \to L$ satisfying the following conditions:

- (i) $(\forall x \in L)(\mathcal{T}(x, 1_{\mathcal{L}}) = x);$ (boundary condition)
- (ii) $(\forall (x, y) \in L^2)(\mathcal{T}(x, y) = \mathcal{T}(y, x));$ (commutativity)
- (iii) $(\forall (x, y, z) \in L^3)(\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z));$ (associativity)
- (iv) $(\forall (x, x', y, y') \in L^4)(x \leq_L x' \text{ and } y \leq_L y' \Rightarrow \mathcal{T}(x, y) \leq_L \mathcal{T}(x', y')).$ (monotonicity)

A *t*-norm \mathcal{T} on \mathcal{L} is said to be continuous if for any $x, y \in \mathcal{L}$ and any sequences $\{x_n\}$ and $\{y_n\}$ which converge to x and y we have

$$\lim \mathcal{T}(x_n, y_n) = \mathcal{T}(x, y)$$

For example, $\mathcal{T}(x, y) = \min(x, y)$ and $\mathcal{T}(x, y) = xy$ are two continuous t-norms on [0, 1].

A t-norm can also be defined recursively as an (n + 1)-ary operation $(n \in \mathbf{N})$ by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^n(x_1,\cdots,x_{n+1})=\mathcal{T}(\mathcal{T}^{n-1}(x_1,\cdots,x_n),x_{n+1})$$

for $n \geq 2$ and $x_i \in L$.

We say the continuous t-norm is *natural* and write \mathcal{T}_N whenever $\mathcal{T}_N(a, b) = \mathcal{T}_N(c, d)$ and $a \leq_L c$ implies $b \geq_L d$.

Definition 1.5. ([3]) A t-norm \mathcal{T} on L^* is called *t*-representable if and only if there exist a t-norm T and a t-conorm S on [0, 1] such that, for all $x = (x_1, x_2), y = (y_1, y_2) \in L^*$,

$$\mathcal{T}(x,y) = (T(x_1,y_1), S(x_2,y_2)).$$

Definition 1.6. A negation on \mathcal{L} is any decreasing mapping $\mathcal{N} : L \to L$ satisfying $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L$, then \mathcal{N} is called an involutive negation.

Definition 1.7. The 3-tuple $(X, \mathcal{M}, \mathcal{T})$ is said to be an \mathcal{L} -fuzzy metric space if X is an arbitrary (non-empty) set, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{M} is an \mathcal{L} -fuzzy set on $X^2 \times]0, +\infty[$ satisfying the following conditions for every x, y, z in X and t, s in $]0, +\infty[$:

- (a) $\mathcal{M}(x,y,t) >_L 0_{\mathcal{L}};$
- (b) $\mathcal{M}(x, y, t) = 1_{\mathcal{L}}$ for all t > 0 if and only if x = y;
- (c) $\mathcal{M}(x, y, t) = \mathcal{M}(y, x, t);$
- (d) $\mathcal{T}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, s)) \leq_L \mathcal{M}(x, z, t+s);$
- (e) $\mathcal{M}(x, y, \cdot) :]0, \infty[\to L \text{ is continuous.}$

In this case \mathcal{M} is called an \mathcal{L} -fuzzy metric. If $\mathcal{M} = \mathcal{M}_{M,N}$ is an intuitionistic fuzzy set (see Definition 1.3) then the 3-tuple $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is said to be an *intuitionistic fuzzy metric space*.

Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. For $t \in]0, +\infty[$, we define the open ball B(x, r, t) with center $x \in X$ and radius $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, as

$$B(x, r, t) = \{ y \in X : \mathcal{M}(x, y, t) >_L \mathcal{N}(r) \}.$$

A subset $A \subseteq X$ is called *open* if for each $x \in A$, there exist t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $B(x, r, t) \subseteq A$. Let $\tau_{\mathcal{M}}$ denote the family of all open subsets of X. Then $\tau_{\mathcal{M}}$ is called the *topology induced by the* \mathcal{L} -fuzzy metric \mathcal{M} . A subset A of X is said to be $\mathcal{L}F$ -bounded if there exist t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $\mathcal{M}(x, y, t) >_L \mathcal{N}(r)$ for each $x, y \in A$.

Example 1.8. ([12]) Let (X, d) be a metric space. Denote $\mathcal{T}(a, b) = (a_1b_1, \min(a_2 + b_2, 1))$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = (M(x,y,t), N(x,y,t)) = (\frac{t}{t + md(x,y)}, \frac{d(x,y)}{t + d(x,y)}),$$

in which m > 1. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space.

Example 1.9. Let $X = \mathbf{N}$. Define $\mathcal{T}(a, b) = (\max(0, a_1 + b_1 - 1), a_2 + b_2 - a_2b_2)$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = (M(x,y,t), N(x,y,t)) = \begin{cases} \left(\frac{x}{y}, \frac{y-x}{y}\right) & \text{if } x \le y\\ \left(\frac{y}{x}, \frac{x-y}{x}\right) & \text{if } y \le x. \end{cases}$$

for all $x, y \in X$ and t > 0. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space.

Definition 1.10. A sequence $\{x_n\}_{n \in \mathbb{N}}$ in an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ is called a *Cauchy sequence*, if for each $\varepsilon \in L \setminus \{0_{\mathcal{L}}\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that for all $m \ge n \ge n_0$ $(n \ge m \ge n_0)$,

$$\mathcal{M}(x_m, x_n, t) >_L \mathcal{N}(\varepsilon).$$

The sequence $\{x_n\}_{n \in \mathbb{N}}$ is said to be *convergent* to $x \in X$ in the \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ (denoted by $x_n \xrightarrow{\mathcal{M}} x$) if $\mathcal{M}(x_n, x, t) = \mathcal{M}(x, x_n, t) \to 1_{\mathcal{L}}$ whenever $n \to +\infty$ for every t > 0.

Definition 1.11. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. \mathcal{M} is said to be continuous on $X \times X \times]0, \infty[$ if

$$\lim_{n \to \infty} \mathcal{M}(x_n, y_n, t_n) = \mathcal{M}(x, y, t)$$

whenever a sequence $\{(x_n, y_n, t_n)\}$ in $X \times X \times]0, \infty[$ converges to a point $(x, y, t) \in X \times X \times]0, \infty[$ i.e., $\lim_n \mathcal{M}(x_n, x, t) = \lim_n \mathcal{M}(y_n, y, t) = 1_{\mathcal{L}}$ and $\lim_n \mathcal{M}(x, y, t_n) = \mathcal{M}(x, y, t).$

Lemma 1.12. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Then \mathcal{M} is continuous function on $X \times X \times]0, \infty[$.

Proof. The proof is same as fuzzy metric spaces (see Proposition 1 of [9]).

148

2. Main Results

Definition 2.1. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space and $A, B \subset X$. We define

$$\mathcal{M}(A, B, t) = \sup\{\mathcal{M}(a, b, t) : a \in A \text{ and } b \in B\}.$$

For $a \in X$, we write $\mathcal{M}(a, B, t)$ instead of $\mathcal{M}(\{a\}, B, t)$.

Definition 2.2. A sequence converges sub-sequentially if it has a convergent subsequence; the notation $x_n \gg x_{n'} \to x_0$ identifies the subsequence and the point to which it converges. Recall that a subset C of an \mathcal{L} -fuzzy metric space is compact if every sequence in C converges sub-sequentially to an element of C. Also, given sequences $x_n; y_n$, and a subsequence $x_{n'}$ of the first sequence, the corresponding subsequence of the second is denoted $y_{n'}$. A subset of a \mathcal{L} -fuzzy metric space is $\mathcal{L}F$ -boundedly compact if every $\mathcal{L}F$ -bounded sequence in the subset is sub-sequentially convergent. In the above notation, Y is $\mathcal{L}F$ -boundedly compact if for any $\mathcal{L}F$ -bounded sequence y_n in Y, there is a point x_0 (not necessarily in Y) for which $y_n \gg y_{n'} \to x_0$.

Definition 2.3. For an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ and nonempty subsets B and C, a sequence $b_n \in B$ is said to *converge in distance* to C if

$$\lim_{n \to \infty} \mathcal{M}(b_n, C, t) = \mathcal{M}(B, C, t).$$

The subset B is approximatively compact relative to C if every sequence $b_n \in B$ which converges in distance to C is sub-sequentially convergent to an element of B. We call B a subset of X approximatively compact if B is approximatively compact relative to each of the singletons of X; B is proximinal if for every $x \in X$ some element b in B satisfies the equation $\mathcal{M}(x, b, t) = \mathcal{M}(x, B, t)$.

The first result says that points can be replaced by compact subsets in the definition of approximative compactness.

Theorem 2.4. Let B and C be nonempty subsets of a \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$. If B is approximatively compact and C is compact, then B is approximatively compact relative to C.

Proof. Let $b_n \in B$ be any sequence converging in distance to C and let the sequence $c_n \in C$ satisfy

$$\lim_{n \to \infty} \mathcal{M}(b_n, c_n, t) = \mathcal{M}(B, C, t).$$
(2.1)

Since C is compact, $c_n \gg c_{n'} \to c_0 \in C$. Hence, for every $\epsilon \in L \setminus \{0_{\mathcal{L}}\}$ there exists n_0 such that for $n' > n_0$

$$\mathcal{M}(B,C,t) \geq_{L} \mathcal{M}(b_{n'},c_{0},t)$$

$$\geq_{L} \mathcal{T}(\mathcal{M}(b_{n'},c_{n'},t-\delta),\mathcal{M}(c_{n'},c_{0},\delta))$$

$$\geq_{L} \mathcal{T}(\mathcal{M}(B,C,t-\delta),\mathcal{N}(\epsilon))$$

for $\delta \in (0, t)$. Since $\epsilon \in L \setminus \{0_{\mathcal{L}}\}$ and δ were arbitrary, then $\lim_{n \to \infty} \mathcal{M}(b_{n'}, c_0, t) = \mathcal{M}(B, C, t)$. Therefore, $b_{n'}$ converges in distance to c_0 so, since B is approximatively compact, $b_n \gg b_{n'} \rightarrow b_0 \in B$, that is, b_n converges sub-sequentially to an element of B. **Theorem 2.5.** Let B and C be nonempty subsets of a \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$. If B is approximatively compact and $\mathcal{L}F$ -bounded, and C is IF-boundedly compact, then B is approximatively compact relative to C.

Proof. Let $b_n \in B$ be any sequence converging in distance to C and let $c_n \in C$ satisfy (2.1). As b_n is $\mathcal{L}F$ -bounded, so is c_n . Since C is $\mathcal{L}F$ -boundedly compact, $c_n \gg c_{n'} \to c_0 \in X$. Now proceed as in the proof of last theorem.

Theorem 2.6. ([7]) Let B and C be nonempty subsets of a \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$. If B is closed and $\mathcal{L}F$ -boundedly compact and C is $\mathcal{L}F$ -bounded, then B is approximatively compact relative to C.

Lemma 2.7. ([6, 10]) Let $(X, \mathcal{M}, \mathcal{T})$ and $(Y, \mathcal{M}, \mathcal{T})$ be \mathcal{L} -fuzzy metric spaces. If we define

$$\mathbf{M}((x,y),(x',y'),t) = \mathcal{T}(\mathcal{M}(x,x',t),\mathcal{M}(y,y',t)),$$

then $(X \times Y, \mathbf{M}, \mathcal{T})$ is a \mathcal{L} -fuzzy metric space and the topology induced on $X \times Y$ is the product topology.

Theorem 2.8. Let S and P be nonempty subsets of \mathcal{L} -fuzzy metric spaces $(X, \mathcal{M}, \mathcal{T}_N)$ and $(Y, \mathcal{M}, \mathcal{T}_N)$, respectively. Suppose that P is compact. If S is $\mathcal{L}F$ -boundedly compact or approximatively compact, then so is $S \times P$.

Proof. If S is $\mathcal{L}F$ -boundedly compact, we show that any sequence (s_n, p_n) in $S \times P$ which is $\mathcal{L}F$ -bounded has a convergent subsequence. Indeed, by definition of the product \mathcal{L} -fuzzy metric, s_n is $\mathcal{L}F$ -bounded and since S is $\mathcal{L}F$ -boundedly compact, $s_n \gg s_{n'} \to s_0 \in X$. By compactness of $P, p'_n \gg p_{n''} \to p_0 \in P$. Hence, $(s_n, p_n) \gg (s_{n''}, p_{n''}) \to (s_0, p_0) \in X \times Y$. If S is approximatively compact, let (x, y) be any element in $X \times Y$ and suppose that (s_n, p_n) is a sequence in $S \times P$ which converges in distance to (x, y), that is,

$$\lim_{n \to \infty} \mathbf{M}((s_n, p_n), (x, y), t) = \mathbf{M}(S \times P, (x, y), t)$$

By compactness of $P, p_n \gg p_{n'} \rightarrow p_0 \in P$. Hence, $\lim_{n\to\infty} \mathbf{M}((s_{n'}, p_0), (x, y), t) = \mathbf{M}(S \times P, (x, y), t)$ so

$$\lim_{n'\to\infty} \mathcal{T}_N(\mathcal{M}(s_{n'},x,t),\mathcal{M}(p_0,y,t)) = \mathcal{T}_N(\mathcal{M}(S,x,t),\mathcal{M}(P,y,t)).$$

Since $\mathcal{M}(p_0, y, t) \leq_L \mathcal{M}(P, y, t)$ then $\lim_{n'\to\infty} \mathcal{M}(s_{n'}, x, t) \geq_L \mathcal{M}(S, x, t)$ which implies $\lim_{n'\to\infty} \mathcal{M}(s_{n'}, x, t) = \mathcal{M}(S, x, t)$. Hence, $s_{n'}$ converges in distance to x and since S is approximatively compact, $s_{n'} \gg s_{n''} \to s_0 \in S$. Therefore, $(s_n, p_n) \gg (s_{n''}, p_{n''}) \to (s_0, p_0) \in S \times P$, i.e., $S \times P$ is approximatively compact. \Box

Theorem 2.9. Let B and C be nonempty subsets of a \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$. If B is approximatively compact and C is compact, then $K = \{b \in B : \exists c \in C, \mathcal{M}(b, c, t) = \mathcal{M}(B, c, t)\}$ is compact.

Proof. Let (y_n) be a sequence in K and for every $n \in \mathbb{N}$ choose c_n in C so that y_n minimizes the distance from B to c_n . Since C is compact, $c_n \gg c_{n'} \to c_0 \in C$. Hence, for

every $\epsilon \in L \setminus \{0_{\mathcal{L}}\}\$, there exists n_0 such that for all $n' > n_0$, $\mathcal{M}(c_{n'}, c_0, t) \ge_L \mathcal{N}(\epsilon)$, therefore, for all $n' > n_0$,

$$\mathcal{M}(B, c_0, t) \geq_L \mathcal{M}(y_{n'}, c_0, t)$$

$$\geq_L \mathcal{T}^2(\mathcal{M}(B, c_0, t - 2\delta), \mathcal{M}(c_{n'}, c_0, \delta), \mathcal{M}_{M,N}(c_{n'}, c_0, \delta))$$

$$\geq_L \mathcal{T}^2(\mathcal{M}(B, c_0, t - 2\delta), \mathcal{N}(\epsilon), \mathcal{N}(\epsilon))$$

for every $\delta \in (0, t/2)$. Since $\epsilon \in L \setminus \{0_{\mathcal{L}}\}$ and $\delta \in (0, t/2)$ were arbitrary, then $\mathcal{M}(B, c_0, t) = \lim_{n' \to \infty} \mathcal{M}(y_{n'}, c_0, t)$. Therefore, $y_{n'}$ converges in distance to c_0 , so it converges sub-sequentially.

It follows that $\{b \in B : \mathcal{M}(b, C, t) = \mathcal{M}(B, c, t)\}$ is compact when C is compact and B is approximatively compact. Thus, in an \mathcal{L} -fuzzy metric space, the \mathcal{L} -fuzzy metric projection of a compact subset into an approximatively compact subset is compact.

Acknowledgments

This research is supported by Islamic Azad University-Ghaemshahr Branch, Ghaemshahr, Iran

References

- H. Adibi, Y. J. Cho, D. O'Regan and R. Saadati, Common fixed point theorems in *L*-fuzzy metric spaces, Appl. Math. Comput., 182 (2006) 820–828.
- [2] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1986), 87–96.
- G. Deschrijver and E. E. Kerre. On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 133 (2003) 227–235.
- [4] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and System, 64 (1994), 395–399.
- [5] J. Goguen, *L*-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174.
- [6] S. B. Hosseini, R. Saadati and M. Amini, Alexandroff Theorem in Fuzzy Metric Spaces, Math. Sci. Res. J., 8 (2004) 357–361.
- [7] P. C. Kainen, Replacing points by compacta in neural network approximation, J. Franklin Inst., 341 (2004) 391–399.
- [8] K. P. R. Rao, A. Aliouche and G. R. Babu, Related fixed point theorem in fuzzy metric spaces, J. Nonlinear Sci. Appl., 1 (2008), 194–202.
- [9] J. Rodríguez López and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Syst, 147 (2004) 273–283.
- [10] R. Saadati and J.H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos, Solitons and Fractals, 27 (2006), 331–344.
- [11] R. Saadati, A. Razani, and H. Adibi, A Common fixed point theorem in *L*-fuzzy metric spaces Chaos, Solitons and Fractals, 33 (2007) 358–363.
- [12] R. Saadati and J.H. Park, Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), pp 1–6.
- [13] L.A. Zadeh, Fuzzy sets, Inform. and control, 8 (1965), 338–353.

¹ ISLAMIC AZAD UNIVERSITY-GHAEMSHAHR BRANCH, GHAEMSHAHR, IRAN

² ISLAMIC AZAD UNIVERSITY-AYATOLLAH AMOLY BRANCH, AMOL, IRAN *E-mail address*: mohammad_soleimanivareki@yahoo.com