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L-FUZZY NONLINEAR APPROXIMATION THEORY WITH
APPLICATION
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Abstract. In this paper, we show that cartesian product with a fixed compact set pre-
serve various nonlinear approximation-theoretic properties in L-fuzzy metric space. In fact,
we show that for approximative compactness and proximinality, points can be replaced by
compact sets (Theorem 2.4); also that cartesian product (Theorem 2.8), preserve the com-
pactness hierarchy properties when we operate by cartesian product with a compact subset.
Further, the set of points in an approximatively compact subset which minimize the distance
to a given compact subset is itself compact (Theorem 2.9).

1. Preliminaries

The notion of fuzzy sets was introduced by Zadeh [13]. Using the idea of L-fuzzy sets
[5], the author introduced the notion of L-fuzzy metric spaces with the help of continuous
t-norms as a generalization of fuzzy metric space due to George and Veeramani [4].

In the sequel, we shall adopt usual terminology, notation and conventions of L-fuzzy metric
spaces introduced by Saadati et al. [1, 8, 11].

Definition 1.1. ([5]) Let L = (L,≤L) be a complete lattice, and U a non-empty set called
universe. An L-fuzzy set A on U is defined as a mapping A : U −→ L. For each u in U ,
A(u) represents the degree (in L) to which u satisfies A.

Lemma 1.2. ([3]) Consider the set L∗ and operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗. Then
(L∗,≤L∗) is a complete lattice .
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Definition 1.3. ([2]) An intuitionistic fuzzy set Aζ,η on a universe U is an object Aζ,η =
{(ζA(u), ηA(u)) : u ∈ U}, where, for all u ∈ U , ζA(u) ∈ [0, 1] and ηA(u) ∈ [0, 1] are called
the membership degree and the non-membership degree, respectively, of u in Aζ,η, and
furthermore satisfy ζA(u) + ηA(u) ≤ 1.

Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing, commutative,
associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = x, for all x ∈ [0, 1]. These
definitions can be straightforwardly extended to any lattice L = (L,≤L). Define first 0L =
inf L and 1L = sup L.

Definition 1.4. A triangular norm (t-norm) on L is a mapping T : L2 → L satisfying the
following conditions:

(i) (∀x ∈ L)(T (x, 1L) = x); (boundary condition)
(ii) (∀(x, y) ∈ L2)(T (x, y) = T (y, x)); (commutativity)
(iii) (∀(x, y, z) ∈ L3)(T (x, T (y, z)) = T (T (x, y), z)); (associativity)
(iv) (∀(x, x′, y, y′) ∈ L4)(x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′, y′)). (monotonic-

ity)

A t–norm T on L is said to be continuous if for any x, y ∈ L and any sequences {xn} and
{yn} which converge to x and y we have

lim
n
T (xn, yn) = T (x, y)

For example, T (x, y) = min(x, y) and T (x, y) = xy are two continuous t–norms on [0, 1].
A t-norm can also be defined recursively as an (n + 1)-ary operation (n ∈ N) by T 1 = T

and

T n(x1, · · · , xn+1) = T (T n−1(x1, · · · , xn), xn+1)

for n ≥ 2 and xi ∈ L.
We say the continuous t-norm is natural and write TN whenever TN(a, b) = TN(c, d) and

a ≤L c implies b ≥L d.

Definition 1.5. ([3]) A t-norm T on L∗ is called t-representable if and only if there exist a
t-norm T and a t-conorm S on [0, 1] such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

T (x, y) = (T (x1, y1), S(x2, y2)).

Definition 1.6. A negation on L is any decreasing mapping N : L → L satisfying N (0L) =
1L and N (1L) = 0L . If N (N (x)) = x, for all x ∈ L, then N is called an involutive negation.

Definition 1.7. The 3-tuple (X,M, T ) is said to be an L-fuzzy metric space if X is an
arbitrary (non-empty) set, T is a continuous t–norm on L and M is an L-fuzzy set on
X2× ]0, +∞[ satisfying the following conditions for every x, y, z in X and t, s in ]0, +∞[:

(a) M(x, y, t) >L 0L;
(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, t + s);
(e) M(x, y, ·) : ]0,∞[→ L is continuous.
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In this case M is called an L-fuzzy metric. If M = MM,N is an intuitionistic fuzzy set (see
Definition 1.3) then the 3-tuple (X,MM,N , T ) is said to be an intuitionistic fuzzy metric
space.

Let (X,M, T ) be an L-fuzzy metric space. For t ∈ ]0, +∞[, we define the open ball
B(x, r, t) with center x ∈ X and radius r ∈ L \ {0L, 1L}, as

B(x, r, t) = {y ∈ X : M(x, y, t) >L N (r)}.
A subset A ⊆ X is called open if for each x ∈ A, there exist t > 0 and r ∈ L \ {0L, 1L} such
that B(x, r, t) ⊆ A. Let τM denote the family of all open subsets of X. Then τM is called
the topology induced by the L-fuzzy metric M. A subset A of X is said to be LF -bounded if
there exist t > 0 and r ∈ L \ {0L, 1L} such that M(x, y, t) >L N (r) for each x, y ∈ A.

Example 1.8. ([12]) Let (X, d) be a metric space. Denote T (a, b) = (a1b1, min(a2 + b2, 1))
for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on X2 × (0,∞)
defined as follows:

MM,N(x, y, t) = (M(x, y, t), N(x, y, t)) = (
t

t + md(x, y)
,

d(x, y)

t + d(x, y)
),

in which m > 1. Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.

Example 1.9. Let X = N. Define T (a, b) = (max(0, a1 + b1 − 1), a2 + b2 − a2b2) for all
a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on X2 × (0,∞) defined as
follows:

MM,N(x, y, t) = (M(x, y, t), N(x, y, t)) =

{
(x

y
, y−x

y
) if x ≤ y

( y
x
, x−y

x
) if y ≤ x.

for all x, y ∈ X and t > 0. Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.

Definition 1.10. A sequence {xn}n∈N in an L-fuzzy metric space (X,M, T ) is called a
Cauchy sequence, if for each ε ∈ L \ {0L} and t > 0, there exists n0 ∈ N such that for all
m ≥ n ≥ n0 (n ≥ m ≥ n0),

M(xm, xn, t) >L N (ε).

The sequence {xn}n∈N is said to be convergent to x ∈ X in the L-fuzzy metric space

(X,M, T ) (denoted by xn
M−→ x) if M(xn, x, t) = M(x, xn, t) → 1L whenever n → +∞ for

every t > 0.

Definition 1.11. Let (X,M, T ) be an L-fuzzy metric space. M is said to be continuous
on X ×X×]0,∞[ if

lim
n→∞

M(xn, yn, tn) = M(x, y, t)

whenever a sequence {(xn, yn, tn)} in X × X×]0,∞[ converges to a point (x, y, t) ∈ X ×
X×]0,∞[ i.e., limnM(xn, x, t) = limnM(yn, y, t) = 1L and limnM(x, y, tn) = M(x, y, t).

Lemma 1.12. Let (X,M, T ) be an L-fuzzy metric space. Then M is continuous function
on X ×X×]0,∞[.

Proof. The proof is same as fuzzy metric spaces (see Proposition 1 of [9]). ¤
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2. Main Results

Definition 2.1. Let (X,M, T ) be an L-fuzzy metric space and A,B ⊂ X. We define

M(A,B, t) = sup{M(a, b, t) : a ∈ A and b ∈ B}.
For a ∈ X, we write M(a,B, t) instead of M({a}, B, t).

Definition 2.2. A sequence converges sub-sequentially if it has a convergent subsequence;
the notation xn À xn′ → x0 identifies the subsequence and the point to which it converges.
Recall that a subset C of an L-fuzzy metric space is compact if every sequence in C converges
sub-sequentially to an element of C. Also, given sequences xn; yn, and a subsequence xn′ of
the first sequence, the corresponding subsequence of the second is denoted yn′ . A subset of a
L-fuzzy metric space is LF -boundedly compact if every LF -bounded sequence in the subset
is sub-sequentially convergent. In the above notation, Y is LF -boundedly compact if for
any LF -bounded sequence yn in Y , there is a point x0 (not necessarily in Y ) for which
yn À yn′ → x0.

Definition 2.3. For an L-fuzzy metric space (X,M, T ) and nonempty subsets B and C, a
sequence bn ∈ B is said to converge in distance to C if

lim
n→∞

M(bn, C, t) = M(B, C, t).

The subset B is approximatively compact relative to C if every sequence bn ∈ B which
converges in distance to C is sub-sequentially convergent to an element of B. We call B a
subset of X approximatively compact if B is approximatively compact relative to each of
the singletons of X; B is proximinal if for every x ∈ X some element b in B satisfies the
equation M(x, b, t) = M(x,B, t).

The first result says that points can be replaced by compact subsets in the definition of
approximative compactness.

Theorem 2.4. Let B and C be nonempty subsets of a L-fuzzy metric space (X,M, T ). If
B is approximatively compact and C is compact, then B is approximatively compact relative
to C.

Proof. Let bn ∈ B be any sequence converging in distance to C and let the sequence
cn ∈ C satisfy

lim
n→∞

M(bn, cn, t) = M(B, C, t). (2.1)

Since C is compact, cn À cn′ → c0 ∈ C. Hence, for every ε ∈ L \ {0L} there exists n0 such
that for n′ > n0

M(B, C, t) ≥L M(bn′ , c0, t)

≥L T (M(bn′ , cn′ , t− δ),M(cn′ , c0, δ))

≥L T (M(B, C, t− δ),N (ε))

for δ ∈ (0, t). Since ε ∈ L\{0L} and δ were arbitrary, then limn→∞M(bn′ , c0, t) = M(B, C, t).
Therefore, bn′ converges in distance to c0 so, since B is approximatively compact, bn À bn′ →
b0 ∈ B, that is, bn converges sub-sequentially to an element of B. ¤
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Theorem 2.5. Let B and C be nonempty subsets of a L-fuzzy metric space (X,M, T ). If
B is approximatively compact and LF -bounded, and C is IF-boundedly compact, then B is
approximatively compact relative to C.

Proof. Let bn ∈ B be any sequence converging in distance to C and let cn ∈ C satisfy
(2.1). As bn is LF -bounded, so is cn. Since C is LF -boundedly compact, cn À cn′ → c0 ∈ X.
Now proceed as in the proof of last theorem. ¤

Theorem 2.6. ([7]) Let B and C be nonempty subsets of a L-fuzzy metric space (X,M, T ).
If B is closed and LF -boundedly compact and C is LF -bounded, then B is approximatively
compact relative to C.

Lemma 2.7. ([6, 10]) Let (X,M, T ) and (Y,M, T ) be L-fuzzy metric spaces. If we define

M((x, y), (x′, y′), t) = T (M(x, x′, t),M(y, y′, t)),

then (X × Y,M, T ) is a L-fuzzy metric space and the topology induced on X × Y is the
product topology.

Theorem 2.8. Let S and P be nonempty subsets of L-fuzzy metric spaces (X,M, TN) and
(Y,M, TN), respectively. Suppose that P is compact. If S is LF -boundedly compact or
approximatively compact, then so is S × P .

Proof. If S is LF -boundedly compact, we show that any sequence (sn, pn) in S×P which
is LF -bounded has a convergent subsequence. Indeed, by definition of the product L-fuzzy
metric, sn is LF -bounded and since S is LF -boundedly compact, sn À sn′ → s0 ∈ X. By
compactness of P , p′n À pn′′ → p0 ∈ P . Hence, (sn, pn) À (sn′′ , pn′′) → (s0, p0) ∈ X × Y .
If S is approximatively compact, let (x, y) be any element in X×Y and suppose that (sn, pn)
is a sequence in S × P which converges in distance to (x, y), that is,

lim
n→∞

M((sn, pn), (x, y), t) = M(S × P, (x, y), t).

By compactness of P , pn À pn′ → p0 ∈ P . Hence, limn→∞M((sn′ , p0), (x, y), t) = M(S ×
P, (x, y), t) so

lim
n′→∞

TN(M(sn′ , x, t),M(p0, y, t)) = TN(M(S, x, t),M(P, y, t)).

Since M(p0, y, t) ≤L M(P, y, t) then limn′→∞M(sn′ , x, t) ≥L M(S, x, t) which implies
limn′→∞M(sn′ , x, t) = M(S, x, t). Hence, sn′ converges in distance to x and since S is
approximatively compact, sn′ À sn′′ → s0 ∈ S. Therefore, (sn, pn) À (sn′′ , pn′′) → (s0, p0) ∈
S × P , i.e., S × P is approximatively compact. ¤

Theorem 2.9. Let B and C be nonempty subsets of a L-fuzzy metric space (X,M, T ). If
B is approximatively compact and C is compact, then K = {b ∈ B : ∃ c ∈ C, M(b, c, t) =
M(B, c, t)} is compact.

Proof. Let (yn) be a sequence in K and for every n ∈ N choose cn in C so that yn

minimizes the distance from B to cn. Since C is compact, cn À cn′ → c0 ∈ C. Hence, for
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every ε ∈ L \ {0L}, there exists n0 such that for all n′ > n0, M(cn′ , c0, t) ≥L N (ε), therefore,
for all n′ > n0,

M(B, c0, t) ≥L M(yn′ , c0, t)

≥L T 2(M(B, c0, t− 2δ),M(cn′ , c0, δ),MM,N(cn′ , c0, δ))

≥L T 2(M(B, c0, t− 2δ),N (ε),N (ε))

for every δ ∈ (0, t/2). Since ε ∈ L \ {0L} and δ ∈ (0, t/2) were arbitrary, then M(B, c0, t) =
limn′→∞M(yn′ , c0, t). Therefore, yn′ converges in distance to c0, so it converges sub-sequentially.

¤
It follows that {b ∈ B : M(b, C, t) = M(B, c, t)} is compact when C is compact and B is

approximatively compact. Thus, in an L-fuzzy metric space, the L-fuzzy metric projection
of a compact subset into an approximatively compact subset is compact.

Acknowledgments

This research is supported by Islamic Azad University-Ghaemshahr Branch, Ghaemshahr,
Iran

References

[1] H. Adibi, Y. J. Cho, D. O’Regan and R. Saadati, Common fixed point theorems in L-fuzzy metric
spaces, Appl. Math. Comput., 182 (2006) 820–828.

[2] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1986), 87–96.
[3] G. Deschrijver and E. E. Kerre. On the relationship between some extensions of fuzzy set theory, Fuzzy

Sets and Systems, 133 (2003) 227–235.
[4] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and System, 64 (1994),

395–399.
[5] J. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174.
[6] S. B. Hosseini, R. Saadati and M. Amini, Alexandroff Theorem in Fuzzy Metric Spaces, Math. Sci. Res.

J., 8 (2004) 357–361.
[7] P. C. Kainen, Replacing points by compacta in neural network approximation, J. Franklin Inst., 341

(2004) 391–399.
[8] K. P. R. Rao, A. Aliouche and G. R. Babu, Related fixed point theorem in fuzzy metric spaces, J.

Nonlinear Sci. Appl., 1 (2008), 194–202.
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