CARTESIAN PRODUCTS OF $P Q P M$-SPACES

Y. J. CHO 1, M. T. GRABIEC ${ }^{2}$ AND A. A. TALESHIAN ${ }^{3, *}$

Abstract. In this paper we define the concept of finite and countable Cartesian products of $P q p M$-spaces and give a number of its properties. We also study the properties of topologies of those products.

Introduction

Let $\left(X, P_{1}\right)$ and $\left(Y, P_{2}\right)$ are $P M$-spaces under triangle function $*$ and a pair $\left(X \times Y, P_{1} \times P_{2}\right)$ is a finite product of $P M$-spaces (see Tardiff [11], Urazov [12]), when the function $P_{1} \times P_{2}:(X \times Y)^{2} \rightarrow \Delta^{+}$is given by formula:

$$
P_{1} \times P_{2}(u, v)=P_{1}\left(x_{1}, y_{1}\right) * P_{2}\left(x_{2}, y_{2}\right)
$$

for any $u=\left(x_{1}, y_{1}\right)$ and $v=\left(x_{2}, y_{2}\right)$ in $X \times Y$. Convolution of Wald space [13], as well as several types of products of $P M$-spaces, where first defined by Istrăţescu and Vadura [4]. If T is a t-norm and $*=*_{T}$, then $*$-product is the T product on defined independently by Egbert [1] and Xavier [14]. It is immediat that $*$-product of $P M$ spaces is $P M$-space (see (Sherwood, Taylor [9]), (Höle [3]). In section 1 we extended this notion and results of T-product of $P q p M$ spaces. In section 2 we give definition and some results on countable products of $P q p M$-spaces of type $\left\{k_{n}\right\}$.

0. Preliminary notes and results

Definition 0.1 ([8]). A distance distribution function is a nondecreasing function $F:(-\infty,+\infty) \rightarrow[0,1]$ which is left-continuous on $(-\infty,+\infty)$ and $F(0)=0$

Date: Received: 15 January 2009, Revised: 18 April 2009.

* Corresponding author.

2000 Mathematics Subject Classification. Primary 47H05, 47H10.
Key words and phrases. robabilistic-quasi-metric space, topology, Cartesian products of $P q p M$-space, countable Cartesian products of $P q p M$-spaces of type $\left\{k_{n}\right\}$.
and $\lim _{x \rightarrow \infty} F(x)=1$. We denote by Δ^{+}the set of all distribution functions and by ε_{a} specific distribution function by

$$
\varepsilon_{a}(t)= \begin{cases}1, & \text { for } t>a \\ 0, & \text { for } t \leq a, a \in R\end{cases}
$$

The element of Δ^{+}are partially ordered by

$$
F \leq G \text { if and only if } F(x) \leq G(x) \text {, for } x \in R
$$

For eny $F, G \in \Delta^{+}$and $h \in(0,1]$, let (F, G, h) denote the condition

$$
G(x)=F(x+h)+h \quad \text { for all } x \in\left(0, h^{-1}\right)
$$

and

$$
d_{L}(F, G)=\inf \{h: \operatorname{both}(F, G ; h) \text { and }(G, F ; h) \text { hold }\} .
$$

As shown by Sibley [10] the function d_{L} is a metric in Δ^{+}which is a modified form on the well-known Levy metric for distribution functions and the metric space $\left(\Delta^{+}, d_{L}\right)$ is compact and hence complete (see [8, pp. 45-49]).

Definition $0.2([8,15])$. A binary operation $*: \Delta^{+} \times \Delta^{+} \rightarrow \Delta^{+}$is a triangle function if $\left(\Delta^{+}, *\right)$ is an Abelian monoid with identity ε_{0} in Δ^{+}such that, for any $F, F^{\prime}, G, G^{\prime} \in \Delta^{+}$,

$$
F * G \leq F^{\prime} * G^{\prime} \text { whenever } F \leq F^{\prime}, G \leq G^{\prime} .
$$

Note that a triangle function $*$ is continuous if it is continuous with respect to the metric topology induced by d_{L}.

Let $T\left(\Delta^{+}\right)$denote the family of all triangle functions $*$ then the relation \leq defined by

$$
\begin{equation*}
*_{1} \leq *_{2} \Leftrightarrow F *_{1} G \leq F *_{2} G, \text { for all } F, G \in \Delta^{+} \tag{0.2.1}
\end{equation*}
$$

is a partial order in the family $T\left(\Delta^{+}\right)$.
The second relation in the set $T\left(\Delta^{+}\right) \gg$ is defined by

$$
\begin{equation*}
*_{1} \gg *_{2} \Leftrightarrow\left(\left(E *_{2} G\right) *_{1}\left(F *_{2} H\right)\right) \geq\left(\left(E *_{1} F\right) *_{2}\left(G *_{1} H\right)\right), \tag{0.2.2}
\end{equation*}
$$

for all $E, F, G, H \in \Delta^{+}$.
We can see the connection between the two relation: $*_{1} \gg *_{2}$ implies $*_{1} \geq *_{2}$ and following conditions: $\min \geq *$ and $\min \gg *$, for all $*$.

Definition 0.3 ([2]). A probabilistic-quasi-pseudo-metric-space (briefly, a Pqpmetric space) is a triple $(X, P, *)$, where X is a nonempty set, P is a function from $X \times X$ into $\Delta^{+}, *$ is a triangle function and the following conditions are satisfied (the value of P at (x, y) in X^{2} will be denoted by $P_{x y}$):

$$
\begin{align*}
& P_{x x}=u_{0}, \text { for all } x \in X, \tag{0.3.1}\\
& P_{x y} * P_{y z} \leq P_{x z}, \text { for all } x, y, z \in X . \tag{0.3.2}
\end{align*}
$$

If P satisfies also the additional condition

$$
\begin{equation*}
P_{x y} \neq \varepsilon_{0} \quad \text { it } \quad x \neq y \tag{0.3.3}
\end{equation*}
$$

then $(X, P, *)$ is called a probabilistic quasi-metric space.

Moreover, if P satisfies the condition of symmetry:

$$
P_{x y}=P_{y z},
$$

then $(X, P, *)$ is called a probabilistic metric spac ($P M$-space).
If the function $Q: X^{2} \rightarrow \Delta^{+}$be defined by

$$
\begin{equation*}
Q_{x y}=P_{y x}, \text { for all } x, y \in X, \tag{0.3.4}
\end{equation*}
$$

then a triple $(X, Q, *)$ is also a probabilistic-quasi-pseudo-metric space. We say P and Q are conjugate each other.

Lemma 0.4. Let $(X, P, Q, *)$ be a structure defined by Pqp-metric P and $*_{1} \gg *$ (0.2.2). Then $\left(X, F^{* 1}, *\right)$ is a probabilistic pseudo-metric space whenever the function $F^{*_{1}}: X^{2} \rightarrow \Delta^{+}$is given by:

$$
\begin{equation*}
F_{x y}^{*_{1}}=P_{x y} *_{1} Q_{x y}, \quad \text { for all } x, y \in X_{0} . \tag{0.4.1}
\end{equation*}
$$

If additionally, P satisfies the condition

$$
\begin{equation*}
P_{x y} \neq u_{0} \quad \text { or } \quad Q_{x y} \neq u_{0} \quad \text { for } \quad x \neq y, \tag{0.4.2}
\end{equation*}
$$

then $\left(X, F^{*_{1}}, *\right)$ is a $P M$-space.
Lemma 0.5 ([2, Example 9]). If (X, p) is a quasi-pseudometric-space and the function $P_{p}: X^{2} \rightarrow \Delta^{+}$is defined by

$$
P_{p}(x, y)=\varepsilon_{p}(x, y), \quad \text { for all } x, y \in X
$$

and $*$ is a triangle function such that

$$
\varepsilon_{a} * \varepsilon_{b} \geq \varepsilon_{a+b} \text { for all } a, b \in R^{+}
$$

then $\left(X, P_{p}, *\right)$ is a proper Pqp-metric space.
Theorem 0.6 ([2, Theorem 6]). Let $(X, P, *)$ be a Pqp-metric space under a uniformly continuous t-function $*$ and, for any $x \in X$, and $t>0$, the P neighborhood of x be a set

$$
N_{x}^{P}(t)=\left\{y \in X: d_{L}\left(P_{x y}, u_{0}\right)<t\right\} .
$$

Then the collection of all P-neighborhood form a base for the topology τ_{P} on X the $P q p$-metric Q which is a conjugate of P generate a topology τ_{Q} on X. Thus natural structure associated with a $P q p$-metric is a bitopological space $\left(X, \tau_{P}, \tau_{Q}\right)$.

It is worthy of note that in the spaces $\left(X, P_{p}, Q_{q}, *\right)$, the $\tau_{P_{p}}$-topology is equivalent to the q-quasi-pseudometric topology $\tau_{P_{q}}$ (see [2], [11]).

Lemma 0.7. Let $(X, P, *)$ be a PqpM-space. Then the relation \leq_{P} defined by

$$
\begin{equation*}
x \leq_{P} y \text { if and only if } P_{x y}=\varepsilon_{\tau} \tag{0.7.1}
\end{equation*}
$$

is reflexive and transitive, i.e. it is a quasi-order on X.
Proof. Reflexivity follows immediately from (0.2.1) and transivites is a consequence of (0.3.2).

Corollary 0.8. If Pqp-metric satisfies the assumption (0.4.2), then the relation \leq_{P} is a partial ordering on X.

Proof. Assume that $x \leq_{P} y$ and $y \leq_{P} x$. This means that

$$
P_{x y}=\varepsilon_{0} \quad \text { and } \quad P_{y x}=u
$$

By (0.4.2), it follows that $P_{x y}=P_{y x}=\varepsilon_{0}$ if and only if $x=y$.
Corollary 0.9. If $x \neq y$ imply $P_{x y}=\varepsilon_{0}$ and $P_{y x} \neq \varepsilon_{0}$ or $P_{x y} \neq \varepsilon_{0}$ and $P_{y x}=\varepsilon_{0}$, then \leq_{P} is a linear ordering on X.

Remark 0.10. If Q is a conjugate of a $P q p$-metric P, then the relation \leq_{Q} generated by Q is also a quasi-ordering on X and is the inverse relation of \leq_{P}.

1. Cartesian products of $\mathbf{P} q p M$-spaces

In this section, we give some properties of Cartesian products of $P q p M$-spaces.
Definition 1.1. Let $\left(X, P_{1}, *\right)$ and $\left(Y, P_{2}, *\right)$ be $P q p M$-spaces. The $*$-product of $\left(X, P_{1}\right)$ and $\left(Y, P_{2}\right)$ is the pair $\left(X \times Y, P_{1} \times P_{2}\right)$, where $P_{1} \times P_{2}$ is the function from $(X \times Y)^{2}$ into Δ^{+}given by

$$
\begin{equation*}
P_{1} \times P_{2}(u, v)=P_{1}\left(x_{1}, y_{1}\right) * P_{2}\left(x_{2}, y_{2}\right) \tag{1.1}
\end{equation*}
$$

for any $u=\left(x_{1}, y_{1}\right)$ and $v=\left(x_{2}, y_{2}\right)$ in $X \times Y$.
Theorem 1.2. Let $\left(X, P_{1}, *\right)$ and $\left(X, P_{2}, *\right)$ be PqpM-spaces. Let a mapping $P_{1} \times P_{2}:(X \times Y)^{2} \rightarrow \Delta^{+}$be given by

$$
\begin{equation*}
P_{1} \times P_{2}(u, v)=\left(P_{1}\left(x_{1}, x_{2}\right) *_{1} P_{2}\left(y_{1}, y_{2}\right)\right) \text { with } *_{1} \gg * \tag{1.2}
\end{equation*}
$$

for any $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right) \in X \times Y$. Then $\left(X \times Y, P_{1} \times P_{2}, *\right)$ is a PqpM-space.

Proof. If $u=v$, then $x_{1}=x_{2}$ and $y_{1}=y_{2}$. Thus, by (0.6.1), we have

$$
P_{1} \times P_{2}(u, v)=P_{1}\left(x_{1}, x_{1}\right) *_{1} P_{2}\left(y_{1}, y_{1}\right)=u_{0} *_{1} u_{0}=u_{0} .
$$

Now, let $w=\left(x_{3}, y_{3}\right) X \times Y$. Then, by (0.3.2) and (0.2.2), we obtain

$$
\begin{aligned}
P_{1} \times P_{2}(u, v) & =P_{1}\left(x_{1}, x_{2}\right) *_{1} P_{2}\left(y_{1}, y_{2}\right) \\
& \geq\left(P_{1}\left(x_{1}, x_{3}\right) * P_{1}\left(x_{3}, x_{2}\right)\right) *_{1}\left(P_{2}\left(y_{1}, y_{3}\right) * P_{2}\left(y_{3}, y_{2}\right)\right) \\
& \geq\left(P_{1}\left(x_{1}, x_{3}\right) *_{1} P_{2}\left(y_{1}, y_{3}\right)\right) *\left(\left(P_{1}\left(x_{3}, x_{2}\right) *_{1} P_{2}\left(y_{3}, y_{2}\right)\right)\right. \\
& =P_{1} \times P_{2}(u, v) * P_{1} \times P_{2}(w, v) .
\end{aligned}
$$

This completes the proof.
Definition 1.3. Let $\left(X, P_{1}, *\right)$ and $\left(X, P_{2}, *\right)$ be $P q p M$-spaces and let $*_{1} \gg *$. Then $\left(X \times Y, P_{1} \times P_{2}, *_{1}\right)$ is called a Cartesian $*_{1}$-product of $P q p M$-spaces provided that $P_{1} \times P_{2}$ is given by the formula (1.1).

By Definition 0.2 and (0.2.2), it follows that Min \gg * holds true for any $t_{\Delta^{+-}}$ norm $*$. Thus it follows that the function given by

$$
\begin{aligned}
P_{1} \times P_{2}(u, v) & =\operatorname{Min}\left(P_{1}\left(x_{1}, x_{2}\right), P_{2}\left(y_{1}, y_{2}\right)\right) \\
& =P_{1}\left(x_{1}, x_{2}\right) \times P_{2}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

satisfies the conditions of Theorem 1.2.

Theorem 1.4. Let $\left(X, G_{p_{1}}, *_{M}\right)$ and $\left(Y, G_{p_{2}}, *_{M}\right)$ be a PqpM-space defined by formula $G_{p}(x, y)=G\left(\frac{t}{p(x, y)}\right)$, where $G \in \Delta^{+}$be distinct from ε_{0} and ε_{∞}, which were generated by quasi-pseudo-metric p_{1} and p_{2}, respectively. Let a function $p_{1} \vee p_{2}(X \times Y)^{2} \rightarrow \mathbb{R}^{+}$be defined by

$$
p_{1} \vee p_{2}(u, v)=\operatorname{Max}\left(p_{1}\left(x_{1}, x_{2}\right), p_{2}\left(y_{1}, y_{2}\right)\right),
$$

where $u=\left(x_{1}, x_{2}\right)$ and $v=\left(y_{1}, y_{2}\right)$ belong to $X \times Y$. Then the triple $(X \times$ $\left.Y, G_{p_{1} \vee p_{2}}, *_{M}\right)$ is a $P q p M$-space generated by a quasi-pseudo-metric $p_{1} \vee p_{2}$.

As a consequence of Theorem 1.2, we have the following:
Corollary 1.5. Let $(X, P, *)$ be a PqpM-space. Let $*_{1}=\mathrm{Min}$. Then there are four Pqp-metrics on $X \times X$ generated by the function P, that is, $P \times P, P \times$ $Q, Q \times P$ and $Q \times Q$, where Q is the Pqp-metric conjugate with P.

Remark 1.6. Note that, by Definition 1.1, for all $u, v \in X \times X$, the following equalities hold:

$$
P \times P(v, u)=Q \times Q(u, v), \quad P \times Q(v, u)=Q \times P(u, v) .
$$

Therefore, the pairs $P \times P$ and $Q \times Q$ as well as $P \times Q$ and $Q \times P$ are the mutually conjugate Pqp-metrics defined on $X \times X$. The function $M(X \times Y)^{2} \rightarrow \Delta^{+}$given by

$$
M(u, v)=P \times Q(u, v) \wedge Q \times P(u, v)=P \times P(u, v) \wedge Q \times Q(u, v)
$$

for all $(u, v) \in X \times X$ is a probabilistic pseudo-metric on $X \times X$.
Corollary 1.7. Let $(X, P, *)$ be a PqpM-space. Let the $t_{\Delta^{+}-n o r m} *$ be continuous at $\left(\varepsilon_{0}, \varepsilon_{0}\right)$ and $*_{1}=$ Min. Then the topology $T_{P \times P}$ generated by the function $P \times P$ is equivalent to the topology $T_{P} \times T_{P}$. Also, the topologies $T_{P} \times T_{Q}$ and $T_{P \times Q}, T_{Q} \times T_{Q}$ and $T_{P \times Q}$, and $T_{Q} \times T_{Q}$ and $T_{Q \times Q}$ are equivalent.

Proof. For an illustration, we prove the first equivalence. Let $t_{1}, t_{2}>0$ and $x, y \in X$. Then we have

$$
N_{x}^{P}\left(t_{1}\right) \times N_{y}^{P}\left(t_{2}\right) \in T_{P} \times T_{P}
$$

Let $t_{3}=\max \left(t_{1}, t_{2}\right)$ and $u=(x, y) \in X \times X$. Then a $P \times P$-neighbourhood of a point $u \in X \times X$ is of the form:

$$
\begin{aligned}
N_{u}^{P \times P}\left(t_{3}\right) & =\left\{v=\left(x_{1}, x_{2}\right) P \times P(u, v)\left(t_{3}\right)>1-t_{3}\right\} \\
& =\left\{v=\left(x_{1}, x_{2}\right) P_{x x_{1}}\left(t_{3}\right)>1-t_{3} \text { and } \quad P_{y y_{1}}\left(t_{3}\right)>1-t_{3}\right\}, \\
& N_{x}^{P}\left(t_{3}\right) \times N_{y}^{P}\left(t_{3}\right) \subset N_{x}^{P}\left(t_{1}\right) \times N_{y}^{P}\left(t_{2}\right) .
\end{aligned}
$$

On the other hand, for each $t>0$ and $u=(x, y) \in X \times X$, we have

$$
N_{u}^{P \times P}(t)=N_{x}^{P}(t) \times N_{y}^{P}(t) .
$$

The remaining cases can be verified similarly. This completes the proof.
Theorem 1.8. Let $(X, P, *)$ be a PqpM-space. Assume that the $t_{\Delta^{+}-n o r m}$ * is continuous and let \leq_{P} be the quasi-order generated by P (in the sense of Lemma 0.7). Then the set $G\left(\leq_{P}\right)=\left\{(x, y) \in X^{2} x \leq_{P} y\right\}$ is closed in the topology $T_{P \times Q}$.

Proof. Assume that $\left(x_{1}, y_{1}\right)$ belongs to the $P \times Q$-closure of $G\left(\leq_{P}\right)$ and does not belong to $G\left(\leq_{P}\right)$. Then, by Corollary $0.9, P_{x_{1} y_{1}} \neq \varepsilon_{0}$ and there exists a sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ of $G\left(\leq_{P}\right)$ which is $P \times Q$-convergent to $\left(x_{1}, y_{1}\right)$. This means that

$$
P_{x_{1} x_{n}} \rightarrow \varepsilon_{0}, \quad Q_{y_{1} y_{n}} \rightarrow \varepsilon_{0}
$$

Thus, by (0.3.2), we have

$$
\begin{aligned}
\varepsilon_{0} \neq P_{x_{1} y_{1}} & \geq P_{x_{1} x_{n}} * P_{x_{n} y_{1}} \geq p_{x_{1} x_{n}} * P_{x_{n} y_{n}} * P_{y_{n} y_{1}} \\
& =P_{x_{1} x_{n}} * P_{x_{n} y_{n}} * Q_{y_{1} y_{n}} \\
& =P_{x_{1} x_{n}} * \varepsilon_{0} * Q_{y_{1} y_{n}} \\
& =P_{x_{1} x_{n}} * Q_{y_{1} y_{n}} \rightarrow \varepsilon_{0},
\end{aligned}
$$

which is a contradiction. This completes the proof.
Lemma 1.9. Let $(X, P, *)$ be a PqpM-space satisfying the condition (0.3.4), and let the $t_{\Delta^{*}}$-norm $*$ be continuous. Then the set

$$
(\leftarrow, x]=\left\{y \in X y \leq_{P} x\right\}
$$

where \leq_{P} is the order generated by P, is a subset of $N_{x}^{Q}(t)$ for every $t>0$.
Proof. If $y \in(\leftarrow, x]$, then $y \leq_{P} x$ and so, by (0.3.4), we have

$$
P_{y x}=Q_{x y}=\varepsilon_{0} .
$$

Therefore, we have $y \in N_{x}^{Q}(t)$ for every $t>0$.
Corollary 1.10. The set $(\leftarrow, x]$ is G_{δ} in the topology T_{Q}.
Proof. For $t>0$, there is a natural number n such that $\frac{1}{n}<t$. Then we have

$$
Q_{x y}(t) \geq Q_{x y}\left(\frac{1}{n}\right)>1-\frac{1}{n}>1-t
$$

which means that

$$
N_{x}^{Q}\left(\frac{1}{n}\right) \subset N_{x}^{Q}(t)
$$

Therefore, we conclude that the family $\left\{N_{x}^{Q}\left(\frac{1}{n}\right)\right\}_{n \in \mathbb{N}}$ satisfies the assertion. This completes the proof.

Lemma 1.11. The set $(\leftarrow, x]$ is P-closed.
Proof. Assume that y belongs to the P-closure of $(\leftarrow, x]$ and $y \notin(\leftarrow, x]$. Then $P_{y x} \neq \varepsilon_{0}$ and, for each $n \in \mathbb{N}$, there is $x_{n} \in(\leftarrow, x]$ such that

$$
P_{y x_{n}} \rightarrow \varepsilon_{0} .
$$

Finally, we have

$$
\varepsilon_{0} \neq P_{y x} \geq P_{y x_{n}} * P_{x_{n} y}=P_{y x_{n}} * \varepsilon_{0}=P_{y x_{n}} \rightarrow \varepsilon_{0},
$$

which is a contradiction. This completes the proof.
Corollary 1.12. The set $[x, \rightarrow)=\left\{y \in X x \leq_{P} y\right\}$ is a Q-closed and G_{δ} in the topology T_{P}.

The following result is an immediate consequence of Lemma 1.2:

Theorem 1.13. Let $(X, P, *)$ be a PqpM-space satisfying the condition of Corollary 0.9 and let the $t_{\Delta^{+}-n o r m} *$ be continuous. Then the family $\{(\leftarrow, x]\}_{x \in X}$ forms
P-closed subbase of a topology, which is denoted by $T(\leftarrow]$. Similarly, the family $\{[x, \rightarrow)\}_{x \in X}$ forms a Q-closed subbase of $T[\rightarrow)$.

We note that these families form, respectively, a P-closed and Q-closed base and that the function P generates such a partial order \leq_{P} in X which is a lattice order.

Lemma 1.14. Let $(X, P, *)$ be a PqpM-space satisfying the condition of Corollary 0.9 and let the $t_{\Delta^{+}}$norm $*$ be continuous. Then the set $(\leftarrow, x)=\left\{y \in X y<_{P}\right.$ $x\}$ is Q-open and the set $(x, \rightarrow)=\left\{y \in X x<_{P} y\right\}$ is P-open.

Proof. By Corollary 0.9, it follows that \leq_{P} orders X linearly. Hence we have $(\leftarrow, x) \subset N_{x}^{Q}(t)$ for all $t>0$. On the other hand, for each $y \in(\leftarrow, x)$, we have $Q_{x y} \neq \varepsilon_{0}$. This means that there exists $t>0$ such that

$$
Q_{y x}(t)>1-t
$$

We thus have $N_{y}^{Q}(t) \subset(\leftarrow, x)$. This completes the proof.
Corollary 1.15. Let $(X, P, *)$ be a PqpM-space satisfying the condition of Corollary 0.2 and let the $t_{\Delta^{+}-\text {norm }} *$ be continuous. The family $\{(\leftarrow, x)\}_{x \in X}$ is a Q-open base for T_{Q}. Similarly, the family $\{(x, \rightarrow)\}_{x \in X}$ is a P-open base for the topology T_{P}.

Theorem 1.16. Let $(X, P, *)$ be a PqpM-space. Then the family $\{(\leftarrow, x]\}_{x \in X}$ is a complete neighbourhood system in the space X. It thus defines some topology on X. Similarly, $\{[x, \rightarrow)\}_{x \in X}$ forms a complete neighbourhood system in X.

Proof. It suffices to observe that, for each $x \in X, x \in(\leftarrow, x]$ and, if $y \in(\leftarrow, x]$, then we have

$$
(\leftarrow, y] \subset(\leftarrow, x] .
$$

2. Cartesian product in $\mathbf{P} q p M$-spaces of the type $\left\{k_{n}\right\}$

The following result characterizes countable Cartesian products of PqpMspaces.

Definition 2.1. Let $\left\{\left(X_{n}, P_{n}\right)\right\}$ be a sequence of $P q p M$-spaces and let the sequence $\left\{k_{n}\right\}$ of nonnegative numbers satisfy the condition $\sum_{n \in \mathbb{N}} k_{n}=1$. Then the pair (X, P) is called a Cartesian product of $P q p M$-spaces of the type $\left\{k_{n}\right\}$ if $X=\prod_{n \in \mathbb{N}} X_{n}$ and $P: X^{2} \rightarrow \Delta^{+}$is given by

$$
\begin{equation*}
P_{x y}=\sum_{n \in \mathbb{N}} k_{n} P_{n}\left(x_{n}, y_{n}\right), \tag{2.1}
\end{equation*}
$$

where $x=\left\{x_{n}\right\}$ and $y=\left\{y_{n}\right\}$.
Definition $2.2([5])$. A function $T: I^{2} \rightarrow I(I=\langle 0,1\rangle)$ is called a t-norm if it satisfies the following conditions
(T1) $T(a, b)=T(b, a)$
(T2) $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $\leq d$
(T3) $T(a, 1)=a$
(T4) $T(T(a, b), c)=T(a, T(b, c))$, for all $a, b, c, d \in I$.
(TA) The t-norm T is said to be Archimedean if for any $x, y \in(0,1)$, there exists $n \in N$ such that

$$
x^{n}<y, \text { that is } x^{n} \leq y \text { and } x^{n} \neq y
$$

where $x^{0}=1, x^{1}=x$ and $x^{n+1}=T\left(x^{n}, x\right)$, for all $n \geq 1$. We shall now establish the notation related to a few most important t-norm:

$$
\begin{align*}
M(x, y) & =\operatorname{Min}(x, y) \tag{TM}\\
\Pi(x, y) & =x \cdot y \tag{ТП}\\
W(x, y) & =\operatorname{Max}(x+y-1,0) \tag{TW}
\end{align*}
$$

The function W is continuous and Archimedean and we give the following relations among t-norms

$$
\begin{equation*}
M \geq \Pi \geq W \tag{TR}
\end{equation*}
$$

Definition 2.3. Let X be a nonempty set, $P: X^{2} \rightarrow D$, and I in T_{I}-norm. The triple (X, P, T) is called a quasi-pseudo-Menger space if it satisfies the axioms:
(M1) $P_{x x}=\varepsilon_{0}, x \in X$,
(M2) $P_{x z}\left(t_{1}+t_{2}\right) \geq T\left(P_{x y}\left(t_{1}\right), P_{y z}\left(t_{2}\right)\right)$, for all $x, y, z \in X$ and $t_{1}, t_{2}>0$.
If P satisfies also the additional condition:
(M3) $P_{x y} \neq \varepsilon_{0}$ if $x \neq y$, then (X, P, T) is quasi-Menger space.
Moreover, if P satisfies the condition of symmetry $P_{x y}=P_{y x}$, then (X, P, T) is called a Menger-space (see [5]).

Definition 2.4. Let (X, P, T) be a probabilistic quasi-Menger space ($P q M$) and the function $Q: X^{2} \rightarrow D$ be defined by

$$
Q_{x y}=P_{y x}, \quad \text { for all } x, y \in X
$$

Then the ordered triple (X, Q, T) is also $P q M$-space. The function Q is called a conjugate $P q p$-metric of the P. By (X, P, Q, T) we denote the structure generated by the $P q p$-metric P on X.

Lemma 2.5. Let $\left(X_{n}, P_{n}\right)$ be a sequence of proper PqpM-spaces (Lemma 0.5). Then the Cartesian product (X, P) of the type $\left\{k_{n}\right\}$ is also a proper PqpM-space. Also, if each $\left(X_{n}, P_{n}\right)$ is a quasi-pseudo-Menger space with respect to the $t_{I^{-}}$ norm of type $(T A)$, then so is the Cartesian product of type $\left\{k_{n}\right\}$. Moreover, the topology T_{p} of a Cartesian product of the type $\left\{k_{n}\right\}$ generated by P is equivalent to the product topology.

Proof. For proper $P q p M$-spaces, the condition $F \geq u_{a}$ is equivalent to the statement that $F(a+)=1$. It thus suffices to observe that, if, for some $a>0$,

$$
P_{x_{n} y_{n}}(a+)=1
$$

for all $x_{n}, y_{n} \in X_{n}$, then, by (2.1), we obtain

$$
P_{x y}(a+)=\lim _{t \rightarrow a}\left(\Sigma k_{n} P_{x_{n} y_{n}}(t)\right)=\Sigma k_{n}=1 .
$$

To prove the second part of the theorem, let us observe that, by the definition of the t_{I}-norm W and the Menger condition (M2), the following holds:

$$
\begin{aligned}
W\left(P_{x z}(t), P_{z y}(s)\right) & =\operatorname{Max}\left(\Sigma k_{n} P_{n}\left(x_{n}, z_{n}\right)(t)+\Sigma k_{n} P_{n}\left(z_{n}, y_{n}\right)(s)-1,0\right) \\
& =\operatorname{Max}\left(\left(\Sigma k_{n}\left(P_{n}\left(x_{n}, z_{n}\right)(t)+P_{n}\left(z_{n}, n\right)(s)-1,0\right)\right.\right. \\
& \leq \operatorname{Max}\left(\left(\Sigma k_{n} \operatorname{Max}\left(P_{n}\left(x_{n}, z_{n}\right)(t)+P_{n}\left(z_{n}, y_{n}\right)(s)-1,0\right), 0\right)\right. \\
& =\Sigma k_{n} W\left(P_{n}\left(x_{n}, z_{n}\right)(t), P_{n}\left(z_{n}, y_{n}\right)(s)\right. \\
& \leq \Sigma k_{n} P_{n}\left(x_{n}, y_{n}\right)(t+s)=P_{x y}(t+s) .
\end{aligned}
$$

Therefore, we have proved that the Cartesian product of the type $\left\{k_{n}\right\}$ is a quasi-pseudo-Menger space.

In order to prove the third assertion, let us suppose that the sequence $\left\{x^{n}\right\}$ is P-convergent to $x=\left\{x_{k}\right\}$ in (X, P). Then, for each $t>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
x^{n} \in N_{x}^{P}(t)
$$

for all $n>n_{0}$. Suppose, further, that, for some $i_{0} \in \mathbb{N}$, the sequence $\left\{x_{i_{0}}^{n}\right\}$ is not convergent to $x_{i_{0}} \in X_{i_{0}}$ which is the i_{0}-th coordinate of x. This means that, for some $t_{0}>0$, there exists $m_{n}>n$ for all n such that

$$
P_{i}\left(x_{i_{0}}, x_{i_{0}}^{m_{n}}\right)\left(t_{0}\right)>1-t_{0} .
$$

Let $t=k_{i_{0}} t_{0}$. Then, for all $n>n_{0}$, we get

$$
\begin{aligned}
1-t & =1-k_{i_{0}} t_{0} \\
& <P_{x x} m_{n}(t) \\
& =\sum_{i \in \mathbb{N}} k_{i} P_{i}\left(x_{i}, x_{i}^{m_{n}}\right)(t) \\
& \leq \sum_{i=i_{0}} k_{i_{0}}+\left(1-t_{0}\right) \\
& =1-k_{i_{0}}+k_{i_{0}}-k_{i_{0}} t_{0} \\
& =1-t,
\end{aligned}
$$

which is a contradiction. This means that, if $\left\{x^{n}\right\}$ is P-converegent, then each sequence $\left\{x_{i}\right\}$ is P_{i}-convergent to x_{i} for all $i \in \mathbb{N}$. Thus the projections onto the i-th coordinate are continuous. Therefore, the topology of the Cartesian product of the type $\left\{k_{n}\right\}$ is stronger than the product topology.

Now, let U be a P-open set of T_{P}. Then, if $x \in U$, there exists a P neighbourhood $N_{x}^{P}\left(t_{0}\right) \subset U$. Let $F \subset \mathbb{N}$ be a finite subset such that

$$
\sum_{j \in F} k_{j}-\left(1-t_{0}\right)>0
$$

For every $j \in F$, we selsct $y_{j} \in N_{x_{j}}^{P_{j}}\left(t_{0}\right)$ and fix $t=1-\left(1-t_{0}\right)\left(\sum_{j \in F} k_{j}\right)^{-1}$. Then, for each $y=\left\{y_{j}\right\}$ such that $y_{i}=y_{j}$ for $i=j$. where $j \in F$, we get

$$
\begin{aligned}
P_{x y}\left(t_{0}\right) & =\sum_{i \in \mathbb{N}} k_{i} P_{i}\left(x_{j}, y_{j}\right)\left(t_{0}\right) \\
& >\sum_{j \in F} k_{j} P_{j}\left(x_{j}, y_{j}\right)\left(t_{0}\right) \\
& >\sum_{j \in F} k_{j}(1-t) \\
& =1-t_{0} .
\end{aligned}
$$

Thus it follows that $y \in N_{x}^{P}\left(t_{0}\right)$. Let U_{i} be P_{i}-open with $U_{i}=X_{i}$ for $i \in \mathbb{N}-F$ and $U_{i}=N_{x_{i}}^{P_{i}}(t)$ for $i \in F$. Then we have

$$
x \in \prod_{i \in \mathbb{N}} U_{i} \subset U,
$$

which shows that U is open in the product topology. This completes the proof.
Corollary 2.6. Each finite or countable Cartesian product of quasi-pseudometrizable spaces is quasi-pseudo-metrizable.

Proof. By Lemma 2.5, it follows that each finite or countable cartesian product of quasi-pseudo-Menger spaces is a quasi-pseudo-Menger space with uspect to the t-norm W. Since that $\sup \{W(x, x): x<1\}=1$ the topology of it is quasi-pseudo-metrizable (see [6], [7]). Indeed, let p be a quasi-pseudo-metric that generates the topology. Then $\left(X, G_{p}\right)$ of Theorem 1.4 satisfies the required condition.

Remark 2.7. We note that the Cartesian products of $P M$-space were studied by Istratescu and Vadura [4], Egbert [1], Sherwood and Taylor [9] and Radu [6].

References

[1] R.J. Egbert, Products and quotients of PMS, Pacific J. Math., 241 (1968), 437-455.
[2] M. Grabiec, Probabilistic quasi-pseudo-metric-spaces. Busefal, 45(1991), 137-145.
[3] U. Höhle, Probabilistiche Metriken auf der Menge der nichtnegativen Verteilungsfunctionen. Aequtiones Math., 18(1978), 345-356.
[4] V.I. Istrăţescu and I. Vădura, Products of statistical metric spaces. Stud. Cerc. Math., 12(1961), 567-574.
[5] K. Menger, Statistical spaces. Proc. Acad. Sci. USA, 28(1942), 535-537.
[6] V. Radu, On probabilistic structures on product spaces. Proc. 5th Conf. Probability Theory, Braşov (1974), 277-282.
[7] B. Schweizer, A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math. 10 (1960), 673-675.
[8] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland, 1983.
[9] H. Sherwood and M.D. Taylor, Some PM structures on the set of distribution function. Rev. Roumaine Math. Pures Appl., 19(1974), 1251-1260.
[10] D.A. Sibley, A metric for a weak convergence of distribution functions. Rocky Moutain J. Math., 1(1971), 427-430.
[11] R.M. Tardiff, Topologies for probabilistic metric spaces. Pacific J. Math., 659(1976), 233251.
[12] V.K. Urazov, On products of probabilistic metric spaces, Vestnik Kazan. Univ. Mat. 4 (1968), 15-18.
[13] A. Wald, On a statistical generalization of metric spaces. Proc. Nat. Acad. USA, 29(1943), 196-197.
[14] A.F.S. Xavier, On the product of probabilistic metric spaces, Portugal. Math. 27(1968), 137-147.
[15] S. Shakeri, A contraction thorem in Menger probabilistic metric spaces, J. Nonlinear Sci. Appl., 1 (2008), 189-193.

1 Department of Mathematics, Gyeongsang National University, Chinju 660701, Korea

E-mail address: yjcho@nongae.gsnu.ac.kr
2 Department of Operation Research, Academy of Economics, al. NiepodLegŁości 10, 60-967 Poznań, Poland

E-mail address: m.grabiec@ae.poznan.pl
${ }^{3}$ Department of Mathematics, Faculty of Basic Sciences, University of MazanDaran, Babolsar 47416 - 1468, Iran.

