The Journal of Nonlinear Science and Applications http://www.tjnsa.com

βS^* - COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES

I. M. HANAFY

ABSTRACT. In this paper, the notion of βS^* -compactness is introduced in L-fuzzy topological spaces based on S^* -compactness. A βS^* -compactness L-fuzzy set is S^* -compactness and also β -compactness. Some of its properties are discussed. We give some characterizations of βS^* -compactness in terms of pre-open, regular open and semi-open L-fuzzy set. It is proved that βS^* -compactness is a good extension of β -compactness in general topology. Also, we investigated the preservation theorems of βS^* -compactness under some types of continuity.

1. INTRODUCTION

It is known that compactness and its stronger and weaker forms play very important roles in topology. The concepts of compactness in [0, 1]-fuzzy set theory was first introduced by C.L. Chang in terms of open covers [4]. Göguen pointed out a deficiency in Chang's compactness theory by showing that the Tychonoff Theorem is false [8]. Since Chang's compactness has some limitations, Gantner, Steinlage and Warren introduced α -compactness [6], Lowen introduced fuzzy compactness, strong fuzzy compactness and ultra-fuzzy compactness [11, 12] and Wang and Zhao introduced N-compactness [18, 19]. Recently Shi introduced S^* -compactness [15] in L-fuzzy topological spaces.

The notion of β -compactness is one of the good strong forms of compactness in topology. It was generalized and studied by many authors in fuzzy topological spaces (see [1,3,9]).

In this paper, following the lines of Shi [15] we shall introduce a new notion of β -compactness in *L*-fuzzy topological spaces named βS^* -compactness. A

2000 Mathematics Subject Classification. 54A20.

Date: Received: 15 October 2008; Accepted: 2 Feb. 2009.

Key words and phrases. L-fuzzy topological spaces, fuzzy βS^* -compactness, local βS^* -compactness, $\beta_a - cover$, $Q_a - cover$.

I. M. HANAFY

characterizations and properties of βS^* -compactness is of interest. Also, we show that the β -continuous ($M\beta$ -continuous) image of a βS^* -compact L-fuzzy topological space is S^* -compact (βS^* -compact). Moreover, we introduce a good definition of local S^* -compactness (local βS^* -compactness) in L-fts's.

2. Preliminaries

Throughout this paper, $(L, \lor, \land, ')$ is a completely distributive de Morgan algebra, and X a nonempty set. L^X is the set of all L-fuzzy sets on X. An element a in L is called a prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. a in L is called a co-prime element if a' is a prime element [7]. The set of nonunite prime elements in L is denoted by P(L). The set of nonzero co-prime elements in L is denoted by M(L). The binary relation \prec in L is defined as follows: for $a, b \in L, a \prec b$ iff for every subsets $D \subseteq L$, the relation $b \le \sup D$ always implies the existence of $d \in D$ with $a \le d$. In a completely distributive de Morgan algebra L, each element b is a sup of $\{a \in L : a \prec b\}$. In the sense of [10, 17], $\{a \in L : a \prec b\}$ is the greatest minimal family of b, in symbol $\beta(b)$. Moreover for $b \in L$, define $\beta^*(b) = \beta(b) \cap M(L), \ \alpha(b) = \{a \in L : a' \prec b'\}$ and $\alpha^*(b) =$ $\alpha(b) \cap P(L)$. For $a \in L$ and $G \in L^X$, we denote $G^{(a)} = \{x \in X : G(x) \notin a\}$ and $G_{(a)} = \{x \in X : a \in \beta(G(x))\}$ [15, 16].

An L-fuzzy topological space (L-fts, for short) is a pair (X, \mathfrak{F}) , where \mathfrak{F} is a subfamily of L^X which contains \longrightarrow_0 , \longrightarrow_1 and is closed with respect to suprema and finite infima. \mathfrak{F} is called an L-fuzzy topology on X. Each member of \mathfrak{F} is called an open L-fuzzy set and its complement is called a closed L-fuzzy set.

Definition 2.1 [10, 17]. For a topological space (X, τ) , let $w_L(\tau)$ denote the family of all lower semicontinuous functions from (X, τ) to L, i.e., $w_L(\tau) = \{G \in L^X : G^{(a)} \in \tau, a \in L\}$. Then $w_L(\tau)$ is an L-topology on X, in this case, $(X, w_L(\tau))$ is called topologically generated by (X, τ) .

Definition 2.2. An L- fuzzy set G in an L- fts (X, \mathfrak{F}) is said to be:

(i) α - open (resp. α - closed) if $G \leq int \ cl \ int \ G$ (resp. $G \geq cl \ int \ cl \ G$),[5];

(*ii*) semiopen (resp. semiclosed) if $G \leq cl$ int G (resp. $G \geq int \ cl \ G$), [2];

(*iii*) preopen (resp. preclosed) if $G \leq int \ cl \ G$ (resp. $G \geq cl \ int \ G$), [5];

(iv) β -open (resp. β -closed) if $G \leq cl$ int cl G (resp. $G \geq int cl$ int G),[5];

(v) regular open (resp. regular closed) if $G = int \ cl \ G$ (resp. $G = cl \ int \ G$),[2];

(vi) regular semiopen (resp. regular semiclosed) if there exists a regular open subset H of X such that $H \subseteq G \subseteq cl \ H$ (resp. if there exists a regular closed subset H of X such that $H \supseteq G \supseteq int \ H$), [14].

It is obvious that each of semiopen and preopen L-fuzzy set implies β -open.

Definition 2.3. A function $f : X \to Y$ is said to be fuzzy β -continuous [5] (resp. $M\beta$ -continuous [9]) if the inverse image of every *open* (resp. β - *open*) L-fuzzy set in Y is β - *open* (resp. β - *open*) L-fuzzy set in X.

Definition 2.4 [15]. Let (X, \mathfrak{F}) be an L-fts, $a \in M(L)$ and $G \in L^X$. A subfamily ξ of L^X is called a β_a - cover of G if for any $x \in X$ with $a \notin \beta(G'(x))$, there exists an $A \in \xi$ such that $a \in \beta(A(x))$. A β_a - cover ξ of G is called an open (resp. regular open, preopen, etc.) β_a - cover of G if each member of ξ is open (resp. regular open, preopen, etc.).

It is obvious that ξ is a $\beta_a - cover$ of G iff for any $x \in X$ it follows that $a \in \beta(G'(x) \lor \longrightarrow A \in \xi \lor A(x))$.

Definition 2.5 [15]. Let (X, \mathfrak{F}) be an L-fts, $a \in M(L)$ and $G \in L^X$. A subfamily ξ of L^X is called a Q_a - cover of G if for any $x \in X$ with $G(x) \notin a'$, it follows that $\longrightarrow A \in \xi \lor A(x) \ge a$. A Q_a - cover ξ of G is called an open (resp. regular open, preopen, etc.) Q_a - cover of G if each member of ξ is open (resp. regular open, preopen, etc.).

Definition 2.6 [15]. Let (X, \mathfrak{T}) be an L-fts, $a \in M(L)$ and $G \in L^X$. G is called S^* -compact if for any $a \in M(L)$, each open β_a - cover of G has a finite subfamily F which is an open Q_a - cover of G. (X, \mathfrak{T}) is said to be S^* -compact if \longrightarrow_1 is S^* -compact.

Definition 2.7 [14]. An *L*-fts (X, \mathfrak{F}) is said to be extremely disconnected if $cl \ G \in \mathfrak{F}$ for every $G \in \mathfrak{F}$.

Definition 2.8 [13]. Let X be a set. A prefilterbase in X is a family $\Omega \subseteq L^X$ having the following two properties:

(i) for every $G \in \Omega$, $G \neq \varphi$.

(*ii*) for every $G, H \in \Omega$ there is a $W \in \Omega$ such that $W \leq G \wedge H$.

Moreover, Ω is said to be maximal iff for each $G \subseteq L^X$, one of the two L-fuzzy sets G, G' contains a member of Ω .

3. Characterizations and properties of βS^* -compactness in L-fts's

Definition 3.1. Let (X, \mathfrak{F}) be an L - fts and $G \in L^X$. Then G is called βS^* -compact if for any $a \in M(L)$, every $\beta - open \beta_a - cover$ of G has a finite subfamily F which is $\beta - open Q_a - cover$ of G. (X, \mathfrak{F}) is said to be βS^* -compact if X is βS^* -compact.

It is clear that every βS^* -compactness is β -compactness [1].

Remark 3.2. Since every open L-fuzzy set is β -open then every βS^* -compactness is S^* -compactness.

Example 3.3. Let L = [0, 1], X be an infinite set, $\Im = \{0, G, X\}$ be an L-fuzzy topology, where G(x) = 0.5 for all $x \in X$. Then any L-fuzzy set in (X, \Im) is β - open and the set of all open L-fuzzy set in (X, \Im) is \Im . In this case, we can easily obtain that H(x) = 0.7 for all $x \in X$ is not βS^* -compact and any L-fuzzy set is S^* -compact.

Theorem 3.4. Let (X, \mathfrak{T}) be an L - fts. If G and H are βS^* -compact L-fuzzy subsets of X, then so is $G \vee H$.

Proof. For any $a \in M(L)$, suppose that ξ is an β – open β_a – cover of $G \vee H$. Then by

$$(G \lor H)'(x) \lor \longrightarrow A \in \xi \lor A(x) = (G'(x) \lor \longrightarrow A \in \xi \lor A(x)) \land (H'(x) \lor \longrightarrow A \in \xi \lor A(x))$$

we obtain that for any $x \in X$, $a \in \beta(G'(x) \lor \longrightarrow A \in \xi \lor A(x))$ and $a \in \beta(H'(x) \lor \longrightarrow A \in \xi \lor A(x))$. This shows that ξ is an $\beta - open \beta_a - cover$ of G and H, we know that ξ has finite subfamily F_1 and F_2 such that F_1 and F_2 is a $\beta - open Q_a - cover$ of G and H respectively. Hence for any $x \in X$, $a \leq G'(x) \lor \longrightarrow A \in F_1 \lor A(x)$ and $a \leq H'(x) \lor \longrightarrow A \in F_2 \lor A(x)$. Take $W = F_1 \cup F_2$ is a finite subfamily of ξ and it satisfies the following condition $a \leq G'(x) \lor \longrightarrow A \in W \lor A(x)$ and $a \leq H'(x) \lor \longrightarrow A \in W \lor A(x)$, hence $a \leq (G \lor H)'(x) \lor \longrightarrow A \in W \lor A(x)$. This shows that W is a $\beta - open Q_a - cover$ of $G \lor H$, therefore $G \lor H$ is βS^* -compact

Corollary 3.5. Let (X, \mathfrak{F}) be an L - fts. Every L-fuzzy subset G with finite support is βS^* -compact relative to X.

Proof. Obvious.

Theorem 3.6. An $L - fts(X, \mathfrak{F})$ is βS^* -compact if every β - *closed* fuzzy subset is βS^* -compact relative to X.

Proof. For any $a \in M(L)$, suppose that $\{v_j : j \in J\}$ be an $\beta - open \beta_a - cover$ of X. Let $j_0 \in J$, then v'_{j_0} is $\beta - closed$ and so by the hypothesis v'_{j_0} is βS^* -compact. Now, $\xi = \{v_j : j \in J - (j_0)\}$ is an $\beta - open \beta_a - cover$ of X. Since v'_{j_0} is βS^* -compact there exists a finite subfamily ξ_0 of ξ such that ξ_0 is a

 $\beta - open Q_a - cover$ of X. Hence X is a βS^* -compact.

Corollary 3.7. An L-fts X is βS^* -compact if every semiclosed (α -closed, preclosed, regular semiclosed) L-fuzzy subset of X is βS^* -compact relative to X.

Proof. Clearly since each semiclosed (α -closed, preclosed, regular semiclosed) L-fuzzy subset of X is β - closed. Now, we characterize βS^* -compactness in the sense of preopen, regular open and semiopen L-fuzzy subsets.

Theorem 3.8. An extremely disconnected L - fts X is βS^* -compact iff for any $a \in M(L)$, every preopen β_a - cover of X has a finite subfamily F which is a preopen Q_a - cover of X.

Proof. For any $a \in M(L)$, Let $\{v_j : j \in J\}$ be a preopen $\beta_a - cover$ of X. Then $v_j \leq int \ cl \ v_j$ for each $j \in J$ and so $v_j \leq cl \ v_j \leq cl \ int \ cl \ v_j$. Hence the family $\{v_j : j \in J\}$ is a $\beta - open \ \beta_a - cover$ of X. Thus, by the hypothesis, there exists a finite subset F of J which is a preopen $Q_a - cover$ of X.

Conversely, Let $\{v_j : j \in J\}$ be a β -open β_a -cover of X. Then for each $j \in J$, $v_j \leq cl$ int $cl v_j = int \ cl \ v_j = int \ cl \ v_j$ from the extremely disconnected of X. Hence $v_j \leq int \ cl \ v_j$ for each $j \in J$ and so $\{v_j : j \in J\}$ is a preopen β_a -cover of X. So there exists a finite subset F of J which is a β -open Q_a -cover of X.

Theorem 3.9. Each extremely disconnected L - fts X in which every $\beta - open L$ -fuzzy subset of X is semiclosed is βS^* -compact iff for any $a \in M(L)$, every semiopen $\beta_a - cover$ of X has a finite subfamily F which is a semiopen $Q_a - cover$ of X.

Proof. For any $a \in M(L)$, Let $\{v_j : j \in J\}$ be a semiopen β_a - cover of X. Since every semiopen is β - open, then $\{v_j : j \in J\}$ is a β - open β_a - cover of X. By the βS^* -compactness of X, there exists a finite subset F of J which is a semiopen Q_a - cover of X.

Conversely, Let $\{v_j : j \in J\}$ be a β -open β_a -cover of X. Since the closure of each β -open is semiopen, the family $\{cl \ v_j : j \in J\}$ is a semiopen β_a -cover of X. By the hypothesis, there exists a finite subset F of J which is a semiopen Q_a -cover of X. But for each $j \in J$, we have $v_j \leq cl$ int $cl \ v_j$ which implies that $cl \ v_j \leq cl$ int $cl \ v_j = int \ cl \ int \ cl \ v_j = int \ cl \ v_j$ for each $j \in J$ and hence $(int \ cl \ v_j : j \in F\}$ is a semiopen Q_a -cover of X. By the hypothesis each β -open L-fuzzy subset of X is semiclosed, then $v_j \geq int \ cl \ v_j$ for each $j \in F$. Hence $(v_j : j \in F\}$ is a β -open Q_a -cover of X.

Theorem 3.10. Each extremely disconnected L - fts X in which every $\beta - open L$ -fuzzy subset of X is *semiclosed* is βS^* -compact iff for any $a \in M(L)$, every regular open $\beta_a - cover$ of X has a finite subfamily F which is a regular open $Q_a - cover$ of X.

Proof. Follows from the above theorem, since each regular open L-fuzzy subset of X is semiopen.

Definition 3.11. Let (X, \mathfrak{F}) be an L - fts. A prefilterbase Ω on X is said to be β -converges (S-converges) to $a \in M(L)$ if for every β - open (semiopen) L-fuzzy set G containing a there exists $H \in \Omega$ such that $H \leq cl G$.

Definition 3.12. Let (X, \mathfrak{F}) be an L - fts. A prefilterbase Ω on X is said to be β -accumulates (S-accumulates) at $a \in M(L)$ if for every β -open (semiopen) L-fuzzy set G containing a and for every $H \in \Omega$, we have $H \wedge cl \ G \neq \varphi$.

Proposition 3.13. Let Ω be a maximal prefilterbase in an $L - fts(X, \Im)$, then the following statements are equivalent:

(i) Ω is β -accumulates (S-accumulates) at $a \in M(L)$.

(*ii*) Ω is β -converges (S-converges) to $a \in M(L)$.

Proof. $(i) \to (ii)$: To prove that Ω is β -converges (S-converges) to $a \in M(L)$, Let G be a β -open (semiopen) L-fuzzy set in X such that $a \in G$. Since Ω is β -accumulates (S-accumulates) at a, then for every $H \in \Omega$, $H \wedge cl \ G \neq \varphi$. Thus there exists a proper L-fuzzy subset $C \leq H$ such that $C \leq cl \ G$. Since $C \neq \varphi$, then C is a member of some prefilterbase in X. But Ω is maximal, then C is a member of Ω . Thus for every β -open (semiopen) L-fuzzy set G containing a there exists $H = C \in \Omega$ such that $H \leq cl \ G$. Then Ω is β -converges (S-converges) to a.

 $(ii) \rightarrow (i)$: Let G be a β – open (semiopen) L – fuzzy set in X such that $a \in G$. Since Ω is β -converges (S-converges) to a, then there exists $H \in \Omega$ such that $H \leq cl \ G$ and thus $H \wedge cl \ G$ is a member of some prefilterbase in X. But Ω is maximal, then $H \wedge cl \ G \in \Omega$, So for every $H_j \in \Omega$, $H_j \wedge (H \wedge cl \ G)$ contains a member of Ω , then $H_j \wedge cl \ G \neq \varphi$ for every $H_j \in \Omega$. Hence Ω is β -accumulates (S-accumulates) at a.

The following result shows that the notion of β -converges (resp. β -accumulates) and s-converges (resp. s-accumulates) are equivalent for any prefilterbase.

Proposition 3.14. Let (X, \mathfrak{F}) be an L - fts. A prefilterbase Ω on X is β -converges (resp. β -accumulates) to $a \in M(L)$ iff Ω is s-converges (resp. s-accumulates) to $a \in M(L)$.

Proof. Since any semiopen L-fuzzy set containing a is β -open L-fuzzy set containing a, The necessity is obvious. The sufficiency follows from the fact that the closure of any β -open L-fuzzy set containing a is a semiopen L-fuzzy set containing a.

Now, we give a characterization of βS^* -compact in the sense of convergent prefilterbasis and by means of finite intersection property.

Theorem 3.15. The following statements are equivalent for any $L-fts(X, \mathfrak{F})$:

- (i) X is βS^* -compact.
- (*ii*) Each maximal prefilterbase is β -converges.
- (*iii*) Each prefilterbase is β -accumulates at an L-fuzzy point $a \in M(L)$.

Proof. $(i) \to (ii)$: Let $\Omega = \{G_j : j \in J\}$ be a maximal prefilterbase on X. Suppose that Ω does not β -converges, then Ω does not β -accumulate. Then for all $a \in M(L)$, there exists a β -open L-fuzzy set G_a of X with $a \in G_a$ and $H_{j_a} \in \Omega$ such that $H_{j_a} \wedge cl \ G_a = \varphi$. Then the family $\{G_a : a \in X\}$ of β -open L-fuzzy subsets is β -open β_a -cover of X. Since X is βS^* -compact, there exists a finite subfamily $\{G_{a_1}, ..., G_{a_n}\}$ which is β -open Q_a -cover of X. So $\{cl \ G_{a_1}, ..., cl \ G_{a_n}\}$ is β -open Q_a -cover of X. Since Ω is a prefilterbase there exists $H_0 \in \Omega$ such that $H_0 \leq \longrightarrow j = 1 \land H_{j_a}$ and $H_0 \land cl \ G_{aj} = \varphi$. So, $H_0 \land \longrightarrow j = 1 \land cl \ G_{aj} = \varphi$. Hence $H_0 = \varphi$, which contradicts that Ω is a prefilterbase.

 $(ii) \rightarrow (iii)$: Since each maximal prefilterbase Ω on $X \beta$ -converges, Ω is β -accum- ulates. Since each prefilterbase is contained in a maximal prefilterbase which is β -accumulates, each prefilterbase β -accumulates.

 $(iii) \rightarrow (i)$: obvious.

Now in the following, we shall prove that βS^* -compactness is a good extension of β -compactness in general topology.

Lemma 3.16: Let $(X, w_L(\tau))$ be generated topology by (X, τ) , Then (i) χ_G is a β – open L-fuzzy set in $(X, w_L(\tau))$ if G is a β – open set in (X, τ) . (ii) $G^{(a)}$ is a β – open set in (X, τ) for all $a \in L$ if G is a β – open L-fuzzy set in $(X, w_L(\tau))$.

Proof. (i) Since G is a β -open, then $G \leq cl$ int cl G. Hence $\chi_G \leq \chi_{cl \text{ int } cl} G = cl$ int $cl \chi_G$ which implies that χ_G is a β -open L-fuzzy set in $(X, w_L(\tau))$.

(*ii*) Obvious.

Theorem 3.17. Let (X, τ) be a topological space. Then (X, τ) is β -compact iff $(X, w_L(\tau))$ is a βS^* -compact.

Proof. Let (X, τ) be a β -compact. For all $a \in M(L)$, let ξ be a β open β_a -cover of X in $(X, w_L(\tau))$. By Lemma 3.16 $\{G^{(a)} : G \in \nu\}$ is a β -open of (X, τ) . By β -compactness of (X, τ) , there exists a finite subfamily F of ξ such that $\{G^{(a)} : G \in F\}$ is a cover of (X, τ) . Hence F is a β -open Q_a -cover of X. Therefore $(X, w_L(\tau))$ is a βS^* -compact.

Conversely, let $(X, w_L(\tau))$ be a βS^* -compact and μ be a β -open - cover of (X, τ) . Then for each $a \in \beta^*(1)$, $\{\chi_G : G \in \mu\}$ is a β -open β_a -cover of X in $(X, w_L(\tau))$. By βS^* -compactness of $(X, w_L(\tau))$, we know that there exists a finite subfamily F of μ such that $\{\chi_G : G \in F\}$ is a Q_a -cover of X in $(X, w_L(\tau))$. Hence F is a β -open - cover of (X, τ) . Therefore (X, τ) is β -compact.

4. Functions and βS^* -Compactness in L-fts's

Throughout, X and Y will be denote L - fts.

Theorem 4.1. Let $f: X \to Y$ be fuzzy β -continuous surjection. If X is a βS^* -compact L - fts then Y is S^* -compact L - fts.

Proof. For all $b \in M(L)$, let $\{v_j : j \in J\}$ be a family of *open* L-fuzzy subsets of Y which is *open* β_b -*cover* of Y. Then $\{f^{-1}(v_j) : j \in J\}$ is a family of β -*open* L-fuzzy subsets of X which is β -*open* β_a -*cover* of X, for all $a \in M(L)$ where f(a) = b. From the βS^* -compactness of X there exists a finite subset F of J which is β -*open* Q_a -*cover* of X. Hence $f(\longrightarrow j \in F \lor f^{-1}(v_j)) = \longrightarrow$ $j \in F \lor f(\longrightarrow j \in F \lor f^{-1}(v_j)) = \longrightarrow j \in F \lor v_j$ and so is *open* Q_a -*cover* of Xwhich means that Y is S^* -compact.

Theorem 4.2. Let $f: X \to Y$ be fuzzy $M\beta$ -continuous surjection. If X is a βS^* -compact L - fts then Y is a βS^* -compact L - fts.

Proof. Similar to the above theorem.

Lemma 4.3. If $f: X \to Y$ is fuzzy open and fuzzy continuous function, then f is fuzzy $M\beta$ -continuous.

Proof. Let H be a β – open L-fuzzy set in Y, then $H \leq cl$ int cl H. So $f^{-1}(H) \leq f^{-1}(cl$ int $cl H) \leq cl$ $(f^{-1}(int cl H))$. Since f is fuzzy continuous, then $f^{-1}(int cl H) = int (f^{-1}(cl H))$. Also , $f^{-1}(int cl H) = int (f^{-1}(int cl H)) \leq int (f^{-1}(cl H))$. Thus $f^{-1}(H) \leq cl (f^{-1}(int cl H)) \leq cl$ int $cl (f^{-1}(H))$. Hence the result.

Corollary 4.4. Let $f: X \to Y$ be fuzzy open and fuzzy continuous function and X is fuzzy βS^* -compact, then f(X) is fuzzy βS^* -compact.

Proof. It is follows directly from Lemma 4.3 and Theorem 4.2.

Definition 4.5. A function $f: X \to Y$ is said to be fuzzy $M\beta$ – open iff the image of every β – open L-fuzzy set in X is β – open L-fuzzy set in Y.

Theorem 4.6. Let $f : X \to Y$ be a fuzzy $M\beta$ – open bijective function and Y is βS^* -compact, then X is βS^* -compact.

Proof. For all $a \in M(L)$, let $\{v_j : j \in J\}$ be a family of β – open L-fuzzy subsets of X which is β – open β_a – cover of X. Then $\{f(v_j) : j \in J\}$ is a family of β – open L-fuzzy subsets of Y which is β – open β_b – cover of Y, for all $b \in M(L)$ where f(a) = b. From the βS^* -compactness of Y there exists a finite subset F of J which is β – open Q_b – cover of Y. But $X = f^{-1}(Y) = f^{-1}f(\longrightarrow j \in F \lor v_j) = \longrightarrow j \in F \lor v_j$ which is β – open Q_a – cover of X and therefore X is βS^* -compact.

5- Local S^* -compactness (Local βS^* -compactness) in L-fts's

In this section, we introduce a good definition of local S^* -compactness (local βS^* -compactness) in *L*-fts's. We show that local βS^* -compactness is preserved under $M\beta$ -continuous open functions.

Definition 5.1. Let (X, \mathfrak{F}) be an *L*-fts. An *L*-fuzzy set *G* is said to be *very* S^* -compact (*very* βS^* -compact) if for some $b \in L$ it is of the form

 $H(x) = QDATOPD\{.b, \qquad if \ x \in D \subseteq X0, \qquad otherwise$

where D = supp G, and for all $a \in M(L)$ and every collection $\{v_j : j \in J\}$ of $open \beta_a - cover$ ($\beta - open \beta_a - cover$) of X for all $x \in D$, there is a finite subfamily F of J which is $open Q_a - cover (\beta - open Q_a - cover)$ of X for all $x \in D$.

It is simply required that χ_D be S^* -compact and also βS^* -compact.

By using the above Definition 5.1, we have the following diagram:

 $\begin{array}{ccc} very \; \beta S^* - \text{compactness} & \Longrightarrow & \beta S^* - \text{compactness} \\ & \Downarrow & & \Downarrow \\ very \; S^* - \text{compactness} & \Longrightarrow & S^* - \text{compactness.} \end{array}$

Definition 5.2. Let (X, \mathfrak{F}) be an L-fts. We say that (X, \mathfrak{F}) is locally S^* -compact (locally βS^* -compact) if for all $x \in X$ and for all $a \in M(L)$ there exists a very S^* -compact (very βS^* -compact) L-fuzzy set H and $G \in \mathfrak{F}$ such that $H \geq G$ and $H(x) \leq a$.

Remark 5.3. From the above Definition 5.2, it is clear that every locally βS^* -compact is locally S^* -compact.

Theorem 5.4. Let (X, τ) be a topological space. Then (X, τ) is locally compact (locally β -compact) if the *L*-fts $(X, w(\tau))$ is locally S^* -compact (locally βS^* -compact).

Proof. Let $x \in X$ and $a \in M(L)$. By the locally compact (locally β -compact) of (X, τ) there exist $U \in \tau$ and compact (β -compact) set C relative to (X, τ) such that $x \in U \subseteq C$. Then $\chi_U \in w(\tau), \ \chi_U(x) = 1 \leq a$ and $\chi_U \leq \chi_C$. We have by the goodness of S^* -compactness (βS^* -compactness) that χ_C is S^* -compact (βS^* -compact) in the L-fts $(X, w(\tau))$. Hence $(X, w(\tau))$ is is locally S^* -compact (locally βS^* -compact). Conversely, Let $x_0 \in X$ and $a \in M(L)$. By the locally S^* -compact (locally βS^* -compact) of $(X, w(\tau))$ there exists $G \in w(\tau)$ and a very S^* -compact (very βS^* -compact) L-fuzzy set H, where

 $H(x) = QDATOPD\{.b, \quad if \ x \in D \subseteq X0, \quad otherwise$ such that $G \leq H$ and $H(x_0) \leq a$. Since $G \in w(\tau)$ there is a basic open L-fuzzy set λ , where

 $\lambda(x) = QDATOPD\{.d, \quad if \ x \in V \in \tau 0, \quad otherwise$ such that $\lambda \leq G \leq H$ and $\lambda(x_0) \notin a$. Then $V \subseteq D$ and so $x_0 \in V \in \tau$. We

also have D is compact (β -compact) in (X, τ) . Hence (X, τ) is locally compact (locally β -compact).

Theorem 5.5. Let $f : X \to Y$ be fuzzy β -continuous (fuzzy $M\beta$ -continuous) open surjection. If X is locally βS^* -compact then Y is locally S^* -compact (locally βS^* -compact).

Proof. Let $y \in Y$ and $a \in M(L)$. Then for each $x \in f^{-1}(\{y\})$, there exists a very βS^* -compact L-fuzzy set H in X and $G \in \mathfrak{S}_X$ such that $H \geq G$ and $G(x) \leq a$. By Theorems 4.1, 4.2, we have f(H) is a very S^* -compact $(\beta S^*$ -compact) L-fuzzy subset of Y satisfy that $f(H) \geq f(G)$, $(f(G))(y) \leq a$ where $f(G) \in \mathfrak{S}_Y$. Hence Y is locally S^* -compact (locally βS^* -compact).

References

[1] A.I. Aggour, On some applications of lattices, Ph. D. Thesis, Al-Azhar Univ., Cairo, Egypt (1998).

[2] K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl.,82 (1981) 14–32.

[3] Balasubramanian, Ganesan, On fuzzy β -compact spaces and fuzzy β -

extremally disconnected spaces, Kybernetika [cybernetics] 33 (1997) 271–277.

[4] C. L. Chang, Fuzzy topological spaces. J. Math. Anal. Appl., 24 (1986) 182–190.

[5] M.A. Fath Alla, On fuzzy topological spaces, Ph. D. Thesis, Assiut Univ., Sohag, Egypt (1984).

- [6] T.E. Gantner, R.C. Steinlage and R.H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl., 62 (1978) 547–562.
- [7] G. Gierz, et al, A compendium of continuous lattices, Berlin : Springer Verlag, 1980.

[8] R. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl., 43 (1973) 734–742.

[9] I.M. Hanafy, Fuzzy β -compactness and fuzzy β -closed spaces, Turk J. Math., 28 (2004) 281–293.

[10] Y.M. Liu, M.K Luo, Fuzzy topology, World Scientific, Singapore, 1997.

[11] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976) 621–633.

[12] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., 64 (1978) 446–454.

[13] R. Lowen, Converges in fuzzy topological spaces, General topology and its applications, 10 (1979) 147–160.

[14] A.S. Mashhour, M.H. Ghanim and M.A. Fath Alla, α -separation axioms and α -compactness in fuzzy topological spaces, Rocky Mount J.Math.6 (1986) 591-600.

[15] F.G. Shi, A new notion of fuzzy compactness in L-topological spaces, Information Sciences, 173 (2005) 35–48.

[16] F.G. Shi, Theory of L_{β} -nested sets and L_{α} -nested sets and its applications, Fuzzy Sets and Systems, 4 (1995) 65–72 (in Chinese).

[17] G.J. Wang, Theory of L-fuzzy topological space, Shaanxi normal University Publishers, Xian, 1988.(in Chinese).

[18] G.J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl., 94 (1983) 1–23.

[19] D.S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl., 128 (1987) 46–70.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, SUEZ CANAL UNIVERSITY, EL-ARISH, EGYPT