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Abstract. Let X be a Banach space and E be a closed bounded subset of X.
For x ∈ X we set D(x,E) = sup{‖x− e‖ : e ∈ E}. The set E is called remotal
in X if for any x ∈ X, there exists e ∈ E such that D(x, E) = ‖x− e‖ . It is
the object of this paper to give new results on remotal sets in Lp(I,X), and to
simplify the proofs of some results in [5].

1. Introduction and preliminaries

Let X be a Banach space and E be a closed bounded subset of X. For x ∈ X we set
D(x,E) = sup{‖x− e‖ : e ∈ E}. The set E is called remotal in X if for any x ∈ X,
there exists e ∈ E such that D(x,E) = ‖x− e‖ . The study of remotal sets started
almost in the sixties. It turned out that remotal sets have applications in geometry of
Banach spaces. However, almost all known results on remotal sets are concerned with
the topological properties of such sets. In [5], the problem of what conditions one can
impose to ensure that L1(I, E) be remotal in L1(I, X) was studied. The object of this
paper is to give new results on remotal sets in Lp(I, X), and to present full proofs of
certain results in [5]. Further, we introduce the concept of sphere images of sets. We
believe that such a concept will be fruitful in the theory of remotal sets. We refer to
[1], [2], [3] and [5] for classical results on remotal sets.

Throughout this paper, I denotes the unit interval with the Lebesgue measure, and
Lp(I, X) is the space of p-Bochner integrable functions (equivalence classes) defined on
I with values in X. The closed unit ball of any Banach space X is denoted by B[X].
We let S(x, r) denote the sphere of center x and radius r.
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2. Main results

2.1. Sphere Reflection of Sets. Let X be a Banach space and E be a closed and
bounded set in X. For x ∈ X\E , let D(x,E) = r, and S(x, r) = {y : ‖x− y‖ = r}. We
write S for S(x, r). Consider the following map

ϕx : E → X, ϕx(e) = 2x + 2r e−x
‖e−x‖ − e. Then,

Proposition 2.1. The map ϕx has the following properties

(i) ϕx is continuous
(ii) ϕx(E) is closed and bounded.
(iii) d(S, E) = inf{‖z − e‖ : z ∈ S and e ∈ E} = 0.

(iv) d(E,ϕx(E)) = 0
(v) d(x, ϕx(E)) = r

(vi) x has a farthest point in E if and only if x has a closest element in ϕx(E).

Proof. The proof of (i) is evident noting that E is closed and bounded. For (ii),
suppose that ϕx(en) −→ y ∈ X where en ∈ E. Since ‖en−x‖ is a bounded sequence of
real numbers, it must have a convergent subsequence, we may suppose that ‖en − x‖
converges to some real number. Now, it can be shown easily that en → e ∈ E and
hence y = ϕx(e). Therefore, ϕx(E) is closed. Since ‖x− ϕx(e)‖ ≤ 3r, then ϕx(E)
is bounded.

To prove (iii), let en ∈ E such that ‖x− en‖ → r. Let sn = x + r en−x
‖en−x‖ . Clearly

sn ∈ S and ‖en − sn‖ =
∥∥∥(x− en)(1− r

‖x−en‖)
∥∥∥→ 0. Hence d(S, E) = 0.

As for (iv), let en ∈ E such that ‖x− en‖ → r. Then

‖en − ϕx(en)‖ =
∥∥∥∥2x + 2r

en − x

‖en − x‖
− en − en

∥∥∥∥ = 2 ‖en − x‖
∣∣∣∣1− r

‖en − x‖

∣∣∣∣→ 0.

Now, for any e ∈ E,

‖x− ϕx(e)‖ =
∥∥∥∥−x− 2r

e− x

‖e− x‖
+ e

∥∥∥∥
= 2r − ‖e− x‖ ≥ r,

where in the last line, we have used the fact that D(x, E) = r. Now, if ‖x − en‖ → r,
we would have ‖x− ϕx(en)‖ → r. This shows that d(x, ϕx(E)) = r.

Let D(x,E) = ‖x− e‖ = r for some e ∈ E. Then,

‖x− ϕx(e)‖ =
∥∥∥∥2x− 2r

e− x

‖e− x‖
− e− x

∥∥∥∥ = ‖e− x‖ = r.

But from (v), d(x, ϕx(E)) = r. Hence x has a closest element in ϕx(E). A similar
argument proves the converse. This ends the proof of the proposition. �

We should remark that ϕx : E → ϕx(E) is 1-1, a fact that one can easily prove.

Definition 2.2. Let X be a Banach space. We say that X has the mirror reflection
property if for any closed and bounded set E ⊂ X, and any x ∈ X\E, there exists a
closed convex set G ⊂ E, such that D(x,E) = D(X, G) and ϕx(G) is convex.

Lemma 2.3. Every finite dimensional normed space has the mirror reflection prop-
erty.
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Proof. Let X be finite dimensional, and x ∈ X. Since E is closed and bounded, then
it is compact. But any compact set is remotal. Thus if D(x,E) = r, then there exists
e ∈ E such that ‖x− e‖ = D(x,E) = r. But then ϕx(e) = e. Since {e} is convex, the
set G = {e} satisfies ϕx(G) is convex. �

Now, the closed unit ball of a subspace Y of the Banach space X is not necessarily
remotal. However,

Theorem 2.4. Let Y be a reflexive subspace of the Banach space X that has the
mirror reflection property. Then B[Y ] is remotal in X.

Proof. Let x ∈ X. If x ∈ B[Y ] then, trivially, x has a farthest element in B[Y ], see
Lemma 2.12 below. So we may assume that x 6∈ B[Y ] and that F (x, B[Y ]) = r >

0. Let E ⊂ B[Y ] be such that E is convex, closed and Ê = ϕx(E) is convex with
D(x,B[Y ]) = D(x,E). Such an E exists because X has the mirror reflection property.
Now d(x, ϕx(E)) = D(x, E) and d(E,S) = d(S, ϕx(E)) = d(E,ϕx(E)) = 0. Further
span(ϕx(E)) is reflexive because E is a subset of a reflexive spaces Y and span(ϕx(E)) =
span(E∪{x}). Let (zn) ⊂ ϕx(E) be such that ‖x−zn‖ −→ r, zn = ϕx(en), en ∈ E. But

‖x− ϕx(en)‖ = ‖x + 2r
en − x

‖en − x‖
− en‖

= ‖x(1− 2r/‖en − x‖)− en(1− 2r/‖en − x‖)‖
= 2r − ‖x− en‖.

Since ‖x−ϕx(en)‖ −→ r we see that ‖x−en‖ −→ r. Consequently ‖ϕx(en)−en‖ −→ 0.
This follows from

ϕx(en)− en = 2x + 2r
en − x

‖en − x‖
− 2en

= 2r
en − x

‖en − x‖
− 2(en − x)

= (en − x)
[

2r

‖en − x‖
− 2
]

.

Hence, ‖ϕx(en)−en‖ = ‖en−x‖
[

2r
‖en−x‖ − 2

]
−→ 0. Now ϕx(en) is a bounded sequence

in a closed convex set ϕx(E) in a reflexive space Ỹ . Hence, with no loss of generality,
we can assume the existence of z such that ϕx(en) −→ z weakly, Alaoglu theorem
guarantees the compactness of ϕx(E) in the w∗−topology. Also, we may assume that
en −→ p in the w∗−topology. So

|〈z − p, y∗〉| = lim
n→∞

|〈ϕx(en)− en, y∗〉|

≤ lim
n→∞

‖ϕx(en)− en‖‖y∗‖ = 0.

Since this is true for all y∗ ∈ Ỹ , we must have p = z. However, since both E and ϕx(E)
are closed and convex, then z ∈ ϕx(E) and p ∈ E. Therefore,

z = p ∈ ϕx(E) ∩ E ⊂ S.

But this means that p is a farthest element in E from x and we are done. �
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2.2. Remotal sets in Lp(I,X). Let I be the unit interval with Lebesgue measure.
Lp(I, X) denotes the space of p−Bochner integrable functions (equivalence classes) on
I with values in X. One of the problems in the theory of existence of farthest points
is “ If E is remotal in X, must  Lp(I, E) = {f ∈ Lp(I, X) : f(t) ∈ E a.e} be remotal
in Lp(I,X)?”. Not much results are known in that direction. In [5], some results were
given on that problem. In this section we will give simpler proofs of some of the results
in [5], and present new results on remotality of Lp(I, E).

First, we prove the following distance formula:

Theorem 2.5. Let E be any closed bounded set in a Banach space X. Then, for
f ∈ Lp(I, X),

sup
g∈Lp(I,E)

‖f − g‖p =
(∫

I
sup
e∈E

‖f(t)− e‖pdt

)1/p

, for 1 ≤ p < ∞.

Proof. For g ∈ Lp(I, G) we have

‖f − g‖p
p =

∫
I
‖f(t)− g(t)‖pdt ≤

∫
I

sup
e∈E

‖f(t)− e‖pdt,

hence, on taking supremum over g ∈ Lp(I, E) we get

sup
g∈Lp(I,E)

‖f − g‖p ≤
(∫

I
sup
e∈E

‖f(t)− e‖pdt

)1/p

.

For the reverse inequality, let ε > 0 be given and let ϕ =
∑n

i=1 yiχAi be a simple
function in Lp(I, X) such that ‖ϕ− f‖p < ε. Here, yi ∈ X and the Ai are subsets of I
that may be assumed to be disjoint and non-empty. For each yi let ei ∈ E be such that

‖yi − ei‖p > sup
e∈E

‖yi − e‖p − ε

nµ(Ai)
.

Now, let w =
∑n

i=1 eiχAi . Then w ∈ Lp(I, E) and

‖ϕ− w‖p ≤ ‖ϕ− f‖p + ‖f − w‖p ≤ ‖f − w‖p + ε.

Consequently,

(‖f − w‖p + ε)p ≥ ‖ϕ− w‖p
p =

∫
I
‖ϕ(t)− w(t)‖pdt

=
n∑

i=1

∫
Ai

‖ϕ(t)− w(t)‖pdt

=
n∑

i=1

‖yi − ei‖pµ(Ai)

>

n∑
i=1

[
sup
e∈E

‖yi − e‖p − ε

nµ(Ai)

]
µ(Ai)

=
n∑

i=1

sup
e∈E

‖yi − e‖pµ(Ai)− ε.
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Therefore,

(‖f − w‖p + ε)p + ε >

n∑
i=1

∫
Ai

sup
e∈E

‖yi − e‖pdt

=
∫

I

n∑
i=1

sup
e∈E

‖yi − e‖pχAi(t)dt

=
∫

I
sup
e∈E

‖ϕ(t)− e‖pdt

≥
∫

I
sup
e∈E

|‖f(t)− e‖ − ‖ϕ(t)− f(t)‖|p dt

≥
∫

I

∣∣∣∣sup
e∈E

‖f(t)− e‖ − ‖ϕ(t)− f(t)‖
∣∣∣∣p dt.

Let h(t) = supe∈E ‖f(t)− e‖ and k(t) = ‖ϕ(t)− f(t)‖. These are real valued functions.
Let us for convenience denote by ‖h‖p(R) the Lp norm of the real valued function h.
Keeping this in mind, the last integral becomes ‖h− k‖p

p(R). Whence,

[(‖f − w‖p + ε)p + ε]1/p ≥ ‖h− k‖p(R)

≥ ‖h‖p(R) − ‖k‖p(R)

≥
(∫

I
sup
e∈E

‖f(t)− e‖p

)1/p

− ε.

Thus, (∫
I

sup
e∈E

‖f(t)− e‖p

)1/p

≤ [(‖f − w‖p + ε)p + ε]1/p + ε

≤

[(
sup

g∈Lp(I,G)
‖f − g‖p + ε

)p

+ ε

]1/p

+ ε,

where we have used the fact that w ∈ Lp(I,G). On letting ε −→ 0 we get(∫
I

sup
e∈E

‖f(t)− e‖p

)1/p

≤ sup
g∈Lp(I,G)

‖f − g‖p,

as required. �

Corollary 2.6. Let X be a Banach space and E be a closed bounded subset of X.
Then, for 1 ≤ p < ∞, g ∈ Lp(I, E) is farthest from f ∈ Lp(I, X) if and only if, for
almost all t ∈ I, g(t) is farthest in E from f(t).

Proof. Suppose that g is farthest from f in Lp(I, E). By the above theorem we have∫
I
‖f(t)− g(t)‖pdt =

∫
I

sup
e∈E

‖f(t)− e‖pdt,

which means ∫
I

(
sup
e∈E

‖f(t)− e‖p − ‖f(t)− g(t)‖p

)
dt = 0.

But the integrand is non-negative because g ∈ Lp(I, E), hence ‖f(t)−g(t)‖ = supe∈E ‖f(t)−
e‖ for almost all t ∈ I. This means that for almost all t ∈ I, g(t) is farthest in E from
f(t). The other part of the theorem is trivial. �
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As a corollary of this corollary we get:

Corollary 2.7. Suppose that Lp(I, E) is remotal in Lp(I, X) for some 1 ≤ p < ∞,
where E is a closed bounded subset of the Banach space X, then E itself is remotal in
X.

Proof. Let x ∈ X and define f(t) = x. Then f ∈ Lp(I, X). Therefore, there exists
g ∈ Lp(I, E) such that g is farthest from f . By the above corollary, g(t) is farthest
from f(t) for almost all t. But f(t) = x for all t. Hence, there exists a t ∈ E such that
g(t) is farthest in E from x ∈ X. �

For a remotal set E ⊂ X, the map H that maps any element x to F (x,E) := {e ∈
E : ‖x− e‖ = D(x,E)} is a multi-valued map in general. Hence for f ∈ Lp(I, X), the
map H ◦ f is a multi-valued map from I into E.

Before proceeding, we remind the reader of some facts regarding multi-valued map-
pings and related concepts: Let S be a measurable space and X a Banach space. A
function f : S −→ X is said to be strongly measurable if there exists a sequence {fn}
of simple functions such that

lim
n→∞

‖fn(s)− f(s)‖ = 0

almost everywhere. On the other hand, we say that f is measurable in the classical sense
if f−1(K) is measurable, in S, for every closed set K in X. It is always true that strong
measurability implies measurability in the classical sense, provided that S is a complete
measure space, but not vice versa, see [4] p.114. However, if f : S −→ X is measurable
in the classical sense and has essentially separable range, then f is strongly measurable,
see [4], p.114. A multi-valued mapping F : I −→ X is said to be measurable if F−1(K)
is measurable for every closed subset K of X. Here, F−1(K) = {t ∈ I : F (t)∩K 6= φ}.
A measurable (in the classical sense) function f may be extracted from a measurable
multi-valued mapping F : I −→ X, where X is a separable Banach space, provided
that F (t) is a closed subset of X for each t ∈ I, and such that f(t) ∈ F (t) for each
t ∈ I, consult [6], p.289.

Lemma 2.8. If E is a finite set in X, then the map H ◦f has a measurable selection,
where f : I −→ X is measurable.

Proof. Since E is finite, then every subset of is E finite and hence closed. So H−1(G) is
closed for any closed subset G of E. Indeed, suppose that xn −→ x where xn ∈ H−1(G)
and x ∈ X. Since xn ∈ H−1(G), H(xn) ∩ G 6= φ. Let yn ∈ H(xn) ∩ G, then we may
assume that yn −→ y ∈ G because G is finite. We assert that y ∈ H(x):

‖x− y‖ = lim
n→∞

‖xn − yn‖

≥ lim
n→∞

‖xn − w‖ ∀w ∈ E

= ‖x− w‖ ∀w ∈ E.

Consequently, y ∈ H(x) and x ∈ H−1({y}) ⊂ H−1(G). This shows that H−1(G) is
closed.

Since f is measurable, then f−1(H−1(G))) is measurable. Hence, H ◦ f is a mea-
surable multi-valued function. Hence, [6] page 289, H ◦ f has a measurable selection.

�
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Theorem 2.9. Let E be a finite set in the Banach space X. Then L1(I, E) is remotal
in L1(I, X).

Proof. Let f ∈ L1(I, X). Then H ◦ f(t) is the set of the farthest point from f(t) in
E. By Lemma 2.8, H ◦ f has a measurable selection, g, say. Since g ∈ L1(I, E), then
L1(I, E) is remotal in L1(I, X), and g ∈ F (f, L1(I, E)). �

Theorem 2.10. Let E be a closed bounded set in X such that the span of E is a
finite dimensional subspace of X. Then L1(I, E) is remotal in L1(I, X).

Proof. We will show that the map H ◦ f has a measurable selection for any f ∈
L1(I, X). First we show that H is a closed valued map. Indeed, if H(x) is a finite set,
then it is closed. If H(x) is not finite, then let y be a limit point of H(x). Then there
is a sequence yn ∈ H(x) such that yn → y. Then ‖x− yn‖ ≥ ‖x− e‖ for all e ∈ E. But
then taking the limit , we get ‖x− y‖ ≥ ‖x− e‖ for all e ∈ E. Hence H(x) is closed.
Hence H is a closed valued map, and consequently, H ◦ f is a closed multi-valued
map.

Now, let B be a closed set in E, and A = H−1(B). Let xn ∈ A, and xn → x. We claim
that x ∈ A. This is equivalent to H(x) ∩ B 6= φ. Choose a sequence yn ∈ H(xn) ∩ B.

Since B is compact, then yn has a subsequence that converges to some y in B. With
no loss of generality we can assume that yn → y. Now, ‖xn − yn‖ ≥ ‖xn − e‖ for all
e ∈ E. Taking the limit of both sides to get ‖x− y‖ ≥ ‖x− e‖ for all e ∈ E. Hence
H(x) ∩B 6= φ. So A is a closed set. But it follow then that H ◦ f is measurable closed
valued map. Hence it has a measurable selection, g, say.

Now, ‖f(t)− g(t)‖ ≥ ‖f(t)− h(t)‖ for all h ∈ L1(I, E). Hence ‖f − g‖1 ≥ ‖f − h‖1

for all h ∈ L1(I, E), and L1(I, E) is remotal in L1(I, X). This ends the proof. �

In the following two theorems, we give a relation between remotality in L1(I, X) and
Lp(I,X) for 1 < p < ∞.

Theorem 2.11. Let E be a closed bounded subset of the Banach space X. L1(I, E)
is remotal in L1(I, X) if, and only if, Lp(I, E) is remotal in Lp(I, X), 1 < p < ∞.

Proof. Suppose that L1(I, E) is remotal in L1(I, X) and let f ∈ Lp(I, X). Since I is
of finite measure, f ∈ L1(I, X). Let g ∈ L1(I, E) be such that

‖f − g‖1 ≥ ‖f − h‖1 ∀h ∈ L1(I, E).

By Corollary 2.6,
‖f(t)− g(t)‖ ≥ ‖f(t)− y‖

for almost every t ∈ I and for all y ∈ E. In particular, if w ∈ Lp(I, E) then, for almost
every t,

‖f(t)− g(t)‖ ≥ ‖f(t)− w(t)‖.
Whence,

‖f − g‖p ≥ ‖f − w‖p ∀w ∈ Lp(I, E).

This shows that Lp(I, E) is remotal in Lp(I, X).
Now assume that Lp(I, E) is remotal in Lp(I, X) for some 1 < p < ∞. Let f ∈ L1(I, X)
and define, for n ∈ N,

En = {t ∈ I : ‖f(t)‖ ≤ n}.
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Set fn = fχEn where χEn is the characteristic function of En. Since fn is bounded and
f ∈ L1(I,X) we conclude that fn ∈ Lp(I,X). Hence, functions gn ∈ Lp(I, E) exist
such that, for each n ∈ N,

‖fn(t)− gn(t)‖ ≥ ‖fn(t)− h(t)‖,∀h ∈ L1(I, E).

Consequently,
‖fn − gn‖1 ≥ ‖fn − h‖1,∀h ∈ L1(I, E). (2.1)

It is clear that fn −→ f point-wise since fn+1 = fn on En and that ∪nEn = I. Now

‖fn+1 − gn+1‖1 =
∫

I
‖fn+1(t)− gn+1(t)‖dt

=
∫

En

‖fn+1(t)− gn+1(t)‖dt +
∫

I\En

‖fn+1(t)− gn+1(t)‖dt.

But on En, fn = fn+1. Therefore,

‖fn+1 − gn+1‖1 =
∫

En

‖fn(t)− gn+1(t)‖dt +
∫

I\En

‖fn+1(t)− gn+1(t)‖dt.

But, for almost all t ∈ En, ‖fn(t) − gn(t)‖ ≥ ‖fn(t) − gn+1(t)‖. Therefore, ‖fn(t) −
gn(t)‖ = ‖fn(t)− gn+1(t)‖ for almost all t ∈ En. Thus the gn+1 can be chosen so that
gn+1 = gn on En. Hence gn converges point-wise to some function, say g ∈ L1(I, E).
From (2.1) we see that, for almost all t ∈ I, ‖fn(t) − gn(t)‖ ≥ ‖fn(t) − h(t)‖,∀h ∈
L1(I, E). On taking the limit as n −→∞ we get, for almost all t ∈ I,

‖f(t)− g(t)‖ ≥ ‖f(t)− h(t)‖,∀h ∈ L1(I, E)

and consequently g is a farthest element in L(I, E) form f ∈ L1(I, X). This shows that
L1(I, E) is remotal in L1(I, X) and the proof is complete. �

We conclude this section with the following question:
Problem: Let E be a closed bounded set in a Banach space X such that span(E)

is reflexive. Must L1(I, E) be remotal in L1(I, X)?

2.3. Further Results.

Lemma 2.12. Let Y be any Banach space and let B[Y ] be its unit ball, then B[Y ] is
remotal in Y .

Proof. Let y ∈ Y . Put ŷ = − y
‖y‖ if y 6= 0 and 0̂ = b where b is any element with

‖b‖ = 1. It is clear that b is a farthest point in B[Y ] from 0. Now, for y 6= 0,

|y − ŷ‖ = ‖y +
y

‖y‖
‖ = 1 + ‖y‖,

but for x ∈ B[Y ] we have

‖y − x‖ ≤ ‖y‖+ ‖x‖ ≤ ‖y‖+ 1 = ‖y − ŷ‖.

That is, ŷ is a farthest point in B[Y ] from y. �

Corollary 2.13. Let Y be any Banach space and Let B′[Y ] be any ball in Y . Then
B′[Y ] is remotal in Y .
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Proof. The result follows from the more general statement which says: if E is remotal
in Y then E + y′ and rE are remotal in Y for any y′ ∈ Y and any r ∈ R. For if e ∈ E

is farthest in E from y− y′ ∈ Y then e+ y′ is a farthest element in E + y′ from y. Also,
if e ∈ E is farthest from 1

ry then re ∈ E + y′ is farthest from y. Observe that the case
r = 0 is the trivial case. �

Lemma 2.14. Let Y be a 1-summand Banach space of another Banach space X.
Then B[Y ], the unit ball of Y , is remotal in X.

Proof. Suppose that X = Y ⊕1 W so that x = y + w implies ‖x‖ = ‖y‖ + ‖w‖, here
x ∈ X, y ∈ Y and w ∈ W. If x ∈ X let y ∈ Y and w ∈ W be such that x = y + w and
let ŷ be a farthest element in B[Y ] from y. Then

‖x− ŷ‖ = ‖y − ŷ + w‖
= ‖y − ŷ‖+ ‖w‖
≥ ‖y − z‖+ ‖w‖ for all z ∈ B[Y ]
= ‖x− z‖.

Consequently, ŷ is a farthest element in B[Y ] from x = y + w. �

Lemma 2.15. Let Y be any Banach space, then L1(I, B[Y ]) is remotal in L1(I, Y ).

Proof. Let f ∈ L1(I, Y ). Define

f̂(t) =

{
−f(t)
‖f(t)‖ , f(t) 6= 0

b, f(t) = 0
,

where b is any fixed element with ‖b‖ = 1. Then f̂ ∈ L1(I,B[Y ]). Moreover, f̂(t) is a
farthest element in B[Y ] from f(t), this follows from lemma 2.12. That is

‖f(t)− f̂(t)‖ ≥ ‖f(t)− g(t)‖ for all g ∈ L1(I,B[Y ])

which means
‖f − f̂‖1 ≥ ‖f − g‖1 for all g ∈ L1(I, B[Y ]).

This completes the proof of the lemma. �

Now we are ready to prove the following result which describes some remotal sets in
functions spaces.

Theorem 2.16. Let Y be a 1-summand Banach space in a Banach space X. Then
L1(I, B[Y ]) is remotal in L1(I,X).

Proof. Let f ∈ L1(I, X), then f(t) = g(t) + h(t) where g(t) ∈ Y and h(t) ∈ W. Let
P : X −→ Y be the projection defined by P (y + w) = y. Now, g(t) = P (f(t)) and
hence, g is measurable because P is continuous. In a similar way, h is measurable.
Therefore, ‖f‖1 = ‖g‖1 + ‖h‖1, that is, g ∈ L1(I, Y ) and h ∈ L1(I,W ). Let ĝ be a
farthest element in L1(I,B[Y ]) from g. Now,

‖f − ĝ‖1 = ‖g − ĝ‖1 + ‖h‖1

≥ ‖g − r‖1 + ‖h‖1 for all r ∈ L1(I, B[Y ])
= ‖f − r‖ for all r ∈ L1(I, B[Y ])

which ends the proof. �
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