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Abstract. In this paper, we study the nonlinear singular boundary value
problem in abstract spaces:{

u′′′ + f(t, u) = θ, t ∈ (0, 1),
u(0) = u′(0) = θ, u′(1) = ξu′(η),

where 0 < η < 1 and 1 < ξ < 1
η , θ denotes the zero element of E, E is a real

Banach space, and f(t, u) is allowed to be singular at both end point t = 0 and
t = 1. We show the existence of at least two positive solutions of this problem.

1. Introduction

In this paper, we consider the following singular boundary value problem (BVP)
for third-order differential equations in a Banach space E:

u
′′′
(t) + f(t, u(t)) = θ, 0 < t < 1 (1.1)

subject to the boundary conditions

u(0) = u′(0) = θ, u′(1) = ξu′(η), (1.2)

where 0 < η < 1 and 1 < ξ < 1
η
, f ∈ C[(0, 1/2) × P, P ] which may be singular

at t = 0, t = 1; P is a cone of Banach space E, which will be stated in detail in
section 2; θ is the zero element of E.
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Boundary value problems arise from applied mathematics and physics, and
they have received a great deal of attention in the literature. Problems of the
form (1.1) subject to (1.2), for example, are used to model such phenomena as the
deflection of a curved beam having a constant or varying cross section, a three-
layer beam, electromagnetic waves or gravity driven flows and so on [1]. Third-
order boundary value problems have been studied widely in the literature (see
[1]–[12] and references therein). However, all of the above-mentioned references
consider (1.1) only in scalar space. On the other hand, the theory of ordinary
differential equations(ODE) in abstract spaces is becoming an important branch
of mathematics in last thirty years because of its application in partial differential
equations and ODE’s in appropriately infinite dimensional spaces(see, for example
[13], [14]). As a result the goal of this paper is to fill up the gap in this area, that
is, to investigate the existence of multiple positive solutions of (1.1) with (1.2) in
a Banach space E.

This paper is organized as follows. Section 2 gives some preliminaries and some
lemmas. Section 3 is devoted to the main results and the proof of the results; an
example is worked out to indicate the application of our main results.

2. Preliminaries and lemmas

In this paper, we suppose throughout that E is a real Banach space. A nonempty
closed convex subset P in E is said to be a cone which defined a partial ordering
in E by x ≤ y if and only if y − x ∈ P, P is said to be normal if there exists a
positive constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where θ denotes
the zero element of E, and the smallest N is called the normal constant of P (it
is clear, N ≥ 1). For details on cone theory, see [15]. Let S be a bounded subset
of a Banach space. α(S) denotes the Kuratowski’s measure of noncompactness
of S. In this paper, α(·) denotes the Kuratowski’s measure of noncompactness of
a bounded subset of both E and C[[0, 1], E]. Let

C[[0, 1], E] = {u : [0, 1] → E | u(t) is continuous on [0, 1]},

C2[[0, 1], E] = {u : [0, 1] → E|u(t) is second order continuously differentiable in[0, 1]},
C3[(0, 1), E] = {u : (0, 1) → E|u(t) is third order continuously differentiable in(0, 1)}.
For u = u(t) ∈ C[[0, 1], E], let ‖u‖C = max

0≤t≤1
‖u(t)‖, then C[[0, 1], E] becomes a

Banach space. Let Q = {u ∈ C[[0, 1], E] | u(t) ≥ θ, t ∈ [0, 1]}, then Q is a cone
in C[[0, 1], E]. An operator u(t) ∈ C[[0, 1], E] ∩ C3[(0, 1), E] is called a positive
solution of the BVP (1.1)–(1.2) if u(t) satisfies (1.1)–(1.2) and u ∈ Q, u(t) 6≡
θ, t ∈ [0, 1].

Lemma 2.1. [12] Let ξη 6= 1. Then for y ∈ C[[0, 1], E], the BVP:

u′′′ + y(t) = θ, t ∈ (0, 1),
u(0) = u′(0) = θ, u′(1) = ξu′(η),

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds,
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where

G(t, s) =
1

2(1− ξη)


(2ts− s2)(1− ξη) + t2s(ξ − 1), s ≤ min{η, t},

t2(1− ξη) + t2s(ξ − 1), t ≤ s ≤ η,

(2ts− s2)(1− ξη) + t2(ξη − s), η ≤ s ≤ t,

t2(1− s), max{η, t} ≤ s

(2.1)

is called the Green’s function.

Lemma 2.2. [12] Let 0 < η < 1 and 1 < ξ < 1
η
. Then for G(t, s) defined in

(2.1), we have estimates
(i) for any (t, s) ∈ [0, 1]× [0, 1], 0 ≤ G(t, s) ≤ Φ(s), where

Φ(s) =
1 + ξ

1− ξη
s(1− s).

(ii) for any (t, s) ∈ [η
ξ
, η]× [0, 1], G(t, s) ≥ γΦ(s), where

0 < γ =
η2

2ξ2(1 + ξ)
min{ξ − 1, 1} < 1.

Let us list some conditions.
(H1) f(t, u) ≤ g(t)h(u), t ∈ (0, 1), u ∈ P , where g : (0, 1) → [0,∞) is con-

tinuous, and h : P → P is continuous and maps bounded subsets to bounded
subsets.

(H2) 0 <
∫ 1

0
Φ(s)g(s)ds < ∞.

(H3) There exists a ϕ ∈ P ∗ such that u > θ implies that ϕ(u) > 0 and

m0 < lim
‖u‖→0

u∈P

inf
t∈[ η

ξ
,η]

ϕ(f(t, u))

ϕ(u)
≤ ∞,

where P ∗ = {ϕ ∈ E∗|ϕ(u) ≥ 0, u ∈ P} denotes the dual cone of P , and m0 =
( min
t∈[ η

ξ
,η]

∫ η
η
ξ
G(t, s)ds)−1.

(H4) There exists a ϕ1 ∈ P ∗ such that u > θ implies that ϕ1(u) > 0 and

m0 < lim
‖u‖→∞
u∈P

inf
t∈[ η

ξ
,η]

ϕ1(f(t, u))

ϕ1(u)
≤ ∞,

where P ∗ and m0 are the same as in (H3).
(H5) There exists a η0 > 0 such that u ∈ P, ‖u‖ ≤ η0 implies that

‖h(u)‖ < M0η0,

where M0 = (N
∫ 1

0
Φ(s)g(s)ds)−1, and N denotes the normal constant of P .

(H6) 0 ≤ lim
‖u‖→0

u∈P

‖h(u)‖
‖u‖ < M0, where M0 is as in (H5).

(H7) 0 ≤ lim
‖u‖→∞
u∈P

‖h(u)‖
‖u‖ < M0, where M0 is as in (H5).
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(H8) There exists a ϕ2 ∈ P ∗ such that u > θ implies that ϕ2(u) > 0. Then
exists a η1 > 0 such that t ∈ [η

ξ
, η], u ∈ P and γ

N
η1 ≤ ‖u‖ ≤ η1 imply

ϕ2(f(t, u)) > m0ϕ2(u),

where P ∗ and m0 are the same as in (H3).
(H9) For l > 0, [a, b] ⊂ (0, 1), f is uniformly continuous on [a, b] × (P ∩ Tl),

where Tl = {u ∈ E|‖u‖ ≤ l}, and there exists a constant L : 0 ≤ L < 1
2M1

such

that for t ∈ (0, 1) and bounded subsets D ⊂ P ,

α(f(t,D)) ≤ Lα(D) (2.2)

holds, where M1 = max
s∈[0,1]

Φ(s).

Now we define

(Au)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds, ∀ u ∈ Q, (2.3)

then (Au)(t) ≥ θ, t ∈ [0, 1], and using the Lebesgue dominated convergence
theorem we know that (Au)(t) is continuous on [0, 1], hence the integral operator
A : Q → Q. Further, we can easily show that

(i) If u ∈ Q, then (Au)′′′(t) = −f(t, u), t ∈ (0, 1), hence Au ∈ Q∩C3[(0, 1), E].
(ii) If u ∈ Q satisfies Au = u, then u is a solution of the BVP (1.1)–(1.2).
Therefore, the BVP (1.1)–(1.2) is equivalent to the operator equation Au =

u, u ∈ Q.

Lemma 2.3. [15], [16] Let D be a bounded set of E and the map f : [a, b]×D → E
be bounded. Assume that f(t, u) is uniformly continuous with respect to t. Then,
we have

α(f([a, b]× S)) = max
t∈[a,b]

α(f(t, S)), S ⊂ D.

Lemma 2.4. [15], [16] If H ⊂ C[[a, b], E] is bounded and equicontinuous, then

α(H([a, b])) = max
t∈[a,b]

α(H(t)),

where H([a, b]) = {u(t)|u ∈ H, t ∈ [a, b]}.

Lemma 2.5. Assume that (H1), (H2), (H9) hold. Then, operator A : Q∩Tl → Q
is a strict set contraction operator.

Proof. It is clear that A is a bounded and continuous operator from Q ∩ Tl into
Q. Since f(t, u) is bounded and uniformly continuous in t on [a, b] × Tl for any
l > 0, it follows from Lemma 2.3 and (2.2) that

α(f([a, b]×D)) = max
t∈[a,b]

α(f(t,D)) ≤ Lα(D), D ⊂ P ∩ Tl. (2.4)

Let S ⊂ C[[a, b], E] be bounded. We know that A(S) ⊂ C[[a, b], E] is bounded
and equicontinuous, so, by Lemma 2.4,

α(A(S)) = max
t∈[a,b]

α(A(S(t))), (2.5)
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where A(S(t)) = {(Au)(t)|u ∈ S} ⊂ E (t is fixed). Using the formula∫ 1

0

y(t)dt ∈ co{y(t)|t ∈ [0, 1]} for y ∈ C[[0, 1], E],

and observing Lemma 2.2 and (2.4), we find

α(A(S(t))) = α({
∫ 1

0

G(t, s)f(s, u(s))ds)|u ∈ S})

≤ α(co{G(t, s)f(s, u(s))|s ∈ [0, 1], u ∈ S})
≤ M1α({f(s, u(s))|s ∈ [0, 1], u ∈ S})
≤ M1α(f([0, 1]×B) ≤ M1Lα(B), t ∈ [a, b],

(2.6)

where B = {u(s)|s ∈ [0, 1], u ∈ S}. For any given ε > 0, there is a partition

S =
n⋃

j=1

Sj such that

diam(Sj) < α(S) +
ε

3
, j = 1, 2, · · · , n. (2.7)

Choosing uj ∈ Sj(j = 1, s, · · · , n) and a partition of J : a = t0 < t1 < · · · < tm =
b such that

‖uj(t)− uj(s)‖ <
ε

3
, ∀ j = 1, s, · · · , n; t, s ∈ [ti−1, ti], i = 1, 2, · · · , m. (2.8)

Obviously, B =
m⋃

i=1

n⋃
j=1

Bij, where Bij = {u(s)|s ∈ [ti−1, ti], u ∈ Sj}. For any

u(t), u(t) ∈ Bij(t, t ∈ [ti−1, ti], u, u ∈ Sj). It follows from (2.7), (2.8) that

‖u(t)− u(t)‖ ≤ ‖u(t)− uj(t)‖+ ‖uj(t)− uj(t)‖+ ‖uj(t)− u(t)‖
≤ ‖u− uj‖C + ε

3
+ ‖uj − u‖C ≤ 2diam(Sj) + ε

3
< 2α(S) + ε.

Consequently,

diam(Bij) ≤ 2α(S) + ε, ∀ i = 1, 2, · · · , m, j = 1, s, · · · , n,

and so α(B) ≤ 2α(S) + ε, which implies, since ε is arbitrary,

α(B) ≤ 2α(S). (2.9)

It follows then from (2.5), (2.6),(2.9) that α(A(S)) ≤ 2M1Lα(S), S ⊂ Q ∩ Tl

with 2M1L < 1, and the Lemma 2.5 is proved. �

We will apply the following fixed point theorem to obtain solutions of the BVP
(1.1)–(1.2).

Lemma 2.6. [16] Let E be a Banach space, K ⊂ E be a cone in E, R > r >
0, K(r, R) = {u ∈ K|r ≤ ‖u‖ ≤ R}, and let A : K(r, R) → K be a strict set
contract operator such that either

(i) Au � u, ∀ u ∈ K, ‖u‖ = r and Au � u, ∀ u ∈ K, ‖u‖ = R; or
(ii)Au � u, ∀ u ∈ K, ‖u‖ = r and Au � u, ∀ u ∈ K, ‖u‖ = R.

Then A has at least a fixed point in K(r, R).
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3. Main results

Theorem 3.1. Let P be a normal cone in E. Suppose that the conditions (H1)−
(H5) and (H9) are satisfied. Then the singular boundary value problem (1.1)–
(1.2) has at least two positive solutions.

Proof. Let

K = {u ∈ Q|u(t) ≥ γu(s), t ∈ [
η

ξ
, η], s ∈ [0, 1]},

then K is a cone in C[[0, 1], E] and satisfies K ⊂ Q.
We show that A(K) ⊂ K. In fact, for u ∈ Q, t ∈ [η

ξ
, η], by Lemma 2.2 we get

(Au)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≥ γ

∫ 1

0

Φ(s)f(s, u(s))ds

= γ(Au)(x),∀ x ∈ [0, 1].

This shows that Au ∈ K, hence A(Q) ⊂ K and naturally A(K) ⊂ K.
By (H3) there exist a r0 ∈ (0, η0) and τ1 > 0 such that u ∈ P, ‖u‖ ≤ r0 implies

ϕ(f(t, u)) ≥ (m0 + τ1)ϕ(u), t ∈ [
η

ξ
, η], (3.1)

where η0 is as in (H5). We show that

Au � u, ∀ u ∈ K, ‖u‖C = r0. (3.2)

In fact, if there exists u0 ∈ K, ‖u0‖c = r0 such that Au0 ≤ u0, then, by the
definition of K and the normality of P we have that

N‖u0(t)‖ ≥ γ‖u0(s)‖, t ∈ [
η

ξ
, η], s ∈ [0, 1],

hence ‖u0(t)‖ ≥ γ
N
‖u0‖C = γ

N
r0, t ∈ [η

ξ
, η]. Taking

λ = min{ϕ(u0(t))|t ∈ [
η

ξ
, η]},

then λ > 0. On the other hand, for t ∈ [η
ξ
, η], we have that

u0(t) ≥ (Au0)(t) ≥
∫ η

η
ξ

G(t, s)f(s, u0(s))ds,

so, by (3.1) we get, for t ∈ [η
ξ
, η],

ϕ(u0(t)) ≥
∫ η

η
ξ

G(t, s)ϕ(f(s, u0(s)))ds ≥ (m0 + τ1)

∫ η

η
ξ

G(t, s)ϕ(u0(s))ds

≥ (m0 + τ1)λ

∫ η

η
ξ

G(t, s)ds ≥ m0 + τ1

m0

λ > λ.

This is a contradiction to the definition of λ. Therefore, (3.2) holds.
By (H4) there exist R0 > 0 and τ2 > 0 such that u ∈ P, ‖u‖ ≥ R0 implies

ϕ1(f(t, u)) ≥ (m0 + τ2)ϕ1(u), t ∈ [
η

ξ
, η]. (3.3)
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Take R > max{NR0

γ
, η0}, where η0 is as in (H5), then R > η0 > r0. We show

that

Au � u, ∀ u ∈ K, ‖u‖C = R. (3.4)

In fact, if there exists u0 ∈ K, ‖u0‖C = R such that Au0 ≤ u0, then, by the
definition of K and the normality of P we have that

N‖u0(t)‖ ≥ γ‖u0(s)‖, t ∈ [
η

ξ
, η], s ∈ [0, 1].

Hence ‖u0(t)‖ ≥ γ
N
‖u0‖C = γ

N
R > R0, t ∈ [η

ξ
, η]. Taking

λ1 = min{ϕ1(u0(t))|t ∈ [
η

ξ
, η]},

then λ1 > 0. On the other hand, for t ∈ [η
ξ
, η], we have that

u0(t) ≥ (Au0)(t) ≥
∫ η

η
ξ

G(t, s)f(s, u0(s))ds,

so, by (3.3) we get, for t ∈ [η
ξ
, η],

ϕ1(u0(t)) ≥
∫ η

η
ξ

G(t, s)ϕ1(f(s, u0(s)))ds ≥ (m0 + τ2)

∫ η

η
ξ

G(t, s)ϕ1(u0(s))ds

≥ (m0 + τ2)λ1

∫ η

η
ξ

G(t, s)ds ≥ m0 + τ2

m0

λ1 > λ1.

This is a contradiction to the definition of λ1. Therefore, (3.4) holds.
Now, we show that

Au � u, ∀ u ∈ Q, ‖u‖C = η0. (3.5)

In fact, if there exists u0 ∈ Q, ‖u0‖C = η0 such that Au0 ≥ u0, then, by Lemma
2.2 and (H1) we know that

u0(t) ≤ (Au0)(t) =

∫ 1

0

G(t, s)f(s, u0(s))ds

≤
∫ 1

0

Φ(s)g(s)h(u0(s))ds, t ∈ [0, 1].

Hence, it follows from the normality of P and (H5) that

‖u0(t)‖ ≤ N

∫ 1

0

Φ(s)g(s)‖h(u0(s))‖ds

≤ NM0η0

∫ 1

0

Φ(s)g(s)ds, t ∈ [0, 1].

Therefore, η0 = ‖u0‖C < η0M0N
∫ 1

0
Φ(s)g(s)ds = η0, which is a contradiction.

Thus (3.5) holds.
By (3.2), (3.5), Lemmas 2.5 and 2.6 we know that the operator A has at least

one fixed point u1 in K(r0, η0) = {u ∈ K|r0 ≤ ‖u‖C ≤ η0}. Similarly, by (3.5),
(3.4), Lemmas 2.5 and 2.6 we know that A has at least one fixed point u2 in
K(η0, R) = {u ∈ K|η0 ≤ ‖u‖C ≤ R}. Thus, the BVP (1.1)–(1.2) has at least two
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positive solutions u1(t) and u2(t) which satisfy 0 < ‖u1‖C < ‖u2‖C . Theorem 3.1
is proved. �

Theorem 3.2. Let P be a normal cone in E. Suppose that the conditions
(H1), (H2) and (H6) − (H9) are satisfied. Then the singular boundary value
problem (1.1)–(1.2) has at least two positive solutions.

Proof. The proof is similar to Theorem 3.1. �

Example 3.3. Consider the following one dimensional singular boundary value
problem {

u′′′(t) + u2

2(1−t)
3
2

+
√

u

16t
3
2 (1−t)

3
2

= 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = 2u′(1
4
).

(3.6)

Conclusion. The BVP (3.6) possesses at least two positive solutions u1(t) and
u2(t) which satisfy ui(t) > 0, t ∈ (0, 1), i = 1, 2.

Proof. Let E = R1, P = [0,∞), then P is a normal cone in E. Hence

f(t, u) =
u2

2(1− t)
3
2

+

√
u

16t
3
2 (1− t)

3
2

,

f : (0, 1)× P → P is continuous, the Green’s function satisfies G(t, s) ≤ Φ(s) =
6s(1− s), (t, s) ∈ [0, 1]× [0, 1].

It is clear that f(t, u) ≤ g(t)h(u), where g(t) = 1

t
3
2 (1−t)

3
2
, h(u) = u2

2
+

√
u

16
, and

∫ 1

0

Φ(s)g(s)ds =

∫ 1

0

6√
s(1− s)

ds = 6π.

Hence, (H1) and (H2) are satisfied. Taking η = 1
4
, ξ = 2, and ϕ ∈ P ∗, ϕ(u) = u,

we have that

lim
u→0+

inf
t∈[ 1

8
, 1
4
]

ϕ(f(t, u))

ϕ(u)
= lim

u→0+
inf

t∈[ 1
8
, 1
4
]

( u

2(1− t)
3
2

+
1

16t
3
2 (1− t)

3
2
√

u

)
= ∞,

and

lim
u→∞

inf
t∈[ 1

8
, 1
4
]

ϕ(f(t, u))

ϕ(u)
= lim

u→∞
inf

t∈[ 1
8
, 1
4
]

( u

2(1− t)
3
2

+
1

16t
3
2 (1− t)

3
2
√

u

)
= ∞.

Hence, (H3) and (H4) are satisfied. Moreover, since N = 1 (the normal constant

of P ) and M0 = (N
∫ 1

0
Φ(s)g(s)ds)−1 = 1

6
(π)−1, for η0 = 3

2
, it can follows easily

that (H9) is satisfied. By Theorem 3.1, our conclusion follows. �
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