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GEOMETRIC AND HIGHER ORDER LOGIC
IN TERMS OF ABSTRACT STONE DUALITY

PAUL TAYLOR
Transmitted by Robert Rosebrugh

ABSTRACT. The contravariant powerset, and its generalisations ΣX to the lattices of
open subsets of a locally compact topological space and of recursively enumerable subsets
of numbers, satisfy the Euclidean principle that φ ∧ F (φ) = φ ∧ F (�).
Conversely, when the adjunction Σ(−) � Σ(−) is monadic, this equation implies that Σ
classifies some class of monos, and the Frobenius law ∃x.(φ(x)∧ψ) = (∃x.φ(x))∧ψ) for
the existential quantifier.
In topology, the lattice duals of these equations also hold, and are related to the Phoa
principle in synthetic domain theory.
The natural definitions of discrete and Hausdorff spaces correspond to equality and
inequality, whilst the quantifiers considered as adjoints characterise open (or, as we call
them, overt) and compact spaces. Our treatment of overt discrete spaces and open maps
is precisely dual to that of compact Hausdorff spaces and proper maps.
The category of overt discrete spaces forms a pretopos and the paper concludes with
a converse of Paré’s theorem (that the contravariant powerset functor is monadic) that
characterises elementary toposes by means of the monadic and Euclidean properties
together with all quantifiers, making no reference to subsets.

1. Introduction

The powerset construction was the force behind set theory as Zermelo formulated it in
1908, but higher order logic became the poor relation of foundational studies owing to
the emphasis on the completeness theorem in model theory. In this paper the powerset
plays the leading role, and we derive the first order connectives from it in a novel way.
The collection of all subsets is also treated in the same way as the collections of open
and recursively enumerable subsets in topology and recursion theory. The underlying
formulation in which we do this is a category with a “truth values” object Σ for which
the adjunction Σ(−) � Σ(−) is monadic. Paré proved in 1974 that any elementary topos
has this property, and we show elsewhere1 that the category LKLoc of locally compact
locales has it too, explaining how this is an abstraction of Stone duality.
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Gentzen’s natural deduction was the first principled treatment of the logical connec-
tives, and Per Martin-Löf used the Curry–Howard isomorphism to extend it in a principled
way to type constructors [ML84]. However, the natural conclusion of such an approach is
to say that the existential quantifier is the same as the dependent sum, i.e. that a proof
of ∃x. φ(x) must always provide a witness : a particular a for which φ(a) holds.

This conflicts with geometrical usage, in which we may say that the Möbius band has
two edges, or a complex number two square roots, locally but not globally, i.e. there exists
an isomorphism between 2 = 1 + 1 and the set of edges or roots on some open subspace
[Tay99, §2.4]. Similarly, interprovable propositions are, for Martin-Löf’s followers, iso-
morphic types, not equal ones, and their account of the powerset is a bureaucratic one: a
structure within which to record the histories of formation and proof of the proposition–
types [op. cit., §9.5].

The way in which category theory defines the powerset is not, perhaps, based so firmly
on a logical creed as is Martin-Löf type theory, in that it describes provability rather than
proof, but it was at least designed for the intuitions of geometry and symmetry. This
notion — the subobject classifier in an elementary topos, which is readily generalised to
the classifier Σ for open subsets (the Sierpiński space) and recursively enumerable ones
— then obeys the curious equation

φ ∧ F (φ) = φ ∧ F (�) for all φ ∈ Σ and F : Σ→ Σ,

which we call the Euclidean principle. The Frobenius law, which is part of the cat-
egorical formulation of the (geometrical) existential quantifier, is an automatic corollary
of the Euclidean principle. From this we develop the connectives of first order categorical
logic, in particular stable effective quotients of equivalence relations.

Whilst set theory and topology have common historical roots [Hau14], the motivation
for a common treatment of the kind that we envisage is Stone’s dictum that we should
“always topologise” mathematical objects, even though they may have been introduced
entirely in terms of discrete ideas [Joh82, Introduction]. For example, the automorphisms
of the algebraic closure of Q form, not an infinite discrete (Galois) group, but a compact
topological group. Similarly, the powerset of even a discrete set is not itself a discrete
set, but a non-Hausdorff topological lattice. (Vickers has taken the same motivation in
a different direction [Vic99].)

The types in our logic are therefore to be spaces. The topological structure is an
indissoluble part of what it is to be a space: it is not a set of points together with a
topology, any more than chipboard (which is made of sawdust and glue) is wood.

When we bring (not necessarily Martin-Löf) type theory together with categorical logic
[Tay99], logical notions such as the quantifiers acquire meanings in categories other than
Set. In particular, with the internal lattice ΣX in place of the powerset of X, the internal
adjunctions ∃X � Σ! � ∀X , where they exist, suggest interpretations of the quantifiers.
We shall find that they obey the usual logical rules, but in the topological setting they
also say that the space X is respectively overt (a word that we propose to replace one of
the meanings of open) or compact.
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It is well known that the recursively enumerable subsets of N almost form a topology,
since we may form finite intersections and certain infinitary unions of “open” subsets.
However, the unification of topology with recursion theory, i.e. making precise Dana
Scott’s thesis that continuity approximates the notion of computability, involves a revo-
lutionary change, because the classical axiomatisation of (the frame of open subsets of) a
topological space demands that we may form arbitrary unions.

The usual procedure for turning a base (something, like this “topology” on N, that
partially satisfies the axioms for a topological space) into a topology would make every
subset of N open, losing all recursive information. In particular, in topology an open
subspace is glued to its closed complement by means of a comma square construction due
to Artin, but this doesn’t work for recursively enumerable subsets and their complements
[Tay00].

Although they are in many respects more constructive, the modern re-axiomatisations
of topology in terms of open subsets — the theory of frames or locales [Joh82] that
came out of topos theory [Joh77], and Sambin’s formal topology [Sam87] motivated by
Martin-Löf type theory — have exactly the same fault as Bourbaki’s [Bou66].

The finite meets and joins in the theory of frames present no problem, so what we
need is a new way of handling the “purely infinitary” directed joins. Here we use an
idea to which Scott’s name has become firmly attached (though it goes back to the Rice–
Shapiro and Myhill–Shepherdson theorems of 1955), that directed joins define a topology.
However, we turn this idea on its head: by treating frames, not as infinitary algebras over
Set, but as finitary ones over Sp (i.e. as topological lattices, cf. topological groups) we
can use topology in place of the troublesome directed joins, whenever they are genuinely
needed. (Nevertheless, substantial re-working of general topology is needed to eliminate
the use of interiors, Heyting implication, direct images, nuclei and injectivity.)

We do this by postulating that, for the category C of spaces, the adjunction

Cop

C

Σ(−)

✻

� Σ(−)

❄

be monadic, i.e. Cop is equivalent to the category of Eilenberg–Moore algebras and homo-
morphisms over C. In practice, this is used in the form of Beck’s theorem about U -split
coequalisers. The way in which this expresses both Stone duality and the axiom of com-
prehension is explored in [Tay01a]. The concrete topological model of this situation is the
category of locally compact spaces (or locales) and continuous maps.

But this category does not have all equalisers, pullbacks and coequalisers. The impact
of this on logic is that we must also reconsider the notions of equality and inequality,
which we define by saying that the diagonal subspace is respectively open or closed,
i.e. that the space is discrete or Hausdorff.

Computational considerations also urge such a point of view. Two data structuresmay
represent the same thing in some ethereal mathematical sense, for example in that they
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encode functions that produce the same result for every possible input value. However,
as we are unable to test them against every input, such an equality may be outside our
mortal grasp. A similar argument applies to inequality or distinguishing between the
two data structures, in particular real numbers. Equality and inequality, therefore, are
additional structure that a space may or may not possess.

Now that equality is no longer to be taken for granted as has traditionally been done
in pure mathematics, there are repercussions for category theory. Specifically, Freyd’s
unification of products, kernels and projective limits into the single notion of limit in
a category [Fre66b] breaks down, because the non-discrete types of diagram depend on
equality. This entails a root-and-branch revision of categorical logic, which has tradition-
ally relied very heavily on the universal availability of pullbacks. In fact, most of this
work has already been done in categorical type theory [Tay99, Chapters VIII and IX].

The duality between equality and inequality (which also relates conjunction to dis-
junction and universal to existential quantification) is the characteristic feature of clas-
sical logic: for all its other merits, intuitionistic logic loses it. However, we find that it
reappears in topology and recursion: for everything that we have to say in this paper
about conjunction, equality, existential quantification, open subsets and overt spaces, we
find exactly analogous results for disjunction, inequality, universal quantification, closed
sets and compact spaces.

This symmetry is a constructive theorem (for LKLoc): as a result of Scott continuity,
the Euclidean principle implies its lattice dual. Together with monotonicity (the finitary
part of Scott continuity), the two Euclidean principles amount to the Phoa principle
that has arisen in synthetic domain theory. These are also theorems in the free
model of the other axioms. In view of their novelty and unusual form, connections to the
Markov principle and several other things have deliberately been left as loose ends.

Whilst Scott continuity is obviously an important motivating principle, the Phoa prin-
ciple alone has been enough to develop quite a lot of general topology, keeping the open–
closed symmetry a precise one so far.

In particular we have a completely symmetrical treatment of open and proper maps,
including the dual Frobenius law identified by Vermeullen. Currently it only deals with in-
clusions and product projections, but the analogue and lattice dual of Joyal and Tierney’s
“linear algebra” for locales will be developed in future work.

The topics in general topology that we discuss in the body of the paper converge on a
treatment of overt discrete spaces (classically, these are sets with the discrete topology),
showing that they form a pretopos. That is, they admit cartesian products, disjoint
unions, quotients of equivalence relations and relational algebra.

The whole of the paper therefore concerns the logic of the category of sets, even though
much of it is written in topological language: what we say about the subcategory of overt
discrete spaces is immediately applicable to the whole category when this is Set or an
elementary topos. In this sense, we have a new account of some of the early work on
elementary toposes, in particular that they satisfy Giraud’s axioms, i.e. that any topos is
also what we now call a pretopos.



Theory and Applications of Categories, Vol. 7, No. 15 288

The distinction between topology and set theory turns out, therefore, to be measured
by the strength of the quantifiers that they admit. The paper concludes with a new
characterisation of elementary toposes based, like Paré’s theorem, on monadicity of the
contravariant powerset, but which makes no reference whatever to subsets.

2. Support classifiers

We begin with the way in which powersets are defined in topos theory, i.e. using the
subobject classifier (Section 11) and exponentials, but expressed in a slightly more flexible
way. We may arrive at the same definitions from type-theoretic considerations [Tay99,
§9.5], although the uniqueness of the characteristic map φ is a moot point in that discipline
— it is essential to this paper.

The subobject classifier was originally defined by Bill Lawvere in 1969, and the basic
theory of elementary toposes was developed in collaboration with Myles Tierney during
the following year [Law71, Law00]. Giuseppe Rosolini generalised the definition to classes
of supports [Ros86], and developed a theory of partial maps [RR88], but the Frobenius
law (Propositions 3.11, 8.2 and 10.13) is also required for relational algebra.

2.1. Definition. A class M of morphisms (written ↪→) of any category C, such that
(a) all isomorphisms are in M,

(b) all M-maps are mono, so i ∈M must satisfy i ◦ a = i ◦ b⇒ a = b,

(c) if i : X ↪→ Y and j : Y ↪→ Z are in M then so is j ◦ i, and
V .....................✲ U

Y

f ∗i

❄

∩................ f ✲ X

i

❄

∩

(d) if i : U ↪→ X is in M and f : Y → X is any map in C then the pullback f ∗i : V ↪→ Y
exists in C and belongs to M,

is called a class of supports or a dominion.

2.2. Definition. AnM-map � : 1 → Σ is called a support classifier or a dominance
(forM) if for everyM-map i : U ↪→ X there is a unique characteristic map φ : X → Σ
making the square a pullback:

U
! ✲ 1

X

i

❄

∩

.....................
φ

✲ Σ

�
❄
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Set-theoretically, U is obtained from φ as {x : X | φ[x]} by the axiom of comprehension
(separation or subset-selection), though we shall find the abbreviation [φ] ↪→ X convenient
here. Because of the topological intuition we call i : U ↪→ X (the inclusion of) an open
subset. (We shall write � ✲ for closed subsets and � for Σ-split ones.)

Notice that this pullback is also an equaliser U ⊂ i✲ X
�✲
φ
✲ Σ.

The relationship between the axiom of comprehension and the monadic ideas of this
paper is explored in [Tay01a], which also sets out the λ-calculus that we need in a more
explicitly symbolic fashion.

2.3. Remark. This classification property deals only with a single subobject of (or
predicate on) X, but in practice we need to consider Γ-indexed families of subobjects, or
predicates containing parameters �z whose types form the context Γ. These may equiva-
lently be seen as binary relations Γ↽⇀ X or as subobjects of Γ×X, which are classified by
maps Γ×X → Σ. We would like these to be given by maps from Γ, i.e. by generalised el-
ements of the internal object of maps X → Σ. Hence we want to use the exponential ΣX .
In Set, this is the same as the powerset P(X). To summarise, there is a correspondence
amongst

i�z : U�z ↪→ X, φ�z[x], φ : Γ×X → Σ, φ̃ : Γ→ ΣX ≡ P(X)

where φ̃(�z ) is the subset U�z for (�z ) ∈ Γ.

2.4. Remark. We do not intend C to be cartesian closed, because this does not follow
from our axioms, and we want to use the category of locally compact spaces as an example.
Recall that to say that the exponential Y X exists in a category C (as a property of these
objects individually) means that the functor C(− × X,Y ) : Cop → Set is representable,
i.e. it is naturally isomorphic to C(−, Z) for some object Z, which we rename Z = Y X .
For this to be meaningful, all binary products Γ×X must first exist in C.

Notice that we ask for exponentials of the form Y X for all X and fixed Y , whereas
the word exponentiability refers to a property of a particular object X for arbitrary Y .
Peter Freyd [FS90] has used the word baseable for the property that we require of Σ,
but recognising the meaning of that word out of context depends on already knowing
its association with exponents, whereas exponentiating suggests its own meaning more
readily. (The word exponent seems to have come from the French exposant [Bar88].)

2.5. Remark. We shall make use of the λ-calculus to define morphisms to and from
exponentials such as these. However, since we are only assuming the existence of ΣX ,
and not cartesian closure, the body of any λ-expression that we use must be of type Σ, or
some other provably exponentiating object, such as a retract of ΣY . The range, i.e. the
type of the bound variable, is arbitrary (cf. Definition 7.7).

We leave it to the reader, making use of some account of λ-calculus and cartesian
closed categories such as [Tay99, §4.7], to rewrite juxtapositions like φ(fy) categorically
in terms of evaluation (ev : ΣX ×X → Σ), and λ-abstractions as adjoint transpositions.
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When we write x ∈ X, φ ∈ ΣX etc., we mean generalised elements, i.e. C-morphisms
x : Γ→ X and φ : Γ→ ΣX , or expressions of type X or ΣX involving parameters whose
types form an unspecified context Γ; to make Γ explicit in our categorical expressions often
involves forming products of various objects with Γ. On the other hand, when we write
f : X → Y , it is sufficient for our purposes to regard this as a particular C-morphism,
i.e. a global element of its hom-set, though in most cases parametrisation is possible by
reading f as a morphism Γ×X → Y . At first we need to make the parametrising object
explicit (calling it X), as we are considering a new logical principle, but from Section 6 it
will slip into the background.

Symbolically, our λ-calculus is peculiar only in that there is a restriction on the appli-
cability of the (→)-formation rule; such a calculus has been set out by Henk Barendregt
[Bar92, §5.2], although this is vastly more complicated than we actually need here. We
shall instead adopt a much simpler notational convention: lower case Greek letters, capital
italics, Σ(−) ≡ (−)∗ and the logical connectives and quantifiers denote terms of exponen-
tiating type (predicates), whilst lower case italics denote terms of non-exponentiating
type (individuals and functions). The capital italics could be thought of as “generalised
quantifiers”.

The objects, unlike the morphisms, are never parametric in this paper (except in
Proposition 5.4).

2.6. Remark. As exponentials are defined by a universal property, the assignment
X �→ ΣX extends to a contravariant endofunctor, Σ(−) : C → Cop. It takes f : Y → X to

Σf : ΣX → ΣY by Σf (φ) = φ ◦ f = f ; φ = λy. φ(fy).

The effect of Σf is to form the pullback or inverse image along f :

V .....................✲ U ✲ 1

Y
❄

∩................ f ✲ X
❄

∩

φ ✲ Σ

�
❄

2.7. Remark. Returning to the powerset, we write SubM(X) for the collection of isomor-
phism classes of M-maps into X ∈ ob C. Then Definition 2.2 says that the contravariant
functor SubM : Cop → Set is representable, i.e. that it is naturally isomorphic to C(−,Σ)
for some object Σ. As a special case of the conditions onM, the pullback (intersection) of
any twoM-maps into X exists, and the composite across the pullback square is inM, so
SubM(X) is a semilattice. In fact, SubM(−) is a presheaf of semilattices on the category
C, so C(−,Σ) is an internal semilattice in the topos of presheaves [Fre66a]. Since the
Yoneda embedding is full and faithful and preserves products, Σ was already an internal
semilattice in C.
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It is well known that this argument makes unnecessary use of the category of sets,
which it is the whole point of this paper to avoid (there are also size conditions on C),
although we may suppose instead that C is an internal category in some pretopos. How-
ever, it is not difficult to disentangle this result from the sheaf theory and prove it directly
instead. (The details of this proof would be a useful exercise in diagram-chasing for new
students of category theory.)

2.8. Proposition. Any dominance Σ carries a ∧-semilattice structure, and pullback
along {�} ↪→ Σ induces an external semilattice isomorphism [ ] : C(X,Σ)→ SubM(X).

Σ× Σ× Σ
id× ∧ ✲ Σ× Σ Σ× Σ

tw ✲ Σ× Σ

❅
❅

❅
❅∧ ❘ ✠�

�
�

�

∧
Σ× Σ

∧ × id

❄ ∧ ✲ Σ

∧
❄

Σ

Σ× Σ Σ

�
�

�
�

(�, id) ✒ 	❅
❅

❅
❅

(id,�)
✠�

�
�

�
∆

❅
❅

❅
❅

id

❘

Σ
id ✲ Σ

∧
❄

✛ id
Σ Σ× Σ

∧ ✲ Σ

Moreover, each ΣX is an internal ∧-semilattice and each Σf is a semilattice homomor-
phism. (We shall consider the existence and preservation of joins in Section 9.)

1 ✲ 1

1 ✛ Σ

�
❄

∩

Σ

�
❄

✛ π1
Σ× Σ

id×�
❄

∩

∧ ✲ Σ

�

❄

U ∩ V ⊂ ✲ U 1

❅
❅❘ ✠�

� ❅
❅❘

✏✏✏✏✏ ✏✏✏✏✏✶

1 ✲

∩

Σ

�
�✒

�
�ψ✒

V
❄

∩

⊂ ✲ X
❄
............ ...........

φ ∧ ψ
✲ Σ

❄

❅
❅❘ ✠�

�φ ❅
❅❘ �

�
∧
✒

Σ
❄

✲ Σ× Σ
❄

Proof. The fifth diagram defines ∧ as sequential and in terms of composition in M;
manipulation of the pullbacks in the sixth establishes the relationship with intersection.
By construing the monos {〈�,�〉} ↪→ Σ×Σ and {〈�,�,�〉} ↪→ Σ×Σ×Σ as pullbacks in
various ways, the semilattice laws follow from the uniqueness of their characteristic maps.
These laws are expressed by the four commutative diagrams above involving products,
i.e. Σ is an internal semilattice. Moreover, ΣX is also an internal semilattice because
the functor (−)X (that is defined for powers of Σ and all maps between them) preserves
products and these commutative diagrams. Similarly, Σf is a homomorphism because
(−)f is a natural transformation.



Theory and Applications of Categories, Vol. 7, No. 15 292

2.9. Remark. In the next section we give a new characterisation of support classifiers as
semilattices satisfying a further equation (the Euclidean principle), rather than by means
of a class of supports. This characterisation depends on another hypothesis, that the
adjunction

Σ(−) � Σ(−)

(which is defined for any exponentiating object Σ) be monadic. The way in which this
hypothesis is an abstract form of Stone duality is explored in [Tay01a]. In many cases
the category C that first comes to mind does not have the monadic property, but that
paper will construct the monadic completion C of any category C with an exponentiating
object Σ. In fact C is the opposite of the category A of Eilenberg–Moore algebras for the
monad.

Ultimately our interest is in developing some mathematics according to a new system
of axioms, i.e. in the free model (Remark 3.8, Theorem 4.2), but first we introduce the
concrete situations on which the intuitions are based. They and Example 4.5 also provide
examples and counterexamples to gauge the force of the Euclidean and monadic principles.
Even when C is not monadic, its properties are usually close enough to our requirements
to throw light on the concepts, without shifting attention to the more complicated C.
2.10. Examples.
(a) Let C be Set or any elementary topos, and Σ = Ω its subobject classifier, which is

an internal Heyting algebra; classically, it is the two-element set. So ΣX = P(X) is
the powerset of X andM consists of all monos: 1–1 functions or (up to isomorphism)
subset inclusions. All objects are compact, overt and discrete in the sense of Sections
6–8. Section 11 proves Paré’s theorem, that the adjunction Σ(−) � Σ(−) is monadic.

(b) Let C be any topos and Σ = Ωj be defined by some Lawvere–Tierney topology j, so
M consists of the j-closed monos [LR75] [Joh77, Chapter 3] [BW85, §6.1]. The full
subcategory Ej of j-sheaves is reflective in E , and the sheaves are the replete objects
[BR98]. Restricted to Ej, the adjunction is monadic, and Ej is the monadic completion
of E .

2.11. Examples.
(a) Let Σ be the Sierpiński space, which, classically, has one open and one closed point;

the open point classifies the class M of open inclusions. Then the lattice of open
subsets of any topological space X, itself equipped with the Scott topology, has the
universal property of the exponential ΣX so long as we restrict attention to the cate-
gory C of locally compact sober spaces (LKSp) or locales (LKLoc) and continuous
maps [Joh82, §VII 4.7ff]. In this case the topology is a continuous lattice [GHK+80].
A function between such lattices is a morphism in the category, i.e. it is continuous
with respect to this (Scott) topology, iff it preserves directed joins [Joh82, Proposition
II 1.10].

With excluded middle, all objects are overt, but (unlike Set) LKSp and LKLoc are
not cartesian closed, complete or cocomplete. For LKLoc, the adjunction Σ(−) � Σ(−)

is monadic [Tay01a], as it is for LKSp, assuming the axiom of choice.
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(b) Let C be the category Cont of continuous lattices and functions that preserve directed
joins, and Σ be the Sierpiński space; then ΣX is the lattice of Scott-open subsets of X.
In this case Σ(−) is not monadic, but LKLoc is its monadic completion (C). As Cont
is cartesian closed but LKLoc is not, this shows that the construction of C from C in
[Tay01a] does not preserve cartesian closure. For trivial reasons, all objects are overt
and compact.

(c) In these examples we may instead take M to be the class of inclusions of closed
subsets, except that now the closed point ⊥ of the Sierpiński space performs the role
of � in Definition 2.2 (Corollary 5.5ff).

It is by regarding (locally compact) frames as finitary algebras over the category of spaces
(in which directed joins are “part of the wall-paper”), rather than as infinitary ones over
the category of sets, that we achieve complete open–closed duality for the ideas discussed
in this paper.

2.12. Examples.
(a) Let C be Pos and Υ the subobject classifier (regarded classically as the poset ⊥ ≤ �),

so ΥX is the lattice of upper sets, cf. the notation for the Alexandroff topology in
[Joh82, §II 1.8]. C is cartesian closed and has equalisers and coequalisers. Although
C → C is (classically) full and faithful, the real unit interval [0, 1] is an algebra that is
not the lattice of upper sets of any poset [FW90, Example 9].

(b) The algebras for the monad are completely distributive lattices, but the intuitionis-
tic definition of the latter is itself a research issue [FW90], so we assume excluded
middle in our discussion of this example. Nevertheless, Francisco Marmolejo, Robert
Rosebrugh and Richard Wood have shown that the opposite of the category of con-
structively completely distributive lattices is monadic [MRW01]. Classically, this cat-
egory is equivalent to the category of continuous dcpos and essential Scott-continuous
maps, i.e. those for which the inverse image preserves arbitrary meets as well as joins
[Joh82, §VII.2]. All objects are overt and compact, whilst Set is embedded as the full
subcategory of discrete objects (Example 6.14).

In any given category, there may be many classesM of supports, each class possibly being
classified by some object ΣM.

2.13. Remark. Many of the ideas in this paper evolved from synthetic domain theory,
a model of which is a topos (with a classifier Ω for all monos) that also has a classifier Σ
for recursively enumerable subsets [Ros86, Pho90a, Pho90b, Hyl91, Tay91, FR97, BR98].
In this case, Σ is a subsemilattice of Ω. Such models exist wherein the full subcategory of
replete objects satisfies the monadicity property discussed in this paper for Σ, in addition
to that for the whole category for Ω [RT97].

A distilled account of repleteness and other terminology from synthetic domain theory
that is relevant to abstract Stone duality will be given in [Tay01a].
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3. The Euclidean principle

We now give a new characterisation of dominances in terms of the object Σ (and its
powers) alone, without any reference to subsets. These are supplied by the monadic
assumption, which therefore somehow plays the role of the axiom of comprehension. (This
role is formalised in [Tay01a].)

3.1. Proposition. In any dominance Σ, the Euclidean principle

φ(x) ∧ F(
x, φ(x)

)
= φ(x) ∧ F (x,�)

holds for all φ : X → Σ and F : X × Σ→ Σ.

✲ [φ] ∩ [F�] ⊂ ✲ [F�] ✲ 1

[φ]
❄

∩

⊂ ✲ X
❄

∩

(id,�)✲
(id, φ)

✲ X × Σ
F ✲ Σ

�
❄

∩

∼=

✲ [φ] ∩ [Fφ]
∪

✻

⊂ ✲ [Fφ]
∪

✻

✲ 1

�
∪

✻

Proof. The composites [φ] ↪→ X ⇒ X × Σ → Σ are equal by the construction of
[φ] ↪→ X, so their pullbacks [φ] ∩ [F�] and [φ] ∩ [Fφ] along � are isomorphic, i.e. equal
as subobjects of [φ], and so of X. Since [ ] : C(X,Σ) → SubM(X) preserves ∩, these
subobjects are [φ ∧ F�] and [φ ∧ Fφ] respectively. But then, by the uniqueness of the
characteristic map, the equation holds.

Another construction that we can do with a dominance will turn out to be the exis-
tential quantifier.

3.2. Lemma. Using Definition 2.2, let i : U ↪→ X be the mono classified by φ : X → Σ.
Then the idempotent (−) ∧ φ on ΣX splits into a homomorphism Σi and another map
E : ΣU � ΣX with Σi · E = idΣU and E · Σi = (−) ∧ φ : ΣX → ΣX .

W ✲ V ✲ 1============== 1

U × ΣX
❄

∩

id× Σi✲ U × ΣU
❄

∩

evU ✲ Σ

�
❄













id

�
X × ΣX

i× id

❄

∩

id× Σi✲ X × ΣU

i× id

❄

∩

Ẽ ✲ Σ

�

❄
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Proof. Let V and W be the middle and left pullbacks in the top row, and let Ẽ be
the classifying map for V ↪→ X × ΣU , so the big square is also a pullback.

Now consider how V ↪→ U×ΣU is classified by maps targeted at the lower right corner.
One classifier is id ◦ evU . However, whilst V was defined as the pullback of Ẽ against �,
it is also the pullback of the composite Ẽ ◦ (i× id) against �, where the relevant triangle
commutes because i× id is mono. Hence Ẽ ◦ (i× id) also classifies V . By uniqueness, the
trapezium commutes, and the exponential transposes are Σi · E = id.

The composite along the bottom is the transpose of E ·Σi. The lower left square is a
pullback, so the whole diagram is a pullback and W is {(x, ψ) ∈ X × ΣX | (EΣiψ)(x)}.
However, using the smaller pullback rectangle, it is {(x, ψ) | x ∈ U ∧ ψ(x)}, where (x ∈ U)
means φ(x). Again by uniqueness of (pullbacks and) the classifier, these are equal, so
E · Σi = (−) ∧ φ.

The significance of the Euclidean principle and the map E is that they provide an
example of the condition in the theorem of Jon Beck that characterises up to equivalence
the adjunction between the free algebra and underlying set functors for the category of
algebras of a monad [Mac71, §IV 7] [BW85, §3.3] [Tay99, §7.5]. Although the public
objective of the theory of monads is as a way of handling infinitary algebra, this condition
will turn out to be more important in Abstract Stone Duality than the notion of algebra.

3.3. Lemma. Let Σ be an exponentiating semilattice that satisfies the Euclidean principle
(i.e. the conclusion of Proposition 3.1). Then the parallel pair (u, v) in the middle of that
diagram,

U = [φ] ⊂...........................................
i

✲ X
⊂ u : x �→ 〈x,�〉 ✲

v : x �→ 〈x, φ(x)〉
✲ X × Σ

ΣU
✛✛.....................

Σi
........................
�✲........................
E
.......................✲ ΣX

J : ψ �→ λxσ. σ ∧ ψx✲ ΣX×Σ

is Σ-split in the sense that there is a map J as shown such that

(Jψ)(ux) = ψ(x) and J(F ◦ u)(vx) = J(F ◦ v)(vx)

for all x ∈ X, ψ ∈ ΣX and F ∈ ΣX×Σ. (We just mark u with a hook as a reminder that
these equations are not symmetrical in u and v.)

Proof. For ψ ∈ ΣX , we have (Jψ)(ux) = �∧ψ(x) = ψ(x) and (Jψ)(vx) = φ(x)∧ψ(x).
Hence J(F ◦ u)(vx) = φ(x) ∧ F (x,�) and J(F ◦ v)(vx) = φ(x) ∧ F(

x, φ(x)
)
, which are

equal by the Euclidean principle.
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3.4. Remark. The map E defined in Lemma 3.2 is the fifth one needed (together with
Σu and Σv) to make the lower diagram in Lemma 3.3 a split coequaliser.

idΣU = Σi · E E · Σi = (−) ∧ φ = Σv · J.

3.5. Remark. Since Σ is a semilattice, it carries an internal order relation. Some
morphisms are monotone with respect to this order, but others may not be. The order
also extends pointwise to an order on morphisms between (retracts of) powers of Σ. We
shall discuss monotonicity, and some other ways of defining order relations, in Section 5.

The order also allows us to talk of such morphisms as being adjoint, L � R.
When the definition of adjunction is formulated as the solution of a universal property,

the adjoint is automatically a functor. However, the definition that is most useful to us
is the one that uses the internal order relation and the structure of the category directly,
namely

id ≤ R · L L ·R ≤ id,

which does not itself force E to be monotone. So we say so, even though we have no
intention of considering non-monotone adjunctions. This point is significant in Lemma 3.7
in particular. To repeat Proposition 2.8,

3.6. Lemma. For any object Z, the functor (−)Z (defined on the full subcategory of
retracts of powers of an exponentiating semilattice Σ) preserves the semilattice structure,
and hence the order (i.e. it is monotone or order-enriched) and adjointness (LZ � RZ).

3.7. Lemma. Let P : A → S be a homomorphism between internal semilattices and
E : S → A another morphism such that idS = P · E. Then
(a) E · P = (−) ∧ φ for some φ : 1 → A iff

(b)E is monotone and satisfies the Frobenius law,

E(χ) ∧ ψ = E(χ ∧ Pψ) for all χ ∈ S, ψ ∈ A.

In this case, E preserves binary ∧, so it is monotone, and E � P . Since the semilattice
orders are antisymmetric, adjoints are unique, so each of P , E and φ uniquely determines
the other two. (See Definition 10.4 for when E preserves �.)
Proof. [a⇒b] E(χ) ∧ ψ = E · P · E(χ) ∧ ψ = (Eχ ∧ φ) ∧ ψ, whilst

E(χ ∧ Pψ) = E(
P · E(χ) ∧ Pψ)

= E · P(
E(χ) ∧ ψ)

= (Eχ ∧ ψ) ∧ φ

since P preserves ∧.
[a⇐b] E · P (ψ) = E(� ∧ Pψ) = E(�) ∧ ψ, so φ = E(�).
In particular, E(χ1) ∧ E(χ2) = E

(
χ1 ∧ P · E(χ2)

)
= E(χ1 ∧ χ2). Finally, E � P

because idS ≤ P · E and E · P ≤ idA.
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Now we apply the monadic property to logic for the first time.

3.8. Remark. Instead of taking the class M of monos as fundamental, from now on we
shall assume that

(a) the category C has finite products and splittings of idempotents;

(b) Σ is an exponentiating object;

(c) the adjunction Σ(−) � Σ(−) is monadic;

(d) (Σ,�,∧) is an internal semilattice and

(e) it satisfies the Euclidean principle.

3.9. Lemma. With the assumptions in Remark 3.8, let φ : X → Σ in C. Then
(a) the pullback i : U ↪→ X of � : 1 → Σ against φ exists in C;
(b) there is a map E : ΣU → ΣX such that idΣU = Σi ·E and E · Σi = (−) ∧ φ : ΣX → ΣX ;

(c) the classifying map φ : X → Σ is uniquely determined by i;

(d) if j : V ↪→ U is also open then so is the composite V ↪→ U ↪→ X.

So we have a class M of monos with an exponentiating classifier Σ, as in Section 2.

V ✲ 1

1 ✛ U
❄

∩

ψ ✲ Σ

�
❄

∩

..
..
..
..
..
..
..

E(ψ)

✒

Σ

�
❄

∩

✛ φ
X
❄

∩

Proof. The pullback is given by an equaliser; Lemma 3.3 shows that this pair is Σ-
split, using the Euclidean principle, so the equaliser exists by Beck’s theorem, and the
contravariant functor Σ(−) takes it to the (split) coequaliser. Thus the idempotent (−)∧φ
on ΣX splits into a homomorphism Σi : ΣX � ΣU and a map E, satisfying the equations
above. By Lemma 3.7, E � Σi and the characteristic map φ = E(�) is unique. Finally,
if V is classified by ψ : U → Σ then the composite i ◦ j is classified by E(ψ).

3.10. Theorem. Let (C,Σ) satisfy the first four axioms in Remark 3.8. Then

(a) � : 1 → Σ is a dominance (where M is the class of pullbacks of this map and ∧ is
given by Proposition 2.8) iff

(b) (Σ,�,∧) satisfies the Euclidean principle.

In this case, a mono i is classified (open) iff there is some map E that satisfies id = Σi ·E
and the Frobenius law.
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This result partly answers a criticism of [Tay91], that it did not ask for a dominance,
since the Euclidean principle is a part of the Phoa principle (Proposition 5.7), although
monadicity was not considered there.

It does not seem to be possible, in general, to deduce id = Σi · E from the simpler
condition that i be mono (with E � Σi), but see Corollary 10.3 when the objects are overt
and discrete.

The next result justifies the name ∃i for E [Tay99, §9.3], although it only allows
quantification along an open inclusion: we consider the more usual quantifier ranging
over a type in Sections 7–8.

3.11. Proposition. For i : U ↪→ X open, Σi and ∃i satisfy
(a) the Frobenius law

∃i(χ) ∧ ψ = ∃i(χ ∧ Σiψ)

for any χ ∈ ΣU and ψ ∈ ΣX , and

(b) the Beck–Chevalley condition

V
g ✲ U ✲ 1 ΣV ✛ Σg

ΣU χ

?

Y

j

❄

∩

f ✲ X

i

❄

∩

φ ✲ Σ

�
❄

ΣY

∃j
❄

❄

✛ Σf
ΣX

∃i
❄

❄

for any map f : Y → X in C, i.e. that if the square consisting of g, i, f and j is a
pullback then that on the right commutes.

Proof. [a] Lemma 3.7. [b] Put ω = ∃i(χ), so χ = Σi(ω) and ω = ∃iΣiω = ω ∧φ. Then
∃jΣgχ = ∃jΣgΣiω = ∃jΣj(Σfω) = Σfω ∧ (φ ◦ f) = Σf (ω ∧ φ) = Σfω = Σf∃iχ since φ ◦ f
classifies j : V ↪→ Y .

3.12. Remark. Consider the pullback (intersection) U ∩ V ⊂ X of two open subsets.

U ∩ V ⊂ ✲ U ΣU∩V
✲ ✲

⊥✛✛ ΣV

V
❄

∩

⊂ ✲ X
❄

∩

ΣV
❄

❄

�
✻✻

✲ ✲
⊥✛✛ ΣX

❄

❄

�
✻✻

In the diagram on the right, the monos are existential quantifiers and the epis are inverse
images, which are adjoint and split. The Beck–Chevalley condition for this pullback says
that the squares from ΣU to ΣV and vice versa commute. These equations make the
square of existential quantifiers an absolute pullback, i.e. it remains a pullback when
any functor is applied to it, and similarly the square of inverse image maps an absolute
pushout [Tay99, Exercise 5.3].



Theory and Applications of Categories, Vol. 7, No. 15 299

3.13. Remark. The Euclidean equation can be resolved into inequalities

σ ∧ F (ψ) ≤ F (σ ∧ ψ) σ ∧ F (σ ∧ ψ) ≤ F (ψ)

for all σ ∈ Σ, F : ΣY → ΣX and ψ ∈ ΣY . The first says that F is strong, and
the second is a similar property for order-reversing functions. At the categorical level,
the contravariant functor Σ(−) also has such a co-strength, X × ΣX×Y → ΣY , given by
(x, ω) �→ λy. ω(x, y).

4. The origins of the Euclidean principle

This characterisation of the powerset offers us a radically new attitude to the foundations
of set theory: the notion of subset is a phenomenon in the macroscopic world that is
a consequence of a purely algebraic (“microscopic”) principle, and is made manifest to
us via the monadic assumption. Taking this point of view, where does the Euclidean
principle itself come from?

4.1. Remark. The name was chosen to be provocative. The reason for it is not the
geometry but the number theory in Euclid’s Elements, Book VII: with f, n ∈ Σ = N,
� = 0 and ∧ = hcf, we have a single step of the Euclidean algorithm,

hcf(n, (f + n)) = hcf(n, (f + 0)).

In fact, hcf
(
F (n), n

)
= hcf

(
F (0), n

)
for any polynomial F : N → N, since F (n)− F (0) =

n×G(n) for some polynomial G. I do not know what connection, if any, this means that
there is between higher order logic and number theory; the generalisation is not direct
because ring homomorphisms do not preserve hcf, whereas lattice homomorphisms do
preserve meets.

The way in which the Euclidean principle (and the Phoa principle in the next section)
express F (σ) in terms of F (⊥) and F (�) is like a polynomial or power series (Taylor)
expansion, except that it only has terms of degree 0 and 1 in σ, ∧ being idempotent.
These principles may perhaps have a further generalisation, of which the Kock–Lawvere
axiom in synthetic differential geometry [Koc81] would be another example. Of course,
if ∧ is replaced by a non-idempotent multiplication in ΣX then the connection to the
powerset is lost.

The Euclidean algorithm may be stated for any commutative ring, but it is by no
means true of them all. But it is a theorem for the free (polynomial) ring in one variable,
and we have similar results in logic, where ΣΣ is the free algebra (for the monad) on one
generator.
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4.2. Theorem. The Euclidean principle holds in the free model of the other axioms in
Remark 3.8.

Proof. There is a standard way of expressing the free category with certain structure
(including finite products) as a λ-calculus (with cut and weakening), in which the objects
of the category are contexts, rather than types [Tay99, Chapter IV]. In our case, C has
an exponentiating internal semilattice, and the calculus is the simply typed λ-calculus
restricted as in Remark 2.5, together with the semilattice equations. The calculus gives
the free category because the interpretation or denotation functor [[−]] : C → D is the
unique structure-preserving functor to any other category of the same kind.

The free category C in which the adjunction Σ(−) � Σ(−) is monadic will be constructed
(and given its own λ-calculus) in [Tay01a], from which (for the present purposes) we only
need to know that C(−,ΣΣ) ∼= C(−,ΣΣ).

So we just have to show that φ ∧ F (φ ∧ ψ) = φ ∧ F (ψ) for all φ, ψ ∈ Σ, by structural
induction on F ∈ ΣΣ in the appropriate λ-calculus, considering the cases where F (σ) is
(a) � or another variable τ : trivial;

(b) σ itself: by associativity and idempotence of ∧;
(c) Gσ ∧Hσ: by associativity, commutativity and the induction hypothesis;

(d) λx. G(σ, x): using φ ∧ λx. G(x, σ) = λx. (φ ∧G(x, σ)) and the induction hypothesis;

(e) G
(
H(σ), σ

)
: put ψ′ = Hψ and ψ′′ = H(φ ∧ ψ), so

φ ∧ ψ′ = φ ∧Hψ = φ ∧H(φ ∧ ψ) = φ ∧ ψ′′

by the induction hypothesis for H, and

φ ∧G(Hψ,ψ) = φ ∧G(ψ′, ψ)

= φ ∧G(φ ∧ ψ′, φ ∧ ψ)
= φ ∧G(φ ∧ ψ′′, φ ∧ ψ)
= φ ∧G(ψ′′, φ ∧ ψ)
= φ ∧G(

H(φ ∧ ψ), φ ∧ ψ)

by the induction hypothesis for (each argument of) G.

4.3. Remark. The result remains true for further logical structure, because of generalised
distributivity laws:
(a) ∨ and ⊥, assuming the (ordinary) distributive law;
(b)⇒, by an easy exercise in natural deduction;

(c) ∃, assuming the Frobenius law;

(d) ∀, since it commutes with φ ∧ (−);
(e) N, since φ ∧ rec

(
n,G(n), λmτ. H(n,m, τ)

)
= rec

(
n, φ ∧G(n), λmτ. φ ∧H(n,m, τ)

)
;

(f) =N and $=N, since these are independent of the logical variable;

(g) Scott continuity, as this is just an extra equation (Remark 7.11) on the free structure,
but Corollary 5.5 proves the dual Euclidean principle more directly in this case.
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4.4. Remark. Todd Wilson identified similar equations to the Euclidean principle in
his study of the universal algebra of frames [Wil94, Chapter 3], in particular his Proposi-
tion 9.6(b) and Remark 9.24, although the fact that frames are also Heyting algebras is
essential to his treatment.

4.5. Example. So-called stable domains (not to be confused with the stability of
properties under pullback that we shall discuss later) provide an example of a dominance
that is instructive because many of the properties of Set and LKSp fail. Although the
link and specialisation orders (Definition 5.9) coincide with the concrete one, they are
sparser than the semilattice order. All maps Σ → Σ are monotone with respect to the
semilattice order, but not all those ΣΣ → Σ. Σ is not an internal lattice, so there is no
Phoa or dual Euclidean principle.

The characteristic feature of stable domains is that they have (and stable functions
preserve) pullbacks, i.e. meets of pairs that are bounded above. Pullbacks arise in products
of domains from any pair of instances of the order relation, for example

(⊥,�) ≤ (�,�) (f ′, x) ≤ (f, x)

∨ ∨ ∨ ∨
(⊥,⊥) ≤ (�,⊥) (f ′, x′) ≤ (f, x′)

in Σ× Σ and in Y X ×X for any f ′ ≤ f in Y X and x′ ≤ x in X. The first example says
that there is no stable function Σ × Σ → Σ that restricts to the truth table for ∨. The
second means that, for the evaluation map ev : Y X ×X → Y to be stable,

f ′ ≤ f implies ∀x′, x. x′ ≤ x⇒ f ′(x′) = f ′(x) ∧ f(x′).
In fact f ′ ≤ f is given exactly by this formula, which is known as the Berry order, since
(using the universal property that defines Y X) the function {⊥ ≤ �} ×X → Y defined
by (⊥, x) �→ f ′x and (�, x) �→ fx is stable iff the formula holds.

Stable domains were introduced by Gérard Berry [Ber78], as a first attempt to capture
sequential algorithms denotationally: parallel or, with por(t,⊥) = por(⊥, t) = t and
por(f, f) = f , is not interpretable, as it is in Dcpo. Notice that the Berry order is
sparser than the pointwise order on the function-space; it bears some resemblance to the
Euclidean principle, but I cannot see what the formal connection might be here, or with
Berry’s domains that carry two different order relations.

In order that they may be used like Scott domains for recursion, stable domains must
have, and their functions preserve, directed joins with respect to the Berry order. Some
models also require infinitary (wide) pullbacks [Tay90], i.e. binary ones and codirected
meets. The literature is ambiguous on this point (some, such as [FR97], require only the
binary form), because there are also models satisfying Berry’s “I” condition, that there
be only finitely many elements below any compact element, so there are no non-trivial
codirected meets to preserve. Berry and other authors also required distributivity of
binary meets over binary joins (the “d” condition, hence dI-domains) in order to ensure
that function-spaces have ordinary joins of bounded sets, rather than multijoins.
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From the point of view of illustrating dominances, it is useful to assume that stable
functions do preserve infinitary pullbacks, and therefore meets of all connected subsets.
Then if U ⊂ X is connected and classified by φ : X → Σ, we may form u =

∧
U ∈ X,

and, by stability of φ, u belongs to U , so U is the principal upper set ↑u. Removing the
connectedness requirement, Achim Jung and I picturesquely called the classified subsets
(disjoint unions of principal upper subsets) icicles.

The exponential ΣΣ is a V-shape in the Berry order. The identity and λx.� are
incomparable: if there were a link Σ → ΣΣ between them, its exponential transpose
would be ∨ : Σ× Σ→ Σ.

❅
❅

❅

id = λx. x

�
�

� λx.�
❅

❅
❅

❅
❅ �

�
�

�
�

F−1(�)

⊥ = λx.⊥
On the other hand, there is a morphism F : ΣΣ → Σ for which F (λx.�) = ⊥ and
F (id) = �, shown as the icicle F−1(�) above. This control operator detects whether
φ ∈ ΣΣ reads its argument; in a generalised form, it is called catch, by analogy with the
handling of exceptions, which are thrown. When φ is processed sequentially, there must
be a first thing that it does: it either reads its input, or outputs a value irrespectively of
the input.

Nevertheless, ΣΣ is still an internal semilattice, carrying the pointwise semilattice
order, for which id ≤ (λx.�) and F is not monotone. I have not worked out the monadic
completion C of the category of stable domains, but it would be interesting to know what
this looks like. We consider the stable example again in Remark 9.3.

5. The Phoa Principle

5.1. Remark. Consider the lattice dual of the Euclidean principle,

σ ∨ F (σ) = σ ∨ F (⊥),

where we suppress the parameter x ∈ X to σ ∈ ΣX and F ∈ ΣX×Σ. Taking F to be
¬¬ in Set or Pos, this yields excluded middle (¬¬σ = σ). Observe that the Euclidean
principle and its dual are trivial for σ = � and σ = ⊥, and therefore for the classical case
Σ = {⊥,�}.
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In topology and recursion, C-morphisms of the form F : ΣY → ΣX preserve directed
joins with respect to the semilattice order: they are said to be Scott-continuous (cf. Ex-
amples 2.11).

This completely changes the constructive status of the dual Euclidean principle.

The results about open subsets and maps and overt objects that we present later in
the paper then have closed, proper or compact mirror images. Note that Scott-continuity
of ¬¬ would imply excluded middle.

More basically, any F : ΣY → ΣX is monotone (Remark 3.5) in Pos as well as in
topology and recursion, but not in Set. Even though we intend to consider (locally
compact) topological spaces X in general, we need only use lattice or domain theory to
study ΣX , since this is just the lattice of open subsets of X, equipped with a topology
that is entirely determined by the (inclusion) order.

5.2. Lemma. For any exponentiating semilattice Σ, the functor Σ(−) is order-enriched
iff all functions ΣY → ΣX are monotone, but then it is contravariant with respect to the
order: if F ≤ G then ΣG ≤ ΣF , and if L � R then ΣR � ΣL.

5.3. Remark. In recursion theory, ΣX consists of the recursively enumerable subsets
of X. By the Rice–Shapiro theorem [Ric56, Ros86], recursive functions F : ΣY → ΣX

again preserve directed unions. The following result has an easier proof in this situation,
where σ ∈ Σ measures whether a program ever terminates: then σ =

∨
n σn, where σn

decides whether has finished within n steps or is still running.

5.4. Proposition. Suppose that C has stable disjoint coproducts and a dominance Σ
that is a distributive lattice. Then for every element σ ∈ Σ, there is some directed diagram
d : I → {⊥,�} ⊂ Σ, only taking values ⊥ and �, and with I an overt object (Section 7),
of which σ is the join.

Proof. Intuitively, σ is � just on the part U = [σ] of the world that it classifies, so
σ is the smallest global element that is above the partial element � : U → Σ. Since U
is classified, it is open. Also, as it is a subsingleton, it satisfies the binary part of the
directedness property. We achieve the full property by using d = [⊥,�] : I = 1+U → Σ.

In more orthodox2 categorical terms, σ : Γ→ Σ is a generalised element and classifies
i : U ↪→ Γ; then we put I = Γ + U and d = [⊥,�]. Stable disjoint sums in C (Section 9)
are needed to show that d : I → Σ is directed and I → Γ is an open map (Section 7). In
fact there a semilattice structure

I ×Γ I ∼= Γ + U + U + U
∨✲ Γ + U = I ✛⊥

Γ,

where U ×Γ U ∼= U since U ↪→ Γ. An element τ ∈ Σ is an upper bound for the diagram

2Orthodox though it may be, I regard parametric objects like this as unsatisfactory without first
defining a system of dependent types by means of a class of display maps [Tay99, Chapter VIII].
The object Γ + U is used for a different purpose in [Tay00, §7].
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d : I → Σ iff its restriction to U is �, as is the case for σ.
U

I = Γ + U
[id, i] ✲ Γ

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

i



❍❍❍❍❍❍❍❍❍❍❍❍❥

..............❘

≤ V ✲ 1

Γ + Γ

id + i

❄

∩

[⊥,�]✲ Σ

σ

❄

τ

❄

Γ
❄

∩

τ ✲ Σ

�
❄

If τ classifies V ↪→ Γ and is a bound then there is a commutative kite, so U ⊂ V using
the pullback. However, to deduce φ ≤ ψ, we need uniqueness of the characteristic maps
to Σ, or equivalently the Euclidean principle.

The synthetic form of this argument uses the left adjoint ∃d : ΣΓ ×ΣU ∼= ΣΓ+U → ΣΓ

of Σd, for which ∃d(⊥,�) = φ. Corollary 8.4 discusses I-indexed joins.

5.5. Corollary. The dual of the Euclidean principle is therefore also valid in LKLoc.
By Theorem 3.10, this says that ⊥ ∈ Σ classifies closed subsets.

Proof. By Scott continuity and Remark 5.1 for {⊥,�}.
Classically, this is trivial, but we are making a substantive claim here about how the

Sierpiński space ought to be defined intuitionistically. This claim is amply justified by the
open–closed symmetry that we shall see in this paper and [Tay00]. Indeed Japie Vermeulen
has identified the dual Frobenius law for proper maps of locales [Ver94], although he used
the opposite of the usual order on a frame, so that φ ≤ ψ would correspond to inclusion of
the closed subsets that they classify. André Joyal and Myles Tierney defined the Sierpiński
space by means of the free frame on one generator [JT84, §IV 3], and gave a construction
in terms of the poset {⊥ ≤ �} that amounts to saying that ΣΣ ∼= Σ≤.

5.6. Corollary. By the lattice dual of the results of Section 3, there is a right adjoint
Σi � ∀i of the inverse image map for the inclusion of a closed subset i : C � ✲ X in
LKLoc. This satisfies the dual of the Frobenius law,

∀i(χ) ∨ ψ = ∀i(χ ∨ Σiψ)

for any χ ∈ ΣC and ψ ∈ ΣX , together with Beck–Chevalley again.

The same principle is also valid in (parallel) recursion theory, where Martin Hyland
stressed [Hyl91, Assumption 4] that ⊥ should classify co-RE subsets, as well as � classi-
fying RE subsets. He also stated the following idea as his Assumption 6, although it was
only after writing that paper that he attached his former student’s name to it.
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5.7. Proposition. Let Σ be an exponentiating object with global elements ⊥ ≤ � in
an internal preorder. Then the conjunction of

(a) Σ is a distributive lattice,

(b) the Euclidean principle, σ ∧ F (σ) = σ ∧ F (�),
(c) its lattice dual, σ ∨ F (σ) = σ ∨ F (⊥), and
(d) monotonicity of F with respect to the semilattice order,

for all F : X × Σ→ Σ and σ ∈ Σ, is the Phoa3 principle that

any such F is monotone in this sense, and conversely
for each pair of maps φ, ψ : X ⇒ Σ with φ ≤ ψ pointwise,
there is a unique map F : X × Σ→ Σ with F (x,⊥) = φ(x) and F (x,�) = ψ(x).

In this case, F is obtained from φ and ψ by “linear interpolation”: Fσ = F⊥∨ (σ∧F�).
Another way of stating the Phoa principle is that 〈ev⊥, ev�〉 : ΣΣ → Σ × Σ is mono

and is the order relation on Σ, indeed that for which ∧ is the meet and ∨ the join.

Proof. [⇒] F must be given by this formula (and so ΣΣ → Σ× Σ is mono) because

Fσ = (Fσ ∨ σ) ∧ Fσ = (F⊥ ∨ σ) ∧ Fσ = (F⊥ ∧ Fσ) ∨ (σ ∧ Fσ) = F⊥ ∨ (σ ∧ F�).

[⇐] Any function F given by this formula is monotone in σ. With X = Σ, we obtain
F = ∧ from φ = λx.⊥ and ψ = id, and F = ∨ from φ = id and ψ = λx.�. Now consider
the laws for a distributive lattice in increasing order of the number k of variables involved.
For k = 0 we have the familiar truth tables. Each equation of arity k ≥ 1 is provable from
the ones before when the kth variable is set to ⊥ or �, so let φ ≤ ψ : X = Σk−1 → Σ be
the common values; then the two sides of the equation both restrict to φ and ψ, so they
are equal for general values of the kth variable by uniqueness of F : Σk → Σ. Finally,
σ ∧Fσ = σ ∧ (

F⊥∨ (σ ∧F�)) = (σ ∧F⊥)∨ (σ ∧ σ ∧F�) = σ ∧ (F⊥∨F�) = σ ∧F�,
and similarly for the dual.

5.8. Remark. Theorem 4.2 and Remarks 4.3(a,c,e,f) can easily be adapted to show that
the Phoa principle holds in the free model in which Σ is a distributive lattice, either as
the lattice dual result together with a separate proof of monotonicity, or by expanding
polynomials. For the latter method, the case of application (4.2(e)) is again the most
complicated, the induction hypothesis being F⊥ ≤ Fσ = (F⊥ ∨ σ ∧ F�) ≤ F�.

5.9. Definition. When all maps F : Γ × Σ → Σ preserve the semilattice order there
are two ways of extending this order to binary relations on any other object X of the
category (not just the retracts of powers of Σ as in Remark 3.5). They both agree with
the concrete order in Cont and (assuming excluded middle) Pos.

3This is an aspirated p, not an f. Wes Phoa told me that his name should be pronounced like the
French word poire, i.e. pwahr, though maybe this is only helpful to the southern English and his fellow
Australians as there is no final r.
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(a) The Σ-order, defined by

x (Σ y if ∀φ ∈ ΣX . φx⇒ φy,

is reflexive and transitive but not necessarily antisymmetric. This is the relation
inherited by X via ηX from the semilattice order on ΣΣX

. For topological spaces, it is
known as the specialisation order [Joh82, §II 1.8], but in Set, it is discrete (x (Σ y
iff x = y).

(b) The link relation is

x (L y if ∃2:Σ→ X. 2(⊥) = x ∧ 2(�) = y,

i.e. a path from x to y indexed by Σ, rather than by the real unit interval as in
traditional homotopy theory. For categories in general, this relation need not be
transitive or antisymmetric: for example it is indiscriminate in Set, i.e. x (L y
always holds.

Wesley Phoa formulated his principle and introduced the link order to show that the order
relation on a limit in his category of domains is given in the expected way [Pho90a, §2.3].
For this to work, 2 must be unique.

5.10. Remarks.

(a) All morphisms f : X → Y are monotone with respect to both of the relations that we
have just defined (so, when we talk about monotone maps, we mean with respect to
the semilattice order).

(b) The link relation is contained in the Σ-order iff all F : Γ× Σ→ Σ are monotone.

(c) In the poset {⊥ ≤ �}, these two points are in the link relation iff excluded middle
holds, since we need to find a map 2 : Σ→ {⊥ ≤ �}.

(d) The Σ-order on ΣX coincides with the semilattice order iff ηΣX is monotone.

(e) If Σ is a lattice, then the semilattice order on ΣX is contained in the link relation, but
the Phoa principle makes 2 unique.

(f) Any replete object X inherits the link relation via ηX : X ✲ ΣΣX
, so this always

happens when the adjunction Σ(−) � Σ(−) is monadic.

(g) When the Phoa principle holds, all maps ΣY → ΣX are monotone (cf. Example 4.5).

(h) As given, these definitions are not internal to the category C: they are for generalised
elements (Remark 2.5), i.e. in an enclosing topos such as the presheaf topos SetC or
a model of synthetic domain theory. One way of translating the definition of (Σ into
an internal one is as the inverse image along ηX of the semilattice order on ΣΣX

, if the
appropriate pullback exists. Similarly, (L (with 2 unique) can be defined internally
as XΣ, if this exists.

Important though they are in domain theory, these order relations will only be mentioned
in this paper in the trivial situation of the following section.
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6. Discrete and Hausdorff objects

Now we can begin to develop some general topology and logic in terms of the Euclidean
and Phoa principles and monadicity.

For the remainder of the paper (apart from the last section), we shall work in a model
(C,Σ) of the axioms in Remark 3.8, i.e. Σ is a Euclidean semilattice and the adjunction
is monadic. The category could be Set, LKLoc, CDLatop, an elementary topos or a
free category as considered in Theorem 4.2 and Remark 4.3. We shall also assume the
dual Euclidean principle when discussing the dual concepts: closed subspaces, compact
Hausdorff spaces and proper maps.

By Theorem 3.10, Σ classifies some classM of supports, which we call open inclusions.
So far, M has been entirely abstract: the only maps that are obliged to belong to it are
the isomorphisms. The diagonal map ∆ : X → X × X is always a split mono, so what
happens if this is open or closed?

In accordance with our convention about Greek and italic letters (Remark 2.5), we use
p0 : X×Y → X and p1 : X×Y → Y instead of the more usual π for product projections,
though we keep ∆ for the diagonal.

6.1. Definition. An object X ∈ ob C is said to be discrete if the diagonal X ↪→ X×X
is open.

X ✲ 1

X ×X

∆

❄

∩

(=X)✲ Σ

�
❄

The characteristic map (=X) : X ×X → Σ and its transpose { }X : X → ΣX are known
as the equality predicate and singleton map respectively. We shall always write the
subscript on this extensional (but internal) notion of equality, to distinguish it from the
intensional (but external) equality of morphisms in the category C.
6.2. Lemma. If X is discrete in this sense then it is T1, i.e. the Σ-order (Definition 5.9(a))
on X is discrete. If all functions Σ→ Σ are monotone then the link order is also discrete.

Proof. If x (Σ y then {x} (Σ {y} in ΣX by Remark 5.10(a), so, by putting φ = evx
in the definition of (Σ, by reflexivity we have � = {x}(x) ≤ {y}(x) ≡ (x =X y).

If all F : Σ → Σ are monotone then x (L y ⇒ x (Σ y. But for a direct argument
(on the same hypothesis) consider F = λσ. (2σ =X 2⊥). Then F⊥ = �, so F� = � by
monotonicity, but this says that x =X y.

6.3. Examples.
(a) Every set is discrete.

(b) For a poset to be discrete in this sense, the diagonal {(x, y) | x = y} must be an upper
subset of X ×X. This means that if x ≤ y then (x, x) ≤ (x, y) must also lie in this
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subset, so x = y. Hence discreteness agrees with standard usage. (This is the same
argument as in the Lemma.)

(c) For a topological space to be discrete, the diagonal subset must be open. Each single-
ton {x} is open, so if we may form arbitrary unions of open subsets, all subsets are
open.

(d) In recursion theory, N is discrete in the sense of Definition 6.1 and singletons in N

are recursively enumerable, but arbitrary subsets are not. This is explored in [Tay00].
Intuitionistically, even 1 has co-RE subspaces that are not RE, so there is no point in
introducing a notion of strong discreteness.

(e) A presheaf is discrete with respect to Σ = Ωj (Example 2.10(b)) iff it is j-separated
[Joh77, Proposition 3.29] [BW85, §6.2].

(f) A recursive datatype X is discrete iff there is a program δ(x, y) that terminates iff its
arguments are intensionally equal; for example if X is defined by reduction rules or
by generators and relations then δ has to search for an equational proof. Following
the usage of decidable (yes or no) and semi-decidable (yes or wait), semi-discrete
would perhaps be a clearer term.

6.4. Definition. Dually, we say that an object is Hausdorff if the diagonal is closed
(classified by ⊥) [Bou66, §8]. We write ($=X) or (#X) : X ×X → Σ for the characteristic
function, which is sometimes called apartness. Again, it follows that singletons are
closed (the T1 separation property in point-set topology), but not arbitrary subsets.

6.5. Exercise. To check that you understand how $=X is defined, adapt Lemma 6.2 to
show that if x (Σ y in a Hausdorff space X then (x $=X y) = ⊥, and explain how it
follows from this that X is T1 in the order-theoretic sense.

6.6. Examples.

(a) For locales, this property is called strong Hausdorffness [Joh82, §III 1.3], but this is
because localic and spatial products are not the same unless we require local compact-
ness, as indeed we do in this paper.

(b) An object of a topos is Hausdorff in our sense iff it is ¬¬-separated, and in particular
this always happens for classical sets. Similarly, any discrete poset or space whose
underlying set is ¬¬-separable is also Hausdorff, the converse also being true for
posets. Hausdorffness is therefore not a very interesting property for sets and posets,
and it is better to avoid this term altogether unless the dual Euclidean and Frobenius
principles hold.

(c) Following the analogy between open and recursively enumerable subsets, a recursive
datatype X is Hausdorff iff there is a program δ(x, y) that terminates iff its arguments
are unequal (distinguishable). For example, the real line R is Hausdorff, but not
discrete. Of course, we know this topologically : the point is that this is the case
computationally, as Brouwer tried to remind us, in contradiction to the pathological
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analysis that led to Cantor’s set theory, and “floating point” arithmetic in Fortran
and other programming languages, which purport to make equality decidable.

(d) In traditional point-set topology and locale theory, any T0 group is Hausdorff, as is
any discrete space, but these results depend on being able to form arbitrary unions of
open subsets, and are therefore not true recursively. For example, we would otherwise
be able to solve the word problem for groups, i.e. detect that a group is non-trivial.
In particular, even the singleton subgroup need not be closed.

To sum up, discreteness and Hausdorffness are quite different properties.

6.7. Lemma. Let X be discrete and φ ∈ ΣX . Then

∃∆(φ) ≡ (λxy. (x =X y) ∧ φx) ≡ (λxy. (x =X y) ∧ φy).

Proof. We use the Frobenius law ∃∆(χ∧Σ∆ψ) ≡ (∃∆χ)∧ψ, with χ = �, so (∃∆χ) ≡
(λxy. x =X y). Putting either ψ = Σp0φ or Σp1φ, so ψ = λxy. φ(x) or λxy. φ(y), we
recover φ = Σ∆ψ, so the left hand side of the Frobenius law is ∃∆(φ) and the right hand
side is one of the other two expressions.

[x =X y] ∩ [φx] ⊂ ✲ [φx]×X ⊂ ✲ [φx] ✲ 1

Γ× [x =X y]
❄

∩

⊂ ∆✲ Γ×X ×X
❄

∩

p01 ✲

p02

✲ Γ×X
❄

∩

φ ✲ Σ

�
❄

[x =X y] ∩ [φy]
∪

✻

⊂ ✲ X × [φy]
∪

✻

⊂ ✲ [φy]
∪

✻

✲ 1

�
✻

Theorem 3.10 gives an alternative proof using open subsets: [(x =X y) ∧ φx] is the same
subobject of Γ×X as [(x =X y)∧ φy] since the composites X → X ×X ⇒ X are equal;
hence they are the also same subobject of Γ × X × X, so the characteristic maps are
equal.

6.8. Corollary. (=X) is reflexive, symmetric and transitive.

Proof. Consider φ = λu. (y =X u) and φ = λu. (u =X z).

This is the algebraic characterisation of the equality predicate, which we consider in
Section 10.

6.9. Corollary.
(
λn. φ(n)

)
a ≡ ∃n. (n =N a) ∧ φ(n).

Here “∃n” is as in Definition 7.7. So, instead of β-reducing the application of a pred-
icate to an argument of type N, i.e. substituting the term a for the variable n throughout
the formula φ, we can make a local change to the expression-tree and rely on unification
to carry out the effect of the substitution.
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6.10. Remark. The analogous property for ∀ in intuitionistic logic is that

∀∆(φ)(x, y) ≡ (x =X y)⇒ φx ≡ (x =X y)⇒ φy.

We need the dual Euclidean and Frobenius principles (Corollary 5.6) to make this equiv-
alent to the lattice dual of the Lemma, namely

∀∆(φ)(x, y) ≡ (x $=X y ∨ φx) ≡ (x $=X y ∨ φy),

for Hausdorff spaces. In this case, an object that is both discrete and Hausdorff is called
decidable, cf. Proposition 9.6.

6.11. Proposition.
(a) 1 is discrete.

(b) If Σ has ⊥ then 1 is also Hausdorff.

(c) If X and Y are both discrete then so is X × Y .
(d) Similarly if they are both Hausdorff, assuming that Σ is a distributive lattice.

(e) If U ⊂ X is any subset of (i.e. any mono into) a discrete or Hausdorff object then U
is also discrete or Hausdorff.

Proof. [a,b] (=1) = � : 1× 1 → Σ and ($=1) = ⊥.
[c,d] (=X×Y ) = (=X) ∧ (=Y ) and ($=X×Y ) = ($=X) ∨ ($=Y ).

U ✲ X ✲ 1

U × U
❄

✲ X ×X
❄

∩

✲ Σ
❄

[e] U → X is mono iff the square on the left is a pullback.

The next result will be used to prove Theorem 11.3, so instead of monadicity we assume
only that Σ is exponentiating, but still read the existence of the pullback in Definition 6.1
as the definition of discreteness.
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6.12. Lemma. If X is discrete then the maps { }X : X → ΣX and ηX : X → ΣΣX
are

mono.

Γ
b ✲

a
✲ X

{ }X ✲ ΣX

ΣX ×X

✟✟✟✟✟✟✟✟✟✟✟✟

{ }X × idX

✯

Γ
〈b, a〉 ✲

〈a, a〉
✲ X ×X =X ✲ Σ

ev

❄

..................................

a

❥
X

∆

∪

✻

✲ 1

�
✻

Proof. If { }X ◦ a = { }X ◦ b then the composites Γ → Σ are equal, but one of them
factors through the pullback, so the other does too.

Naturality of η with respect to { }X gives a commutative square

X
{ }X ✲ ΣX

ΣΣX

ηX

❄
ΣΣ

{ }X

✲ ΣΣ
ΣX

ηΣX

❄

❄

ΣηX

✻✻
.................

The map on the right is split mono, so by the first part and cancellation, ηX is mono.

6.13. Remark. The Lemma helps to explain why there are two ways of defining j-
separated presheaves (namely being T0 or discrete with respect to Ωj) and the fact that
Hausdorffness implies sobriety for spaces [Joh82, Lemma II 1.6(ii)]. See also [Joh77,
Definition 1.24], [BW85, §2.3, Proposition 6] and [Mik76, p. 3] concerning the singleton
map { }X in an elementary topos.

We shall find at the end of the paper that CDLatop satisfies most of our characteri-
sation of elementary toposes, apart from the fact that all sets are discrete. Let’s briefly
explore this analogy.
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6.14. Example. Assuming excluded middle, the subcategory Set ⊂ Pos ⊂ CDLatop

consists of the discrete (equivalently, Hausdorff) objects.

Set

✛ components

⊥
✲ discrete ✲

⊥✛
underlying set

Pos

Ω ✛ Υ

Set is the reflective subcategory of the Ω-replete objects in Pos, just as the sheaf subtopos
Ej consists of the Ωj-replete objects in E [BR98].

The object Ω (the dominance in Set) is the underlying set of Υ (that in Pos), i.e. its
image under the right adjoint of the inclusion Set ⊂ Pos. The product-preserving left
adjoint (components) to the inclusion of categories is the replete reflection.

By contrast, Ωj is the result of applying the left adjoint, sheafification, to Ω. Also, we
have Ω � Υ instead of Ωj ⊂ Ω.

6.15. Remarks. In the same way we may ask whether adjoints exist to the inclusions of
the full subcategories Set and KHaus of (overt) discrete and compact Hausdorff spaces
in LKLoc instead of Pos.

Set
↼

(b)

⊥✲ ✲
⊥✛
(a)

LKLoc

(d) ✲
⊥✛ ✛
⊥
(e)

⇀
KHaus

Ω ✛
(a,c)

Σ
(e,f)

✲ 2

(a) The right adjoint Set ← LKLoc is the set of points functor.

(b) Unfortunately, the left adjoint Set ← LKLoc, which is the components functor,
is only defined for locally connected locales [BP80, Tay90], but it does preserve
products.

(c) The underlying set of the Sierpiński space Σ is the subobject classifier Ω, and the
objects of the smaller category are replete, overt and discrete with respect to both Σ
and Ω.

(d) The left adjoint LKLoc → KHaus is the Stone–Čech compactification [Joh82,
Theorem IV 2.1], but it does not preserve finite products.

(e) Mart́ın Escardó has shown that the patch topology provides the right adjoint, but
only to the inclusion into the category of stably locally compact locales and perfect
maps [Esc99].

(f) The patch topology on the Sierpiński space is 2, but 2-replete objects are Stone spaces
(totally disconnected compact Hausdorff spaces), and these do not form a pretopos.

The lack of open–closed symmetry between these results makes it very unlikely that they
have a unifying formulation in our axiomatisation.
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Discreteness and Hausdorffness are binary properties, relating X to X ×X: we now
turn to the corresponding nullary ones, involving 1 = X0.

7. Overt and compact objects

The characterisation of open maps in terms of the adjunction ∃f � Σf in Section 3 (and
of closed maps using Σf � ∀f in Corollary 5.6) can be generalised to remove the mono
requirement.

Unfortunately, as our category need not have all pullbacks, we cannot discuss the
Beck–Chevalley condition in the generality that we would like. (We do have it sufficiently
often for the purposes of this paper, namely to study the full subcategory of overt discrete
objects in Section 10.) For this reason we abstain from giving a generally applicable
definition of open map, but, as there is no such problem with Frobenius, we do make the

7.1. Definition. Any map f : Y → X, not necessarily mono, is called pre-open if
Σf : ΣX → ΣY has a monotone left adjoint ∃f satisfying the Frobenius law

∃f (ψ) ∧ φ = ∃f (ψ ∧ Σfφ) for all φ ∈ ΣX and ψ ∈ ΣY ,

where φ and ψ are generalised elements, cf. Remark 2.5 and Proposition 8.2.

The origin of the name open is that (for topological spaces) Σf has a left adjoint

satisfying Frobenius iff, for every open subobject i : U ↪→ X, the image of U
i
↪→ X

f→ Y
is open; indeed the characteristic map of this image is ∃fφ, where φ classifies U . However,
this argument does not have any meaning for us, as we do not yet have any notion of direct
image, and the one that we shall obtain in Section 10 relies on the present discussion. See
[Bou66, §5] for an account of open maps of spaces and [JT84, Chapter V] for the localic
version.

7.2. Lemma.
(a) All isomorphisms are pre-open maps.

(b) Inclusions of open subsets are pre-open maps (Theorem 3.10).

(c) The composite of two pre-open maps is pre-open.

(d) If e : X � Y is Σ-epi (i.e. Σe is mono) and f ◦ e is a pre-open map then f : Y → Z
is also pre-open.

(e) If m : Y → Z and ΣΣm
are mono, and m ◦ f is pre-open then f : X → Y is also

pre-open.

Proof. [a–c] are obvious. [d] ∃f = ∃g ·Σe where g = f ◦ e. [e] With E = Σm · ∃g, where
g = m ◦ f , we easily have φ ≤ Σg · ∃gφ = Σf · Σm · ∃gφ = Σf · Eφ. Using the hypothesis
that Σm is Σ-epi, for the other two properties, it suffices to consider ψ = Σmθ. Then

E · Σf · Σmθ = E · Σgθ = Σm · ∃g · Σgθ ≤ Σmθ

and
E(φ ∧ Σf · Σmθ) = Σm · ∃g(φ ∧ Σgθ) = Σm(∃gφ ∧ θ) = Eφ ∧ Σmθ.
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7.3. Definition. Similarly, any map f , not necessarily mono, for which Σf � ∀f exists
and satisfies the dual Frobenius law is called pre-proper. Again, a continuous function
between spaces or locales is pre-proper iff the image of every closed subset of X is closed
in Y . See [Bou66, §§5, 10] for the theory of proper maps of spaces and [Ver94] for locales,
and the dual Frobenius law in particular.

Closed subsets, proper and pre-proper maps satisfy the analogue of Lemma 7.2.

7.4. Remark. The Beck–Chevalley condition (Propositions 3.11 and 8.1) is automatic
for (pre-)open maps of spaces and locales, but not for pre-proper maps. In view of the
strict duality between them in our theory, this difference in the traditional ones means
that we cannot get the Beck–Chevalley condition for free in either case. In keeping with
this duality, it seems inappropriate to employ the usual name closed for pre-proper maps.

7.5. Remark. André Joyal and Myles Tierney do construct pullbacks of open maps of
locales against arbitrary maps, and prove the Beck–Chevalley condition [JT84, Propo-
sition V 4.1]. But they do this with the benefit of a development of “linear algebra”
for sup-lattices, which are to Abelian groups as frames (locales, as they call them) are
to commutative rings [op.cit., Chapter I]. In particular, the required pullback of spaces
is a pushout of frames and is constructed as a tensor product of sup-lattices, which is
obtained as a coequaliser. Our categories do not have arbitrary coequalisers, though it
seems plausible that the one that is needed could be constructed. Clearly we are currently
even less equipped to undertake an analysis of descent parallel to theirs.

We shall concentrate on the question of whether product projections are open or
proper, and on open maps between overt discrete spaces in Section 10.

7.6. Remark. The open–proper symmetry brings us to the question of why we have three
words closed, proper and compact (not to mention perfect) in one case and only open in
the other. Without them, of course, there would ambiguity over closed but non-compact
subsets of non-compact spaces (Proposition 8.3). But open sets are equally ambiguous.

Hence the introduction of the word4 overt for objects, keeping open for the subsets
and maps.

7.7. Definition. An object X ∈ ob C is said to be overt if Σ! has a monotone left adjoint
∃X : ΣX → Σ, and compact if there is a monotone right adjoint, ∀X . The Frobenius laws
are automatic (Proposition 8.2).

We write ∃x. φ(x) and ∀x. φ(x) for ∃X(φ) and ∀X(φ), where φ ∈ ΣX . Extending the
notational convention in Remark 2.5, the range (X) of such a quantifier must be an overt

4Unfortunately this distinction cannot be translated into (for example) French, but whilst overt obvi-
ously came from French, it has been recorded in English at least since 1330: it means public or up-front.
This seems to be appropriate for a concept that’s related to having a definite distinction between termina-
tion and divergence, or between habitation and emptiness. The etymology also parallels our open–closed
symmetry, in that the change from aper̄ıre to ∗̄oper̄ıre in regional Vulgar Latin was influenced by ∗cōper̄ıre,
from which we get cover and covert [Bar88].
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or compact object respectively, whilst the type of the body, φ, like that of a λ-abstraction,
must be a power of Σ or the carrier of an algebra.

7.8. Examples.

(a) Every set, presheaf or poset is both overt and compact.

(b) Classically, every domain, topological space or locale is overt.

(c) In recursion, N is overt, as are all recursively enumerable datatypes.

(d) See [JT84, §V 3] and [Pho90a, §6.5] for some discussion of overt objects, in particular
the partial-function space [N ⇀ X].

(e) If every function ΣY → ΣX is monotone then ∃X = ev� � Σ! � ∀X = ev⊥ for any
object X that has � and ⊥, by Lemma 5.2, because ⊥ � ! � �.

(f) In particular, every domain (with ⊥) is compact.

(g) Similarly, all stable domains are compact, since the only icicle to which ⊥ belongs is
the whole domain (Example 4.5).

But there are also other compact predomains, i.e. not necessarily having ⊥. This intrigu-
ing possibility is thrown up by our unification of topology and recursion: future work will
uncover their significance.

7.9. Remark. The usual definition of compactness for topological spaces, that every
cover by open subsets has a finite subcover, can be reformulated in terms of directed
joins, cf. [Joh82, §III 1] for locales. Our notion of compactness (in the diagram on the
right below) is equivalent to the usual one for LKSp and LKLoc because ∀X must be a
map in the category, and is therefore Scott-continuous (Examples 2.11, Remark 7.11).

7.10. Proposition. If the quantifiers and ⊥ exist then they must form pullbacks as
shown.

1 ✲ 1 1 ✲ 1

ΣX

⊥
❄ ∃X ✲ Σ

⊥
❄

ΣX

�
❄ ∀X ✲ Σ

�
❄

Conversely, if � : 1 → ΣX is open then its classifier is ∀X .
Likewise, assuming the dual Euclidean principle, if ⊥ : 1 → ΣX is closed then its

classifier is ∃X .

Proof. ∃Xφ = ⊥ iff φ = λx.⊥, and ∀Xφ = � iff φ = λx.�.
Conversely, if {�} ⊂ ΣX is classified by (some map that we call) ∀X then we need to

show that ∀X is monotone, id ≤ ∀X · Σ! and Σ! · ∀X ≤ id.
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U

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

iU



❍❍❍❍❍❍❍❍❍❍❍❍❥

..............❘

V ✲ 1 ✲ 1

Γ

iV

❄ ψ ✲
∨
φ

✲ ΣX

�
❄ ∀X ✲ Σ

�
❄

Given φ, ψ ∈ ΣX with φ ≤ ψ, let U, V ⊂ Γ be their pullbacks against � : 1 → ΣX , which
exist because ∀Xφ and ∀Xψ classify them. Then ψ ◦ iU ≥ φ ◦ iU = �, whence U ⊂ V , so
∀Xφ ≤ ∀Xψ by uniqueness of classifiers.

1 ✲ 1

Σ

�
❄ ∀X · Σ!

✲

id
✲ Σ

�
❄

Both of these squares commute, but the one with id is a pullback, so comparing the other
with the pullback that it contains we have

1 = [id] ⊂ [∀X · Σ!],

and so the required inequality follows by uniqueness of classifiers.

X ✲ X ✲ 1 {(φ, x) | φ[x]} ✲ 1

⊂

ΣX ×X

(�, id)
❄

∩

∀X × id✲ Σ×X

(�, id)
❄

∩

π0✲ Σ

�
❄

ΣX ×X
❄

∩

ev ✲ Σ

�
❄

The two lower composites are the exponential transposes of Σ! ·∀X and id respectively, and
both diagrams are pullbacks. So to obtain the required inequality (again using uniqueness
of classifiers) we only need to check that one subset is contained in the other, but clearly
φ[x] = � when φ = λx.�. (We have equality when X is inhabited, but not when it’s
empty.)

The analogous result for ∃X depends on the dual Euclidean principle, since we rely on
uniqueness of classifiers using ⊥.
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7.11. Remark. The simplest way of imposing Scott-continuity is the equation

F (λx:N. �) = ∃n:N. F (λx:N. x < n) for all F ∈ ΣΣN

which was called the Scott Principle in [Tay91]. In this situation, N cannot be compact,
because F = ∀N would satisfy

∀N(λx.�) ≡ (∀x:N. �) ≡ � ∀N(λx. x < n) ≡ (∀x:N. x < n) ≡ ⊥,
making the two sides of the Scott principle � and (∃n.⊥) ≡ ⊥.

Whilst Scott continuity pervades the motivations of Abstract Stone Duality, it is
remarkable how many theorems we can prove before we need to invoke it as an axiom. In
particular, the search or minimalisation operator µ : (2⊥)N → N⊥ for general recursion can
be constructed without using it, but we do need it for the function-space (N⊥)N [Tay01b].
For all of the investigations that I have done so far in general topology, the Phoa principle
and monadicity have been enough.

7.12. Proposition. IfX is overt and discrete (in particularX = N) then { }X : X � ΣX

is a Σ-split mono, i.e. there is a map I : ΣX � ΣΣX
such that Σ{ }X · I = idΣX .

X✲
{ }X ✲ ΣX

ΣX
✛✛λx. F (λy. x =X y)←� F

✲
φ �→ λψ. ∃y. φy ∧ ψy

✲ ΣΣX

This subspace is in general neither open nor closed, but N ⊂ ✲ N⊥ � ✲ ΣN assuming
the Scott principle [Tay00, Tay01b].

8. The quantifiers

Having used the symbols ∃ and ∀, we are obliged to justify them in terms of the rules of
natural deduction, or at least their categorical interpretation [Tay99, §§9.3–4] as we don’t
want to get too heavily involved in syntax. In particular, the ability to substitute under
a quantifier is another consequence of insisting that the adjunctions be internal.

8.1. Proposition. If Σ! : Σ → ΣX has a left (or right) adjoint then Σp1 : ΣY → ΣX×Y

also has one, and this automatically satisfies the Beck–Chevalley condition, the pullbacks
in question being given by product projections as shown on the left below.

X × Z X × f✲ X × Y p0 ✲ X ΣX×Z ✛ ΣX×f
ΣX×Y ✛Σ

p0

ΣX

Z

p1

❄ f ✲ Y

p1

❄
✲ 1

!

❄
ΣZ

G

❄

Σp1

✻

✛ Σf
ΣY

F

❄

Σp1

✻

✛ Σ!

Σ

E

❄

� Σ!

✻
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Proof. If E � Σ! then F = EY � Σp1 by Lemma 3.6.
Explicitly, for ω ∈ ΣX×Y, put F (ω) = λy. E

(
λx. ω(x, y)

)
; then for ψ ∈ ΣY ,

F
(
Σp1(ψ)

)
= λy. E(λx. ψy) = λy. EΣ!(ψy) ≤ λy. ψy = ψ,

whilst ω(x, y) ≤ Σ!E
(
λx′. ω(x′, y)

)
= F (Σp1ω)(y).

The Beck–Chevalley condition is naturality of E(−) : ΣX×(−) → Σ(−) with respect
to f . Explicitly, ω �→ λz. E

(
λx. ω(x, fz)

)
both ways round the square involving F and

G = EZ .

The preceding proof only required Σ to be exponentiating: the Euclidean principle
comes into the next result.

8.2. Proposition. For X overt, every product projection p1 : X × Y → Y is pre-open,
because
(a) by the Euclidean principle, ! : X → 1 is pre-open, i.e. ∃X : ΣX → Σ obeys the

Frobenius law (cf. [JT84, Proposition V 3 1] for locales);

(b) for any pre-open map f : X → Z, the map f × Y : X × Y → Z × Y is also pre-open
(cf. Bourbaki’s definition of proper maps, [Bou66, §10]).

Proof.

(a) For σ ∈ Σ and φ ∈ ΣX , let F (σ) = E
(
φ ∧ Σ!(σ)

)
:

Γ× Σ
F ✲ Σ

ΣX × ΣX

φ× Σ!

❄ ∧X ✲ ΣX

E

✻

Definition 7.7 required E to be monotone, so F (σ) ≤ E(Σ!σ) ≤ σ. Then

E(φ ∧ Σ!σ) = F (σ) = F (σ) ∧ σ = F (�) ∧ σ = E(φ) ∧ σ

by the Euclidean principle.

(b) Let φ ∈ ΣX×Z be a generalised element in the context Γ, so φ : Γ → ΣX×Z ; then
φ′ ≡ λx. φ(x, z) is a generalised element in the context Γ×Z, and this is how Definition
7.1 must be read. From Proposition 8.1, ∃f×Zφ = λz. ∃f

(
λx. φ(x, z)

)
. Then for

ψ ∈ ΣY×Z ,

∃f×Z(φ ∧ Σf×Zψ) = λz. ∃f
(
λx. φ(x, z) ∧ ψ(fx, z))

= λz.
(∃f (λx. φ(x, z)) ∧ λy. ψ(fx, z)

)

= ∃f×Zφ ∧ ψ
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8.3. Proposition. By analogy with Proposition 6.11,
(a) 1 is overt and compact.

(b) If X and Y are both overt or both compact then so is X × Y .
(c) If U ↪→ X is an open subset of an overt object then U is itself an overt object.

(d) Similarly for closed subsets of compact objects.

Proof. [a] ∃1 = ∀1 = idΣ. [b] ∃X×Y = ∃X · ∃XY = ∃Y · ∃YX . [c,d] U ↪→ X → 1 is a
composite of open or proper maps.

8.4. Corollary. If the object I is overt then every algebra (A = ΣX) has internal
I-indexed joins, ∧ distributes over them and they are preserved by homomorphisms.

X × I f × I✲ Y × I AI = ΣX×I ✛ Σf×I
BI = ΣY×I

X

p0

❄ f ✲ Y

p0

❄
A = ΣX

∨
I

❄
✛Σf

B = ΣY

∨
I

❄

Dually, if I is compact then algebras have and homomorphisms preserve I-indexed meets.

Proof. These are re-statements of the Frobenius and Beck–Chevalley conditions.

8.5. Corollary.
(a) In classical topology, every object I is overt. Therefore algebras have all joins, and

binary meet distributes over them, i.e. the algebras are frames, and the homomor-
phisms preserve joins. By the adjoint function theorem, Heyting implication exists in
the algebras, and frame homomorphisms have (non-continuous) right adjoints.

(b) In recursion, N is overt, but other objects need not be. The algebras are sometimes
called σ-frames.

(c) N is not compact, so N-indexed meets need not be preserved.

(d) If 0 and 2 are overt then each algebra is an internal distributive lattice, which we shall
consider in the next section.

Now let’s think a bit about syntax, using [Tay99, §9.3].
8.6. Remark. Our category is a model of a fragment of predicate calculus in which each
object names a (non-dependent) type, and contexts are products (cf. Theorem 4.2). Each
open inclusion U ↪→ X is a predicate x : X * φ(x) prop, though we prefer to regard φ(x)
as a generalised element of ΣX , rather than as a mono. Thus we interpret

Γ * φ prop by φ ∈ Σ, i.e. φ : Γ→ Σ, and

Γ, φ1, φ2, . . . , φn * θ by φ1 ∧ φ2 ∧ · · · ∧ φn ≤ θ ∈ Σ.
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The effect of pullback Σp0 ≡ p∗0 along a product projection p0 : Γ × X → Γ is to add a
variable x to the context (weakening, which is written x̂∗ in [Tay99]):

Γ * φ prop

Γ, x : X * φ prop

Γ, φ * θ
Γ, x : X,φ * θ

If X is overt then this map Σp0 has a left adjoint ∃X : ΣX → Σ or ∃p0 : ΣΓ×X → ΣΓ,
which interprets existential quantification:

Γ, x : X * φ(x) prop

Γ * ∃x. φ(x) prop

Γ * θ prop Γ, x : X,φ(x) * θ
=========================

Γ,∃x. φ(x) * θ
The Beck–Chevalley condition is needed to ensure that, for any function f : Γ → ∆
between types, the bijective correspondence on the right is preserved by Σf (substitution
or cut along f), whilst the Frobenius law provides in a similar way for additional predicates
that may be present in the context.

8.7. Remark. In Section 10 we shall encounter expressions of the forms

∃i · Σi · Σp0 , ∃p1 · ∃i · Σi · Σp1 and ∃p1 · ∃i · Σi · Σp0

where i : R ↪→ X×Y is the inclusion of an open binary relation classified by ρ : X×Y → Σ.
Recall from Section 3 that ∃i · Σi ≡ ρ ∧ (−), so it takes

Γ, x : X, y : Y * ψ(x, y) to Γ, x : X, y : Y * ρ(x, y) ∧ ψ(x, y)

without changing the context. Hence the effect on Γ, x : X * φ(x) prop of

∃i · Σi · Σp0 is Γ, x : X, y : Y * ρ(x, y) ∧ φ(x) prop

∃p1 · ∃i · Σi · Σp1 is Γ, y : Y * ∃x:X. ρ(x, y) ∧ φ(y) prop

∃p1 · ∃i · Σi · Σp0 is Γ, y : Y * ∃x:X. ρ(x, y) ∧ φ(x) prop

This brief discussion of the rules of natural deduction, and Corollary 10.11 about the
direct image, shows logicians and categorists respectively that we are using the existential
quantifier in the usual way. However, the dual of the Euclidean principle implies the
dual Frobenius law for ∀X , which is something extra on top of the standard rules for
the universal quantifier [Tay99, §9.4], namely that Σ! � ∀X with the Beck–Chevalley
condition.

8.8. Remark. Let φ ∈ ΣX be a decidable predicate on any overt compact object, so
∀x. (φ(x) ∨ ψ(x)), where ψ = ¬φ ∈ ΣX . Then we have ∀x. (φ(x) ∨ ∃y. ψ(y)), which is

equivalent by the dual Frobenius law to
(∀x. φ(x)) ∨ (∃y. ψ(y)).

For decidable predicates on N, this property is well known in recursion theory as the
Markov principle [Mar47] [Ros86, §5.1].
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For us it is not legitimate to write “∀n:N. φ(n)” because N is not compact in topology
or recursion (Remark 7.11). But consider its one-point compactification, N∞; both N and
N∞ are (intended to be) overt, and the inclusion i : N ↪→ N∞ is dense in the sense that(∃x:N∞. ψ(x)

)
=

(∃n:N. ψ(in)). Although N is not compact, if � = ∀x:N∞. φ(x) ∈ Σ
then Σiφ = � ∈ ΣN. Conversely, we may transfer Σ-predicates from N to N∞, but we
cannot, unfortunately, do the same with decidable ones without prejudging the question
for the extra point ∞ ∈ X.

We have a more encouraging result when we compare our universal quantifier for closed
subsets with the standard one for all subsets in a topos. The following situation arises in
synthetic domain theory (Remark 2.13), for the sheaves for a Lawvere–Tierney topology
(Σ = Ωj in Example 2.10(b)), and also for Ω � Υ in Example 6.14 since this map is
actually also mono.

8.9. Proposition. Suppose that Σ is an object that satisfies the Euclidean principle in
a topos, so Σ classifies certain open subsets, whilst Ω classifies all subsets. If the object
X is compact with respect to Σ then the interpretations of ∀X with respect to Σ and Ω
agree, in the sense that the bottom face of the cube commutes:

Γ ✲ {X} ✲ 1
.......❘

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇

φ̃

�

�
�

�✒
�

�
�✒ Γ×X ✲ 1

{λx.�} ✲ 1

ΩX
❄ ∀Ω

✲ Ω

�

❄

�
�

�✒ ?
�

�
�
mono
✒ Σ

φ

❄
✲ Ω

�

❄

ΣX
❄

∩

∀Σ
✲ Σ

�

❄

Proof. To prove that the two routes ΣX → Ω are equal, it is enough to show that they
both classify the Ω-subobject {λx.�} ⊂ ΣX . The front and back faces of the cube are
pullbacks by Proposition 7.10, as is the right face because Σ→ Ω is mono by Remark 2.13.
To show that the left face is also a pullback, consider any test Γ; the two routes Γ ⇒ ΩX

are equal iff the square on the right commutes, which it does iff φ̃ = λx.�, as required.
8.10. Remark. Of the other meanings that we might attribute to saying that the two
notions of ∀ agree, one is trivially true in that ΣX ∼= ΣX̄ , where X̄ is the replete reflection
of X, and another is trivially false in that every object is compact with respect to Ω, but
not necessarily with respect to Σ.
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8.11. Remark. It is not possible to adapt this argument to ∃ and ⊥ because, without
excluded middle, characteristic maps with respect to ⊥ : 1 → Ω in a topos need not be
unique. An analogous result can nevertheless be achieved by imposing the open cover
Lawvere–Tierney topology on the topos, but discussion of this relies on sheaf-theoretic
methods, which are inappropriate for this paper.

9. Unions and coproducts

By the monadicity property, our category has finite coproducts, indeed ΣX+Y ∼= ΣX×ΣY .
In this section we consider the question of whether these coproducts are stable and disjoint,
and investigate the consequences of assuming that particular objects are overt.

9.1. Proposition.
(a) The initial object, 0, is overt iff Σ has a least element, ⊥. Similarly, the existence of

� means that 0 is compact. The Frobenius laws say that σ ∧⊥ = ⊥ and σ ∨� = �,
which always hold in a lattice.

(b) 2 is overt iff Σ has binary joins, ∨, and (the Frobenius law for ∃2 says that) ∧ dis-
tributes over them. Similarly, the existence of ∧ means that 2 is compact, distribu-
tivity again being the dual Frobenius law (for ∀2).

(c) If 0 is strict then it is both discrete and Hausdorff because ∆ : 0 ∼= 0× 0 is classified
with respect to both � and ⊥ by the unique map 0× 0 → Σ.

(d) If + is disjoint and × distributes over it then 2 is discrete and Hausdorff.

Proof. [b] is Corollary 8.4. To see α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) directly from the
Euclidean principle, consider F (σ) = (σ ∧ β) ∨ (σ ∧ γ). [d] is Proposition 9.5 below.

So for this section we shall assume that Σ is a distributive lattice. We shall not use
the dual Euclidean principle or monotonicity, so the results are applicable to elementary
toposes. The main one says that, in the coproduct of spaces, the two components are
embedded as complementary open subsets. The coproduct is therefore stable and disjoint,
and the empty space is strict.

9.2. Theorem. C is extensive, i.e. it has stable disjoint coproducts [Coc93, CLW93]
[Tay99, §5.5], cf. [JT84, Corollary to V 2 1] for locales.

X ✲ Z ✛ Y

1
❄

✲ 2

s

❄
✛ 1

❄

Proof. Given any commutative diagram in C as shown above, we must show that the
top row is a coproduct of spaces (Z = X + Y ) iff the squares are pullbacks (inverse
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images). We do this by considering the corresponding diagram of algebras, with A = ΣX ,
B = ΣY and C = ΣZ .

First, let φ = Σs(�,⊥), ψ = Σs(⊥,�) ∈ C. Since Σ is a lattice and Σs is a homomor-
phism, φ ∧ ψ = ⊥ and φ ∨ ψ = � in C. The definition of φ makes the diagram

X ✲ Z

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

φ



1
❄ ν0 ✲ 2

s

❄

❍❍❍❍❍❍❍❍❍❍❍❍

�
❥

❅
❅
(�,⊥)

❅
❅❘

Σ

commute, in which the square rooted at 2 is a pullback iff that at Σ is one.
Now suppose that Z = X + Y , so C = A × B. Then φ = (�,⊥) ∈ A × B and

C ↓ φ = (A× B) ↓ (�,⊥) ∼= A. This means that X ∼= [φ], i.e. the square rooted at Σ is
a pullback, whence so is that at 2.

Conversely, suppose that the two squares are pullbacks, so X = [φ] and Y = [ψ]. Then

A×B ∼= (C ↓ φ)× (C ↓ ψ) ∼= {(σ, τ) | σ ≤ φ & τ ≤ ψ}
σ, τ �→ σ ∨ τ✲

✛
θ ∧ φ, θ ∧ ψ ←� θ

C

is an isomorphism because, using distributivity,

(θ ∧ φ) ∨ (θ ∧ ψ) = θ ∧ (φ ∨ ψ) = θ ∧ � = θ

(σ ∨ τ) ∧ φ = (σ ∧ φ) ∨ (τ ∧ φ) = σ ∨ ⊥ = σ

since σ ≤ φ and τ ∧ φ ≤ ψ ∧ φ = ⊥.

9.3. Remark. The category of stable predomains (i.e. of disjoint unions of stable do-
mains, Example 4.5) is also extensive, because the forgetful functor to Set creates co-
products and pullbacks (in the category, not the domains). We may also see this by a
version of the preceding argument, since it only depends on being able to define φ ∨ ψ
when φ and ψ are disjoint (φ∧φ = ⊥): in terms of the systems of icicles that they classify,
to construct φ ∨ ψ, each φ-icicle must be either wholly contained in a single ψ-icicle, or
wholly disjoint from them, and vice versa. Nevertheless, Σ is not an internal lattice —
even classically, where it has only two points.



Theory and Applications of Categories, Vol. 7, No. 15 324

9.4. Proposition. If X and Y are both overt or both compact then so is X + Y .
If f1 : X1 → Y1 and f2 : X2 → Y2 are both pre-open or both pre-proper maps, then so

is f1 + f2 : X1 +X2 → Y1 + Y2.

Proof. We define

∃X+Y : ΣX+Y ∼= ΣX × ΣY → Σ× Σ→ Σ by (φ, ψ) �→ (∃x. φx) ∨ (∃y. ψy),

∀X+Y by (∀x. φx) ∧ (∀y. ψy) and ∃f1+f2 by ∃f1 × ∃f2 : ΣX1 × ΣX2 → ΣY1 × ΣY2 .
The adjunction and Frobenius laws hold componentwise.

9.5. Proposition. If X and Y are both discrete or both Hausdorff then so is X + Y .

Proof. The decomposition in the diagram depends on distributivity, but to recover
X + Y as the fourfold coproduct [=X ] + [⊥] + [⊥] + [=Y ] also requires that coproducts be
stable and disjoint.

X + Y ✲ 1

(X + Y )× (X + Y )
❄

∩

∼= X2 +X × Y + Y ×X + Y 2 [(=X),⊥,⊥, (=Y )]✲ Σ

�
❄

Similarly ($=X+Y ) is given by [$=X ,�,�, $=Y ].
9.6. Proposition. Assuming the dual Euclidean principle, any subset U that is both
open and closed is a component of a disjoint union as in Theorem 9.2.

Proof. Let U = φ−1(�) = ψ−1(⊥) and put V = φ−1(⊥) and W = ψ−1(�), so

0 = U ∩W = (φ ∧ ψ)−1(�) 0 = V ∩ U = (φ ∨ ψ)−1(⊥).

By uniqueness of characteristic maps of both kinds, φ∧ψ = ⊥ and φ∨ψ = �, so we have
the situation of Theorem 9.2, V =W being the complement of U .

In a non-Boolean topos, by contrast, a subset that is both open and closed in our sense
need not be complemented, but merely ¬¬-closed.

10. Open discrete equivalence relations

From now on we concentrate on the full subcategory of overt discrete objects, showing that
it is a pretopos. The notion of pretopos is the finitary part of Jean Giraud’s categorical
characterisation of Grothendieck toposes [Joh77, Theorem 0.45]. These are the properties
of the category of “sets” that we require in order to do algebra and symbolic logic in it,
for accounts of which see [MR77], [FS90], [Tay99, Chapter V]. In particular we shall show
how to construct quotients by equivalence relations using a Σ-split coequaliser.
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For point-set topology, related results in both the open and proper cases are to be
found in [Bou66, §5.2], except that there an open equivalence relation is by definition one
for which q is an open map.

As we do not currently have pullbacks of general open maps (Remark 7.5), we cannot
yet develop relative versions of these results for etale maps D → Z, which Joyal and
Tierney define as open maps for which ∆ : D → D ×Z D is also open [JT84, §V 5].

10.1. Proposition. Pullbacks rooted at any discrete object D exist.

P .....................✲ X

Y

g∗f

❄

................. g ✲ D

f

❄

Proof.

D ✲ 1

✟✟✟✟✟f ✯

P .....................✲ X

D ×D
❄

∩

=D ✲ Σ

�
❄

✟✟✟✟✟f × id ✯

X × Y

i

❄

∩................ id× g✲ X ×D

(id, f)

❄

∩

❍❍❍❍❍❥
X

g∗f

✲ Y

p1

❄ g ✲ D

p1

❄

❍❍❍❍❍❥
1

!

❄

10.2. Lemma. If X is an overt object then f and g∗f are pre-open maps, and the
Beck–Chevalley condition holds.

Proof. (id, f) : X ↪→ X × D and p1 : X × D → D are pre-open maps (Propositions
3.11 and 8.2), where, for φ ∈ ΣX , ∃(id,f)φ = λxd. φ(x) ∧ (fx =D d), so

∃fφ = λd. ∃x. φ(x) ∧ (fx =D d).

10.3. Corollary. If i : X → D is a mono between overt discrete objects then X is
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classified by some φ ∈ ΣD.

X
id ✲ X ΣX

id ✲ ΣX

X

id

❄ i ✲ D

i

❄
ΣX

id

✻

∃i ✲ ΣD

Σi

✻

Proof. The square on the left is a pullback iff i is mono, and then the Beck–Chevalley
condition (Propositions 3.11 and 8.1) makes the square on the right commute (Σi ·∃i = id),
which was the condition required in Theorem 3.10.

10.4. Definition. A pre-open map f is surjective if id = ∃f · Σf .
This is equivalent to (∃f�) = � by the Frobenius law, cf. [JT84, §V 4].

10.5. Lemma. If f is pre-open surjective then so is g∗f .

Proof. By the proof of Lemma 10.2, surjectivity of f : X → D says that

λd.� = ∃fΣf (λd.�) = ∃f (λx.�) = λd. ∃x.(fx =D d),
which means “∀d ∈ D. ∃x ∈ X. (fx =D d)” externally, cf. Remark 8.8.

We require ∃X ·∃i ·Σi ·Σp1 = id, where the effect of ∃i ·Σi was described in Remark 8.7.
This is the case for ψ ∈ ΣY because

(∃x. ψy ∧ (fx =D gy)
)
= (ψy ∧ ∃x. fx =D gy) = ψy

by Frobenius and surjectivity of f at d = gy.

10.6. Proposition. If X and Y are both overt or both discrete then so is P .

Proof. ∃P = ∃Y · ∃g∗f and (=P ) = (=X) ∧ (=Y ), cf. Propositions 6.11 and 8.3.

10.7. Proposition. For any morphism f : X → D from an overt object to a discrete
one, the kernel pair K ⇒ X of f exists, and i : K ↪→ X × X is an open equivalence
relation (reflexive, symmetric and transitive).

10.8. Lemma. Let X be an overt object and i : K ↪→ X×X an open equivalence relation
classified by δ : X ×X → Σ. Then the coequaliser K ⇒ X � Q exists in C and X � Q
is a pre-open surjection.

∆

Q ✛✛ q
X

✛ p̄0

✛✛
p̄1

K
❄

✙✟✟✟✟✟✟✟✟✟✟✟✟

i

✙

X ×X

p0

✻

p1

✻
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Proof. Write p̄0 = p0 ◦ i and p̄1 = p1 ◦ i.
Since the monadic property says that Σ(−) : C - Aop, we calculate the coequaliser q of

p̄0, p̄1 : K ⇒ X as the equaliser Σq of the homomorphisms Σp̄0 and Σp̄1 in A. As monadic
forgetful functors create equalisers, it suffices to show that the carrier of this equaliser
exists as an object of C when we just consider Σp̄0 and Σp̄1 as functions (C-morphisms).
To do this we show that ∃p̄1 splits the equaliser, i.e. that ΣQ is a retract of ΣX , not just
a subobject.

The equations to be verified are

∃p̄1 · Σp̄1 = idΣX and Σp̄0 · ∃p̄1 · Σp̄0 = Σp̄1 · ∃p̄1 · Σp̄0
cf. Lemma 3.3. They make Q a Σ-split coequaliser.

First, ∃p̄1 · Σp̄1 = ∃p1 · ∃i · Σi · Σp1 takes φ to
(
λy. ∃x. φ(y) ∧ δ(x, y)) = λy. φ(y) by

Remark 8.7 and reflexivity.

E
✲ Σq ✲
✛✛

∃q
ΣX

Σp̄0 ✲
✲ Σp̄1 ✲
✛✛

∃p̄1
ΣK

ΣX×X

Σp0

❄

Σp1

❄

❄

∃p1

✻

=========== ΣX×X

∃i

✻✻

Σi

❄

❄

For the other equation, that the two composites Σp̄0/1 · ∃p̄1 · Σp̄0 (for 0 and 1) are equal,
it suffices to post-compose the mono ∃i and show that

∃i · Σi · Σp0/1 · ∃p1 · ∃i · Σi · Σp0
are equal. By Remark 8.7, these composites take φ ∈ ΣX to

λxy. δ(x, y) ∧ ∃z. (δ(x, z) ∧ φ(z)) and λxy. δ(x, y) ∧ ∃z. (δ(y, z) ∧ φ(z))

respectively. These are indeed equal, by symmetry, transitivity and the Frobenius law.
Since E is defined to split the idempotent ∃p̄1 · Σ̄p0 , we have ∃q ·Σq = idE, and Σq is a

homomorphism by Beck’s theorem. Hence

Σq · ∃q = ∃p̄1 · Σ̄p0 = ∃p1 · ∃i · Σi · Σp0 ,
which takes φ ∈ ΣX to

λx. ∃y. δ(x, y) ∧ φ(y)
by Remark 8.7. Hence φ ≤ Σq∃qφ by reflexivity, so ∃q � Σq.

For the Frobenius law, again it suffices to apply the mono Σq, which preserves ∧. Let
ω ∈ ΣQ, and put ψ = Σqω, so ω = ∃qΣqω = ∃qψ and ψ = Σq∃qψ. Then

Σq∃q(φ ∧ Σqω), which is λx. ∃y. δ(x, y) ∧ φ(y) ∧ ψ(y), and
Σq∃qφ ∧ Σqω, which is λx. ∃y. δ(x, y) ∧ φ(y) ∧ ψ(x),

are the same by symmetry and transitivity.
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10.9. Lemma. Q is discrete and effective.

K ⊂ i ✲ X ×X

✠✠�
�

�
�

�
q ×X ❅

❅
❅

❅
❅

X × q
❘❘

X

p̄0

❄❄

p̄1

❄❄
Q×X X ×Q

❅
❅

❅
❅

❅
q ×Q ❘❘ ✠✠�

�
�

�
�

q ×Q
Q

q

❄❄
⊂

∆ ✲ Q×Q

Proof. The diagram commutes by manipulation of products and because q◦p̄0 = q◦p̄1.
We have just shown that q is pre-open, whence so are q×X etc. by Proposition 8.2, whilst
i is pre-open by hypothesis. So the composite K → Q × Q is pre-open, but K � Q is
Σ-epi, so ∆ is also pre-open by Lemma 7.2, i.e. ∃∆ � Σ∆ satisfies Frobenius. Hence the
split mono ∆ is the inclusion of an open subset by Theorem 3.10, i.e. Q is discrete. Using
surjectivity of K � Q,

∃∆ ·Σ∆ = ∃∆ · ∃q◦p0 ·Σq◦p0 ·Σ∆ = ∃q×q · ∃i ·Σi ·Σq×q = ∃q×q
(
δ ∧Σq×q(−)) = ∃q×q(δ)∧ (−)

by Frobenius for ∃q×q, so the characteristic map of ∆ is (=Q) ≡ ∃q×q(δ).
Then Σq×q(=Q) ≡ δ since q × q is surjective, i.e. qx =Q qy ⇔ δ(x, y), which says that

the quotient is effective.

10.10. Theorem. The full subcategory of overt discrete objects is effective regular, and
is a pretopos if Σ is a distributive lattice.

Proof.

(a) Finite limits exist by Propositions 6.11, 8.3, 10.1 and 10.6;

(b) effective quotients of equivalence relations exist by Lemmas 10.8 and 10.9;

(c) they are stable under pullback by Lemma 10.5;

(d) coproducts are stable and disjoint, and the initial object is strict, by Theorem 9.2.

10.11. Corollary. Every map between overt discrete objects factorises as an open
surjection followed by an open inclusion. This factorisation is unique up to unique iso-
morphism and stable under pullback along arbitrary C-maps.

Proof. Given f : X → Y , form the quotient q : X � Q of the kernel pair K ⇒ X
of f . Then the mediator i : Q→ Y is mono [Tay99, §5.8], and open by Corollary 10.3.
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10.12. Remark. Although ΣX isn’t discrete (except in a topos), Q is also the image
factorisation of δ̃ : X → ΣX :

X
q ✲✲ Q✲

{ }Q ✲ ΣQ✲
Σq ✲ ΣX ,

where we check that the composite takes x to λy. (qx =Q qy), which is λy. δ(x, y) by
effectiveness. The surjection is Σ-split, as are the inclusions, by Proposition 7.12.

This is the traditional construction of the quotient as the set of equivalence classes:
an element of Q can be represented either by any element of X that is in the equivalence
class or by the characteristic function of this class. The quotient is also constructed using
this image factorisation in [Joh77, Proposition 1.23]; see also [BW85, §2.3 Theorem 7].

Peter Freyd and Andre Scedrov [FS90] have shown how to capture the notions of
effective regular category and pretopos in terms of relations instead of functions. This
approach also transfers attention away from objects and on to the morphisms, so it is
possible for there to be “too few” objects for the logic: their condition of tabulation says
that all of the objects that the logic describes are actually present. Tabulation plays an
analogous role in their theory to the monadicity property in ours, and to the axiom of
comprehension in set theory.

See [CW87] for another categorical account of relations.

10.13. Proposition. Assuming only the Euclidean law and not monadicity, the overt
discrete objects of C carry the structure of a (C-enriched) allegory.
Proof. The hom-set Rel(X,Y ) is ΣX×Y , which is an internal semilattice. The identity
on the discrete object X is (=X) and the composition ΣX×Y ×ΣY×Z → ΣX×Z at the overt
object Y is defined by

σ ◦ ρ = λxz. ∃y. ρ(x, y) ∧ σ(y, z).
The unit law is that σ(x, z) ⇔ ∃y. (x =X y) ∧ σ(y, z) and associativity follows as usual
from the Frobenius law, which itself comes from the Euclidean principle (Theorem 3.10).
For the other two Freyd–Scedrov axioms, we have

(σ ∧ τ) ◦ ρ = λxz. ∃y. ρ(x, y) ∧ (
σ(y, z) ∧ τ(y, z))

≤ (σ ◦ ρ ∧ τ ◦ ρ) = λxz.
(∃y. ρ(x, y) ∧ σ(y, z)) ∧ (∃y′. ρ(x, y′) ∧ τ(y′, z))

(σ ◦ ρ ∧ τ) = λxz.
(∃y. ρ(x, y) ∧ σ(y, z)) ∧ τ(x, z)

≤ σ ◦ (ρ ∧ σop ◦ τ) = λxz. ∃y. ρ(x, y) ∧ (∃z′. τ(x, z′) ∧ σ(y, z′)) ∧ σ(y, z)
which follow from the Frobenius law and the adjunction ∃Y � Σ! by putting y′ = y and
z′ = z.
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10.14. Proposition. If the monadic property also holds then this allegory is tabular,
and is therefore equivalent to the category of relations of a regular category.

Proof. Given a relation ρ : X × Y → Σ, we must find the corresponding open subset
U ⊂ X × Y . Lemma 3.9 did this.

10.15. Remark. As usual, similar results for compact Hausdorff spaces follow from the
dual Euclidean principle; in particular they too form a pretopos.

The root of the distinction between the properties of overt discrete and compact Haus-
dorff spaces is that N is overt, discrete and Hausdorff, but not compact (Remark 7.11).
From Corollary 8.4, it follows that all homomorphisms preserve N-indexed joins (but not
necessarily meets), whilst ∃f and ∀f , where they exist, preserve joins and meets respec-
tively by virtue of being adjoints.

10.16. Remark. This opens the way to applying the limit–colimit coincidence from
domain theory [Tay87] to the construction of infinitary colimits of overt discrete spaces
and limits of compact Hausdorff ones. The following remarks are only intended to sketch
the argument, as the questions of the existence of the relevant limits of algebras in C and
the internal language needed to invoke them are outside the scope of this paper.

A (filtered) colimit diagram of overt discrete spaces is given by a limit of the corre-
sponding algebras and maps of the form Σf , but this is accompanied by the diagram of
the left adjoints ∃f . As all of these maps preserve N-indexed joins, the limit and colimit
coincide. Then the limiting cone and colimiting cocone consist respectively of the inverse
images and quantifiers for the colimit of the original diagram of overt discrete spaces. In
particular, the colimit is overt and discrete. The subcategory also admits initial algebras,
so it is an arithmetic universe as defined by André Joyal.

Similarly, a (cofiltered) limit diagram of compact Hausdorff spaces gives rise to a
filtered colimit of inverse image maps that coincides with the limit of their universal
quantifiers. This subcategory also admits final coalgebras.

11. Monadicity for elementary toposes

This section characterises the case where E is an elementary topos and Ω its subobject
classifier [Joh77, Chapter 1] [BW85, Chapter 2]. We change the notation from (C,Σ) to
(E ,Ω) to emphasise that this is the only section of the paper in which we either assume
directly that E is a topos (and Ω classifies all monos) or make other assumptions that
turn out to be equivalent to this.

In the earlier parts of this paper we have tried to generalise as much as possible of the
basic theory of elementary toposes from higher order to geometric logic, i.e. from Set and
toposes to LKLoc and abstract Stone duality. We begin this section with a proof of Paré’s
theorem. The reason for doing this is to show what (little) remains that is peculiar to the
topos case, and apparently cannot be generalised. Some further simplifications could be
made with the aid of the theory of replete objects [BR98], and we switch notation back
to Σ for some parts of the present argument that can easily be generalised.
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We conclude with a “converse” of Paré’s theorem: a new characterisation of elementary
toposes that is not based on the notion of subset.

11.1. Definition. An elementary topos is a category E with an exponentiating
classifier Ω as in Section 2, but for all monos. In particular, since X ↪→ X×X is classified,
all objects are discrete, so all equalisers and pullbacks exist by Proposition 10.1.

Bill Lawvere and Myles Tierney originally included finite limits and cartesian closure
in the definition [Law71], but these conditions are redundant.

11.2. Remark. Anders Kock [KM74] constructed function-types by applying (−)Y to
the pullback square on the left:

X ✲ 1 XY ✲ 1

ΩX

{ }X
❄

∩

sX ✲ Ω

�
❄

ΩX×Y
❄ (sX)

Y
✲ ΩY

�
❄

where { }X is mono by Lemma 6.12 and sX(φ) says that φ is a singleton5. Appealing
though this observation is for its directness, it is only applicable to the topos situation,
where { }X is open. Corollary 11.5 is available more generally.

Kock’s student and co-author Christian Mikkelsen constructed finite colimits using
the minimal topos axioms. However, their existence follows much more easily from the
next result, due to Bob Paré [Par74], which was the inspiration for the present work. (It
is reproduced in Mikkelsen’s thesis, [Mik76, p. 57].) Nevertheless, Mikkelsen’s character-
isation of X + Y ⊂ ΩX × ΩY is much simpler than the one obtained by unwinding the
monadic result: [Tay99] uses it in Example 2.1.7, before defining categories in Section 4.1
and monads in Section 7.5.

11.3. Theorem. For a topos, Ω(−) � Ω(−) is monadic.

Proof. Since every object X is discrete, ηX is mono by Lemma 6.12, so Ω(−) is faithful
[Mac71, §IV 3]. But as ηX is classified (open), it is regular mono, so Ω(−) also reflects
invertibility (and X is replete in the sense of synthetic domain theory).

We know that the equaliser

X✲ i ✲ ΩA
Ωα ✲

✲
ηΩA

✲ ΩΩ
ΩA

exists in any topos (since ΩΩ
ΩA

is discrete), but we need to show that Ωi is also the
coequaliser. In fact, there is a split coequaliser diagram with ∃η

ΩA
as the other map.

5Actually a description in the sense of Russell, cf. [Tay99, §1.2].
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Since ΩηA · ηΩA = ΩηA · Ωα = idΩA (it is called coreflexive), the square on the left is a
pullback:

X✲ i ✲ ΩA ΩX✲ ∃i ✲ ΩΩA

ΩA

i

❄

❄

✲ ηΩA✲ ΩΩ
ΩA

Ωα

❄

❄

ΩΩA

Ωi

✻

✲
∃η

ΩA ✲ ΩΩ
ΩΩA

ΩΩα

✻

As i and ηΩA are mono, they’re open and admit existential quantification satisfying the
Beck–Chevalley condition on the right. This says that Ωi and ∃i split the idempotent
ΩΩα · ∃η

ΩA
, since also Ωi · ∃i = id. This idempotent is the one that arises from the split

coequaliser diagram, since ΩηΩA · ∃η
ΩA

= id and Ωα · i = ηΩA · i. Hence, by Beck’s theorem,
the adjunction is monadic.

11.4. Remark. In the monadic situation,

X✲ ηX ✲ ΣΣX
ΣΣ

ηX

✲
✲

ηΣΣX

✲ ΣΣ
ΣΣX

is always an Σ-split equaliser. What is peculiar to the topos case is that the quantifiers
exist and are splittings. In fact the universal quantifier could be used instead, and these
are the least and greatest splittings:

∃ηX
≤ ηΩX ≤ ∀ηX

∃η
ΩΩX ≤ ΩΩ

η
ΩX ≤ ∀η

ΩΩX

The dual of the Euclidean principle is not needed to use the universal quantifier, since
the argument is based on the Beck–Chevalley condition rather than the Frobenius law,
cf. Proposition 3.11.

11.5. Corollary. E is cartesian closed.

Proof. Since it is a right adjoint, (−)Y preserves equalisers. More precisely, we first
construct the equaliser

XY✲............................
ηYX ✲ Σ(Σ

X × Y )
Σ(Σ

ηX × Y )
✲

✲
ηY

ΣΣX

✲ Σ

(
ΣΣΣX × Y

)

(since all finite limits exist in E), and then a little easy diagram chasing shows that it also
has the required universal property of the exponential.



Theory and Applications of Categories, Vol. 7, No. 15 333

11.6. Conjecture. If all ηX are open inclusions then E is a topos. (If ∃η1 exists then
negation is definable; if ∀η1 exists then implication appears to be definable.)

Now we shall look for a converse to Paré’s theorem, i.e. given a monadic category,
what further conditions would force it to be an elementary topos? These conditions will
be in the form of the existence of quantifiers in higher order logic.

11.7. Lemma. Ω is discrete iff it is an internal Heyting algebra.

Proof. Define x =Ω y as usual by (x ⇒ y) ∧ (y ⇒ x), and conversely x ⇒ y by(
(x ∧ y) =Ω x

)
.

Although it follows that all powers of Ω are Heyting algebras, (⇔) : ΩX × ΩX → ΩX

has the wrong type to be the equality predicate.

11.8. Proposition. Every object of a topos is compact.

Proof. By Proposition 7.10, since the singleton {λx.�} ⊂ ΩX is classified.

11.9. Lemma. If Ω is discrete and ΩX is compact then ΩΩX
is also discrete.

Proof. F =
ΩΩX G iff ∀φ:ΩX . Fφ =Ω Gφ.

11.10. Lemma. If X is T0 (i.e. ηX : X → ΩΩX
is mono) and ΩΩX

is discrete then X is
also discrete.

Proof. Proposition 6.11.

There is another famous reduction amongst quantifiers in higher order logic:

11.11. Lemma. If Ω is discrete and both Ω and X are compact then X is overt.

Proof. ∃x. φ[x] is ∀σ. (∀x. (φ[x]⇒ σ)
) ⇒ σ.

11.12. Theorem. Let Ω be a Euclidean semilattice in a category E such that the
adjunction Ω(−) � Ω(−) is monadic. Then the following are equivalent:
(a) E is a topos with subobject classifier Ω;

(b) all objects are overt and discrete;

(c) all objects are overt, Ω is discrete and all ΩX are compact;

(d) Ω is discrete and all objects are compact.
Hence E is also a pretopos and cartesian closed.

Proof. [a⇒d] Proposition 11.8; [d⇒c] Lemma 11.11; [c⇒b] Lemma 11.10.
[b⇒a] Condition (b) says that the pretopos of overt discrete objects that we discussed

in the previous section is in fact the whole of E . Hence all maps are open (Lemma 10.2),
and in particular Ω classifies all monos by Theorem 3.10 and Corollary 10.3, so E is a
topos.
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11.13. Remark. From this point of view, CDLatop falls short of being a topos in that
Υ is not discrete, but the discrete objects are sets (Examples 2.12 and 6.14).

Putting this Theorem together with Theorem 4.2 and Remark 4.3, we have justified
the claim that the monadicity property plays the role of comprehension, in the sense that
it provides a new formalism for elementary toposes that makes no mention of subsets,
and doesn’t even need dependent types.

11.14. Corollary. The free category with an exponentiating Heyting algebra, such that
the adjunction is monadic, all objects are overt and all algebras are compact, is a topos.

11.15. Remark. In terms of our common formulation of geometric and higher order logic,
we have seen that the difference between them is measured by the availability of quantifiers
of various kinds. I feel that some of these quantifiers (in particular ∀ΩX : ΩΩX → Ω, from
which we deduced discreteness of ΩΩX

) take the atomic theory of matter beyond what
is justified by our intuition of “collections” and other mathematical objects (such as
Abelian groups with bases of formal triangulations, from which homology and category
theory developed).

Whilst a great deal of the geometrical core of mathematics could potentially be de-
veloped within our geometric logic, there are some things that cannot be done in this
logically weak scheme, notably questions of well-foundedness, termination, strong normal-
isation and consistency in recursion theory and proof theory. We might try to formulate
an intermediate scheme of quantifiers to handle these matters, retaining the Euclidean
and monadic conditions as the basic framework.

At first sight, the above results would appear to rule this out, if⇒ is to be allowed and
∀ΩX forbidden, but something similar to the latter is to be included. However, synthetic
domain theory has already shown that a model may have two objects, Σ and Ω, classifying
weaker and stronger fragments of logic (Remark 2.13). The extra quantifier could make
use of both objects, but since all maps Ω→ Σ are constant, we are left with

∀ : ΠΣX ✲ Π,

where Π is the name of the intermediate classifier, with Σ ⊂ Π ⊂ Ω. We might hope
to use it to give a synthetic proof of the general recursion theorem, that the induction
scheme suffices for recursion [Tay99, §6.3].

But what is already clear from these investigations is that our “synthetic” arguments
in topology are much simpler and to the point than the traditional ones in point-set
topology, locale theory and continuous lattices. So long as we give up trying to detect
equality of predicates, they also have a programming interpretation.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Andrew Pitts, University of Cambridge: Andrew.Pitts@cl.cam.ac.uk
Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
James Stasheff, University of North Carolina: jds@math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: walters@fis.unico.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


