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SOLUTION MANIFOLDS FOR SYSTEMS OF DIFFERENTIAL
EQUATIONS

JOHN F. KENNISON
Transmitted by Michael Barr

ABSTRACT. This paper defines a solution manifold and a stable submanifold for a
system of differential equations. Although we eventually work in the smooth topos, the
first two sections do not mention topos theory and should be of interest to non-topos
theorists. The paper characterizes solutions in terms of barriers to growth and defines
solutions in what are called filter rings (characterized as C∞-reduced rings in a paper of
Moerdijk and Reyes). We examine standardization, stabilization, perturbation, change
of variables, non-standard solutions, strange attractors and cycles at infinity.

Introduction

We explore what is meant by a solution of a system of differential equations. Although
the approach is based on solving equations in the smooth topos, the material in the first
two sections does not depend on topos theory and should be of independent interest. One
of our results analyzes limit cycles of autonomous differential equations. In section 3, we
define a solution manifold and a stabilization operation. Section 4 contains examples.

Conceptually, this paper is related to [3] which dealt with differential equations for a
single function. We have had to change our technical approach considerably to accom-
modate systems of equations. So the reading of [3] is not a prerequisite for this paper.

In section 1, we characterize solutions of a system of differential equations as n-tuples
of functions which respect certain “barriers to growth”. This fact enables us, in section 2,
to use barriers to define solutions in filter rings (the C∞-reduced rings of [5], [6]). Solutions
in a filter ring are, in effect, parameterized solutions, such as solutions of parameterized
differential equations, or solutions parameterized by initial conditions, see Theorem 2.12
and its corollary. The filter sometimes gives us non-standard real parameters, and trans-
finite cycles as in Theorem 2.20. Filter ring solutions often reflect the behavior of nearby
solutions which accounts for their effectiveness in examining issues such as stability.

In section 3, we examine solutions in a smooth topos. The solution manifold is defined

as the subobject of (Rn)R where the barrier conditions are satisfied and where R is (the
manifold corresponding to) the real line. We work in the topos of sheaves on the category
V of filter rings, and use the finite open cover topology, see [4]. Our approach allows
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us to define the submanifolds of stable and of asymptotically stable solutions and the
quotient manifold of standard solutions. For most of our theorems, we need to impose a
boundedness condition due to the fact that R is not Archimedean in this topos.

Notation. We often use x = (x1, . . . , xn) to denote an element of Rn. In this case, ‖x‖
denotes Max{|xi|}, the �∞ norm. (Although any reasonable norm will usually do.)

1. Barriers for Systems of Differential Equations

We consider systems of the following type:

(∗)
dxi

dt
= Wi(t, x1, . . . , xn) for i = 1, . . . , n

We assume that each Wi is a continuous, real-valued function defined on all of R × Rn.
Letting x = (x1, . . . , xn) and W = (W1, . . . , Wn), system (∗) becomes:

(∗)
dx

dt
= W (t, x)

We say that f is a solution of (∗) iff f is an n-tuple of differentiable functions from R
to R such that, for 1 ≤ i ≤ n, we have f ′i(t) = Wi(t, f(t)) for all t ∈ R.

Our approach is to study solutions of (∗) by finding barriers to their growth.

1.1. Definition. Let (∗) be as above. Then a C∞-function B(t, x) = B(t, x1, . . . , xn)
is a barrier function for (∗) over [a, b] if a < b and if whenever B(t, x) = 0 for t ∈ [a, b]
then ∂B/∂t+

∑
(∂B/∂xi)Wi < 0 at the point (t, x).

1.2. Lemma. Let g(t) be a differentiable function on [a, b] (where a < b) with the property
that if g(c) = 0 for any c ∈ [a, b] then g′(c) < 0. It follows that if g(a) ≤ 0 then g(b) < 0.

Proof. Case 1: Assume g(a) < 0. Suppose g(b) ≥ 0. Let c be the smallest element of
[a, b] for which g(c) = 0. By choice of c, we have g(t) < 0 for a ≤ t < c which implies
that g′(c) ≥ 0 by calculating g′(c) as t approaches c from the left. This contradicts the
hypothesis that g′(c) < 0 since g(c) = 0.
Case 2: Assume g(a) = 0. Then, by hypothesis, g′(a) < 0 so there clearly exists a0 with
a < a0 < b such that g(a0) < 0. The argument given in case 1, applied to the interval
[a0, b], now leads to the result that g(b) < 0.

1.3. Definition. A system f = (f1, . . . , fn) satisfies the strong barrier condition for
(∗) if whenever B(t, x) is a barrier over some [a, b] then B(a, f(a)) > 0 or B(b, f(b)) < 0.
Also f satisfies the weak barrier condition for (∗) if under the same assumptions on B,
B(a, f(a)) ≥ 0 or B(b, f(b)) ≤ 0.

1.4. Lemma. If f = (f1, . . . , fn) is a solution of (∗) then f satisfies the strong barrier
condition for (∗).

Proof. Let B(t, x) be a barrier over [a, b] and define g(t) = B(t, f(t)). Then apply Lemma
1.2 to g which directly leads to the result.
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1.5. Theorem. Let f = (f1, . . . , fn) be an n-tuple of functions from R to R (with no
differentiability or even continuity assumed). Then the following are equivalent:

(1) Each fi is differentiable and f is a solution of (∗).
(2) f satisfies the strong barrier condition for (∗).
(3) f satisfies the weak barrier condition for (∗).

Proof. (1)⇒(2): By Lemma 1.4.
(2)⇒(3): Obvious.
(3)⇒(1): Let t0 be given and let x0 = f(t0) where x0 = (x0

1, . . . , x
0
n) and x0

i = fi(t0). Let
m = W (t0, x

0), with m = (m1, . . . , mn). We need to show that f ′i(t0) exists and equals
mi for i = 1, . . . , n.

Let ε > 0 be given. Choose an open neighborhood U of (t0, x
0) in R × Rn such that

for (t, x) ∈ U , with x = (x1, . . . , xn), we have, for i = 1, . . . , n:

(mi − ε) < Wi(t, x) < (mi + ε)

Choose δ > 0 so that (t, x) ∈ U whenever |t − t0| < δ and |xi − x0
i | < δ for all i. Let η

be any real number with 0 < η ≤ δ/2. Let hi : R→R be the straight line function with
slope mi + ε for which hi(t0) = x0

i + η. Let �i : R→R be the straight line function with
slope mi − ε for which �i(t0) = x0

i − η. Choose t1 > t0 such that whenever t ∈ [t0, t1] then
�i(t) and hi(t) are within δ of x0

i . (It suffices to do this for η = δ/2.) It follows that if
x = (x1, . . . , xn) and �i(t) ≤ xi ≤ hi(t) and t ∈ [t0, t1] then (t, x) ∈ U . Now, using the
notation exp(r) for er, we define:

bi(t, xi) = exp[K(hi(t) − xi)(�i(t) − xi)]

where K > 0 is to be chosen. To continue the proof, we need:

1.6. Lemma. Using the construction in the above proof, and assuming t ∈ [t0, t1] and
x = (x1, . . . , xn), we have:

(1) If bi(t, xi) ≤ 1, then �i(t) ≤ xi ≤ hi(t).
(2) If bi(t, xi) ≤ 1 for all i, then ∂bi/∂t+ ∂bi/∂xiWi < 0.
(3) B(t, x) = (

∑
bi(t, xi)

2) − 1 is a barrier function for (∗) over [t0, t1].

Proof. (1) If bi(t, xi) ≤ 1, then (hi(t)−xi)(�i(t)−xi) ≤ 0 which implies �i(t) ≤ xi ≤ hi(t).
(2) If bi(t, xi) ≤ 1 for all i, then, by (1), we have �i(t) ≤ xi ≤ hi(t), for all i, and by

choice of t1, we see that (t, x) ∈ U . Now let Wi(t, x) = mi. then (mi− ε) < mi < (mi + ε),
by definition of U . We readily find that:

∂bi/∂t = Kbi[(mi + ε)(�i(t) − xi) + (mi − ε)(hi(t) − xi)]

∂bi/∂xi = Kbi[−(�i(t) − xi) − (hi(t) − xi)]

So, collecting these terms and using mi = Wi(t, x), we get:

∂bi/∂t+ ∂bi/∂xiWi = Kbi[�i(t)(mi + ε−mi) + hi(t)(mi − ε−mi) + xi(2mi − 2mi)]
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Since mi − ε < mi < mi + ε, we see that the coefficient of �i(t) is positive while the
coefficient of hi(t) is negative. Also Kbi > 0. But, by (1), �i(t) ≤ xi ≤ hi(t) (and at least
one of these inequalities is strict, �i(t) < xi ≤ hi(t) or �i(t) ≤ xi < hi(t).) So, if we replace
�i(t) and hi(t) by xi, we get a strictly larger expression, which, as can be readily seen,
simplifies to 0:

∂bi/∂t+ ∂bi/∂xiWi < 0

(3) Let B(t, x) = (
∑
bi(t, xi)

2)−1. Suppose t ∈ [t0, t1] and that B(t, x) = 0. Then, clearly,
bi(t, xi) ≤ 1 for all i, so (t, x) ∈ U . We calculate that:

∂B/∂t+
∑
∂B/∂xiWi =

∑
2bi[∂bi/∂t+ ∂bi/∂xiWi] < 0

(as follows from (2).) This shows that B is a barrier function for (∗).

Proof of theorem 1.5, continued. By the lemma, B(t, x) is a barrier function over
[t0, t1] for any positive choice of K. By choosing K sufficiently large, we can make each
bi(t0, x

0
i ) small enough so that B(t0, x

0) < 0. Since f satisfies the weak barrier condition, it
follows that B(t1, f(t1)) ≤ 0. But this means that each bi(t1, fi(t1)) < 1 so fi(t1) is caught
between �i(t1) and hi(t1). Moreover, this argument works as we let η→0 (noting that the
same value of t1 works for all η). We can also repeat the same argument for any t ∈ [t0, t1].
This is enough to show that the differential quotient (fi(t)−fi(t0))/(t− t0) approaches mi

as t approaches t0 from the right. An entirely analogous argument works for approaching
t0 from the left. (In fact, it could be formalized by systematically replacing t by −t, see
the first part of the proof of 2.23, and then showing that we get no genuinely new barrier
conditions on f).

1.7. Proposition. A pointwise limit of solutions of (∗) is again a solution of (∗). More-
over, if S is a family of solutions of (∗) and f is an n-tuple of functions such that for
every a, b and ε > 0, there exists s ∈ S with ‖s(a) − f(a)‖ < ε, ‖s(b) − f(b)‖ < ε then f
is a solution of (∗).

Proof. Let B(t, x) be any barrier function for (∗) over [a, b]. We can readily show that
f satisfies the strong barrier condition at B by approximating f sufficiently closely by a
member of S at a, b.

2. Solutions in Filter Rings

To study non-standard solutions, stability and cycles at infinity, we use the barrier con-
ditions to define solutions in what are called filter rings (or the reduced rings of [5], [6]).

By a proper filter on Rm we mean a non-empty collection, F , of non-empty subsets
of Rm closed under finite intersection and supersets (meaning that if F1, F2 ∈ F then
F1 ∩ F2 ∈ F and if F ∈ F , F ⊆ G then G ∈ F). The collection of all subsets of Rm is
called the improper filter on Rm. We say that B is a base for F , or that B generates F ,
when F ∈ F iff there exists B ∈ B with B ⊆ F .
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2.1. Definition. By a closed filter on Rm we mean a filter with a base of closed subsets
of Rm.

We let C∞(Rm) denote the ring of all C∞-functions from Rm to R. If F is a closed
filter on Rm, then I(F) is the ideal of all f ∈ C∞(Rm) which vanish on a member of F .

By a filter ring, we mean a ring of the form C∞(Rm)/I(F).

Note: If F is the improper filter, generated by the empty set, which is closed, then
C∞(Rm)/I(F) will be the trivial ring consisting of just one element.

The point of defining a filter ring A is to be able to define what is meant by “a
solution of (∗) with parameters in A”. To do this we define the “ring of real-valued maps
with parameters in A”. Note that if u = (u1, . . . , un) represents an n-tuple of generators
of A then it is plausible that α(u, t) represents “a function of t parameterized by A ”.
For technical reasons, we sometimes need to impose a boundedness condition. (See also
section 3 for a more theoretical approach to these definitions.)

2.2. Definition. For A = C∞(Rm)/I(F) define Map(A) as C∞(Rm × R)/I(π∗F)
where π∗F is the closed filter generated by sets of the form F ×R for F ∈ F . We also de-
fine Map0(A) as the subring of Map(A) consisting of the “semi-bounded” elements, where
w ∈ C∞(Rm ×R) is semi-bounded with respect to F if for every closed bounded interval
J , there exists F ∈ F such that the restriction of w to F × J is bounded.

If F is understood, then C∞
sb (Rm × R) denotes the subring of all maps in C∞(Rm×R)

which are semi-bounded with respect to F .
Also, n-Map(A) is the product of n copies of Map(A) and n-Map0(A) is the product

of n copies of Map0(A).

Remark. If w denotes an element of Map0(A), then, through intentional abuse of nota-
tion, we let w also denote a representative function in C∞

sb (Rm × R).

C∞
-maps can be evaluated in filter rings. If (w1, . . . , wn) is a k-tuple of elements

of the filter ring A, and if λ ∈ C∞(Rk), then λ(w1, . . . , wn) makes sense. For if we regard
each wi as a function (see above remark) then λ(w1, . . . , wn) is a well-defined composite
function, and can readily be shown to represent an element of A. It remains to check
that the indicated construction is independent of the actual functions used to represent
the elements (w1, . . . , wn) of A, and this is straightforward.

(A ring for which C∞-maps can be evaluated in a reasonable way is called a C∞-ring.
See [4] for details.)

A consequence of evaluating C∞-functions is that we can use the barrier functions to
define whether an element of Map(A) satisfies the weak and strong barrier conditions,
and so be a “non-standard” solution of (∗).

2.3. Definition. Let A be a filter ring. Then σ ∈ n-Map(A) is an A-solution of (∗) if it
satisfies the strong barrier condition for (∗) which means that whenever B(t, x) is a barrier
over some [a, b] then there exists F ∈ F such that for all u ∈ F either B(a, σ(u, a)) > 0
or B(b, σ(u, b)) < 0. We say that σ is a semi-bounded solution of (∗) if σ is a solution
in n-Map0(A)
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The weak barrier condition for (∗) is defined analogously, using ≥,≤ instead of >,<,
in the manner of Definition 1.3.

We will show that the strong and weak barrier conditions are equivalent for semi-
bounded solutions. First we need:

2.4. Definition. A closed filter on Rm is maximally closed if it is a maximal element
of the family of all proper closed filters on Rm.

Remark. Since every closed subset of Rm is a zero-set, the closed filters and maximally
closed filters defined above coincide with the filters generated by the z-filters and the
z-ultrafilters as defined in [1]. Note that a z-ultrafilter does not necessarily generate an
ultrafilter, see [1], page 152.

Notation. If F is a proper filter on Rm and f : Rm→R then L, “the limit of f along
F”, denoted by L = limF f , is defined by the condition that for each ε > 0 there exist
F ∈ F such that |L− f(u)| < ε for all u ∈ F . Clearly L is unique, if it exists.

2.5. Definition. Let A = C∞(Rm)/I(F) be a non-trivial filter ring and let σ(u, t) ∈
Map0(A) be given. Whenever M is a maximally closed extension of F , we define σM so
that, for each fixed t, σM(t) = limM σ(u, t).

Similarly, if σ = (σ1, . . . , σn) , then σM = (σ1,M, . . . , σn,M).

A straightforward compactness argument shows that σM(t) exists and is unique. Note
that by semi-boundedness, there exists F ∈ F such that σ is bounded on F ×{t}. By the
smooth Tietze theorem, we may as well assume that σ(u, t) is bounded when restricted
to Rm × {t}.

2.6. Lemma. Let A = C∞(Rm)/I(F) be a non-trivial filter ring and assume that σ(u, t) ∈
n-Map0(A) satisfies the weak barrier condition for (∗). Then, whenever M is a maximally
closed extension of F , we have that σM is a solution of (∗).

Proof. By Theorem 1.5, it suffices to show that σM satisfies the weak barrier condition.
Let B(t, x) be a barrier function over [a, b] and suppose that neither B(a, σM(a)) ≥ 0
nor B(b, σM(b)) ≤ 0. So, B(a, σM(a)) < 0 and B(b, σM(b)) > 0. Since B is continuous,
there exists a neighborhood L1 of σM(a) (in Rn) such that B(a, x) < 0 for x ∈ L1, and
a neighborhood L2 of σM(b) such that B(b, x) > 0 for x ∈ L2. By the convergence of
σ(u, a) to σM(a) we can find U ∈ M such that σ(u, a) ∈ L1 for u ∈ U . Similarly we
can find V ∈ M such that σ(u, b) ∈ L2 for u ∈ V .. But σ(u, t) satisfies the weak barrier
condition, so there exists F ∈ F such that for u ∈ F we have either B(a, σ(u, a)) ≥ 0 or
B(b, σ(u, b)) ≤ 0. It follows that U ∩ V ∩ F = ∅ so ∅ ∈ M, which is a contradiction.

2.7. Lemma. Let A = C∞(Rm)/I(F) be a non-trivial filter ring and let σ(u, t) be in
n-Map0(A). Assume that σM is a solution of (∗) whenever M is a maximally closed
extension of F . Then σ(u, t) satisfies the strong barrier condition for (∗).

Proof. Let B(t, x) be a barrier function over [a, b] and let:

E = {u ∈ Rm : EitherB(a, σ(u, a)) > 0 orB(b, σ(u, b)) < 0}
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We have to find an F ∈ F with F ⊆ E. Assume no such F exists. Then we can find a
maximally closed extension M of F such that Ec ∈ M (where the closed set Ec is the
complement of E). By hypothesis, σM is a solution of (∗) and, by Theorem 1.5, it satisfies
the strong barrier condition so:

EitherB(a, σM(a)) > 0 orB(b, σM(b)) < 0

Case 1: Assume B(a, σM(a)) > 0. By continuity, there exists a neighborhood L1 of σM(a)
with B(a, x) > 0 for every x ∈ L1. Since σ(u, a) converges to σM(a) there exists U ∈ M
such with σ(u, a) ∈ L1 for all u ∈ U . It follows that U ∩ Ec = ∅, a contradiction.
Case 2: Assume B(b, σM(b)) < 0. This case uses a similar contradiction.

2.8. Proposition. Let A = C∞(Rm)/I(F) be a non-trivial filter ring and let σ(u, t) be
an n-tuple of elements of Map0(A). Then the following statements are equivalent:

(1) σ is an A-solution of (∗) (i.e. σ satisfies the strong barrier condition).
(2) σ satisfies the weak barrier condition for (∗).
(3) Whenever M is a maximally closed extension of F , then σM is a solution of (∗).

Proof. (1)⇒(2): Obvious.
(2)⇒(3): By Lemma 2.6.
(3)⇒(1): By Lemma 2.7.

2.9. Definition. Let A = C∞(Rm)/I(F). Then IPtCn, the ideal of pointwise conver-
gence, is the set of all α ∈ Map0(A) such that for every fixed real t0 and every ε > 0
there exists F ∈ F with |α(u, t0)| < ε whenever u ∈ F . It follows by semi-boundedness
that IPtCn is an ideal of Map0(A) and α ∈ IPtCn iff αM = 0 for every maximally closed
extension M of F .

2.10. Proposition. Assume σ ∈ n-Map0(A) for some filter ring A. Then σ represents
an A-solution of (∗) iff σ + α does for every n-tuple α of members of IPtCn.

Proof. Straightforward, using Proposition 2.8.

Perturbed differential equations. A differential equation, (∗u) dx/dt = V (u, t, x),
is said to be a perturbation of (∗) if V (u, t, x) equals W (t, x) for a particular value of the
parameter u. More generally, we will allow V (u, t, x) to approach W (t, x) for a “limiting
value” of u in the sense of the following definition. In this case, parameterized solutions of
dx/dt = V (u, t, x) not only approximate solutions of (∗), they actually form an A-solution
of (∗) for suitable A.

2.11. Definition. The differential equation (∗u) dx/dt = V (u, t, x), with parameter
u ∈ Rm is a perturbation of (∗) with respect to a closed filter F on Rm if W (t, x) =
limF V (u, t, x) for fixed t and x.

2.12. Theorem. Suppose that (∗) is perturbed by an equation (∗u) dx/dt = V (u, t, x)
with respect to F a filter on Rm. If the semi-bounded σ(u, t) is a parameterized solution
of (∗u), then σ represents an A-solution of (∗) where A = C∞(Rm)/I(F).
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Proof. Let B(t, x) be a barrier function on [a, b] for (∗). By semi-boundedness, we may
as well assume that for some M , we have ‖σ(u, t)‖ ≤M for (u, t) ∈ Rm × [a, b]. Let:

K = {(t, x) : t ∈ [a, b], ‖x‖ ≤M,B(t, x) = 0}

Clearly K is compact and, since ∂B/∂t +
∑
∂B/∂xiWi < 0 for all (t, x) ∈ K, there is

a maximum value m of ∂B/∂t +
∑
∂B/∂xiWi (on K) and m is negative. Since each

∂B/∂xi is bounded on K there exists ε > 0 such that if ‖V (u, t, x) − W (t, x)‖ < ε
then ∂B/∂t +

∑
∂B/∂xiWi < m/2 < 0 on K. By hypothesis, each (t0, x0) ∈ K has a

neighborhood L with some F ∈ F for which V (u, t, x) is within ε of W (t, x) for (t, x) ∈ L
and u ∈ F . By covering K with finitely many of these L’s and taking the corresponding
finite intersection of the F ’s we can find F0 ∈ F such that V (u, t, x) is within ε of W (t, x)
for (t, x) ∈ K and u ∈ F0. Therefore, for each u ∈ F0 we see that B(t, x) is a barrier
function for the perturbed equation (∗u) and since σ(u, t) is a solution of this equation,
we see that σ satisfies the required barrier condition to be an A-solution of (∗).

2.13. Corollary. Let σ(u, t) be a solution of (∗) for each fixed value of u. For example,
σ(u, t) might be a solution satisfying an initial condition which depends on u. Then σ(u, t)
represents an A-solution of (∗) whenever σ(u, t) ∈ Map0(A).

Proof. Let V (u, t, x) = W (t, x) for all u.

The associated map and non-standard solutions. As shown in section 1, a stan-
dard solution of (∗) is an n-tuple of functions f = (f1, . . . , fn), with fi : R→R, which
satisfies the weak barrier conditions. This same definition can be interpreted in the inter-
nal language of a smooth topos and, as will be shown in the next section, the resulting
notion relates to A-solutions.

One advantage of the internal definition is that we can discuss solutions of (∗) in which
R is replaced by a non-standard version of the reals. We will illustrate this possibility by
working with ultrapowers of R, which can be used to show that some differential equations
have non-standard cyclic-like solutions with transfinite periods.

2.14. Definition. Let N denote the positive integers and let U be an ultrafilter on N.

We say that two sequences, x, y ∈ RN are equivalent modulo U iff {i : xi = yi} ∈ U .
Then RU , the resulting set of equivalence classes is called an ultrapower of R.

The above are the only ultrapowers we will consider but, in general, the set N can be
replaced by any index set. It is well-known that any ultrapower of R has all the relations
and operations that R has and satisfies the same first-order properties. Such ultrapowers
are also filter rings, as shown by:

2.15. Lemma. Every ultrapower of R, arising from an ultrafilter on N, is a filter ring.

Proof. The ultrafilter U on N is clearly the base of a closed filter on R, which we will
also denote by U . It is then readily seen that RU = C∞(R)/I(U).
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2.16. Definition. Let RU and RV be ultrapowers of R. Then an n-tuple f = (f1, . . . , fn)
with fi : RU→RV is a non-standard solution of (∗) if the weak barrier conditions are sat-
isfied.

2.17. Definition. If σ(u, t) ∈ Map(A), then the associated map σ̂ : A→A is defined so
that if α ∈ A is represented by α(u), then σ̂(α) is represented by σ(u, α(u)). Similarly, if
σ(u, t) ∈ n-Map(A) with σ = (σ1, . . . , σn) , then σ̂ = (σ̂1, . . . , σ̂n)

2.18. Proposition. Let RU be an ultrapower of R and let σ ∈ n-Map(RU) be given.
Then σ is an RU -solution of (∗) iff σ̂ is a non-standard solution of (∗).

Proof. σ is an RU -solution iff there exists U ∈ U such that for u ∈ U we have either
B(a, σ(u, a)) ≥ 0 or B(b, σ(u, b)) ≤ 0. But since U is an ultrafilter it is a prime fil-
ter and this means that the above is true iff either {u|B(a, σ(u, a))} ≥ 0 is in U or
{u|B(b, σ(u, b))} ≤ 0 is in U . This is easily seen to be equivalent to saying that σ̂ is a
non-standard solution of (∗). (Note: Not every non-standard solution is the associated
map of a member of n-Map(RU).)

Autonomous equations and the pseudo-cycle at ∞. An equation of the form
dx/dt = W (x), where W depends only on x and not on t, is said to be autonomous. In
this case, if f is a solution of (∗) then f(u+ t) is also a solution for any constant u.

We will assume that f is a solution of the autonomous equation (∗) and is bounded
meaning that the set {f(t) : t ∈ R} is a bounded subset of Rn. We aim to study the limit
points L+(f), or points that f(t) gets close to as t→∞ (see below).

We will investigate the behavior of f(t) as t→∞ by, in effect, considering a solution
of the form f(γ + t) where γ is a transfinite constant. In order for this to make sense,
we need to replace f by a non-standard solution with domain RU where U is a free (i.e.
non-principal) ultrafilter, so that RU has transfinite elements.

Construction. (1) We are given f : R→Rn a solution with bounded range of the
autonomous differential equation (∗). (As will be noted below, this construction extends
to the case where we only assume that {f(t)|t > 0} is a bounded subset of Rn.)

(2) We assume that (∗) satisfies a uniqueness condition which means that any two
ordinary solutions which agree at a single value of t must then agree at all (finite) values
of t. Mild conditions on W , such as being a C1 function, are sufficient to guarantee the
uniqueness condition, see [2], page 542.

(3) We let L+(f) be the set of all points P ∈ Rn such that f(t) comes arbitrarily close
to P for arbitrarily large values of t. So P ∈ L+(f) iff for every ε > 0 and every t0 there
exists t > t0 such that ‖f(t) − P‖ < ε. If n = 2, the Poincaré-Bendixson theorem says
that, barring any limit equilibrium points, the set L+(f) is a cyclic orbit. But L+(f), for
n > 2, can be a “strange attractor” with weird properties, see [2].

(4) We let U be any free ultrafilter on N and let RU be the resulting filter ring. By
Corollary 2.13, we see that σ(u, t) = f(u+ t) is an RU -solution of (∗).

(5) Let σ̂ be the resulting non-standard solution of (∗) as in Proposition 2.18. Note
that if τ ∈ RU is represented by the sequence (τ1, . . . , τi, . . .) then σ̂(τ) is represented by
the sequence (σ(1, τ1), . . . , σ(i, τi), . . .).
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(6) We let Lim U σ̂ : RU→Rn be the function obtained by taking limits along U . Since
the range of f is bounded, this limit exists and is unique. Since limits preserve the weak
barrier conditions, it follows that Lim U σ̂ is still a non-standard solution of (∗).

(7) We let R+
U denote the positive elements of RU . We also let f : R+

U→Rn be the
restriction of Lim U σ̂ to R+

U . Note that f is essentially the limit of f(γ + t) where γ is
represented by the identity sequence (1, 2, . . . , i, . . .). In effect this map shows us what
happens to f(u+ t) as u “goes to infinity” along U .

2.19. Lemma. Let (∗) and f be as above. Assume that (∗) satisfies the uniqueness
condition. Let γ = {γk} be such that γk→∞ (along U) and let ε = {εk} be such that
Lim U(εk) = 0. Then Lim Uf(γk) = Lim Uf(γk + εk).

Proof. Since f(t) is bounded for t > 0, we see that f ′(t) = W (f(t)) is also bounded
for t > 0. So there exists M > 0 such that ‖f ′(t)‖ < M for all t > 0. (Recall that
we are using the �∞ norm on Rn.) From the mean-value theorem we now get that
‖f(γk + εk) − f(γk)‖ < M‖εk‖ and the lemma follows.

2.20. Theorem. Let (∗) be an autonomous equation where each Wi(x) is a C∞-
function. Let f(t) be a bounded solution for (∗). Let f : R+

U→Rn and L+(f) be as
defined above. Then:

(1) The range of f is precisely L+(f).

(2) f is “locally cyclic” in the sense that for each α ∈ R+
U there exists ρ ∈ R+

U such
that f(α) = f(α+ ρ).

(3) If f(α) = f(α+ ρ), then f(β) = f(β + ρ) whenever β − α is bounded.

(4) f imposes no order on its range L+(f) in the sense that if f(α) = P1 and P2 is
any other point in L+(f) then there exists ρ ∈ R+

U such that f(α+ ρ) = P2.

Proof. (1) It is obvious that the range of f is contained in L+(f). Suppose P ∈ L+(f).
Then we can find {tk} such that P is the classical limit of f(tk) by choosing tk > k + 1
with f(tk) within 1/k of P . Let τ = {τk} where τk = tk − k then P = f(τ).

(2) Let α = {αk} ∈ R+
U be given and let f(α) = Lim Uf(k + αk) = P . Clearly we can

find an increasing sequence of positive integers mk such that ‖P − f(mk + αmk
)‖ < 1/k.

We can clearly further require that mk > αk + k. Define ρ = {ρk} where ρk = (mk +
αmk

) − (k + αk). Then it easily follows that f(α+ ρ) = f(α).

(3) Assume f(α+ ρ) = f(α) and that β−α = λ = {λk} is bounded. This means that
Lim U(λk) = t0 where t0 ∈ R. Write λk = t0 + εk then Lim U(εk) = 0.

For each t, let g(t) = Lim Uf(k+αk + t). Since, for fixed k, f(αk + k+ t) is a solution
of (∗), it follows from Proposition 1.7 that g(t) is a solution of (∗) (in the usual sense,
as a map from R to Rn). Similarly, let h(t) = Lim Uf(k + αk + ρk + t). By the same
argument, h(t) is also a solution of (∗). But g(0) = h(0). Since W is C∞, it follows that
(∗) satisfies the uniqueness condition, see [2], and therefore g(t) = h(t), ∀t ∈ R.

Now, f(β) = Lim U(k + βk) = Lim U(k + αk + λk) = Lim U(k + αk + t0 + εk) =
Lim U(k + αk + t0) (by Lemma 2.19). But this is g(t0). A similar calculation shows that
f(β + ρ) = h(t0), so the proof follows from the fact that g(t0) = h(t0).
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(4) Since f(α) = P1, we can write P1 = Lim Uf(k + αk). Since P2 ∈ L+(f), we can,
for each k, find tk > k + αk such that f(tk) is within 1/k of P2. Let ρk = tk − (k + αk),
then ρ = {ρk} has the required property.

Remarks. (1) Part (4) of the above theorem says, in effect, that “everything comes
around again, infinitely often”. This is illustrated in Example 4.8.

(2) If W (t, x) is not sufficiently smooth, we can usually use C∞-approximation and
Theorem 2.12.

(3) The above theorem applies even if we only assume {f(t) : t > 0} is bounded.
In this case, let {f(t) : t > 0} be contained in a closed ball B1 in Rn. Let B2 be a
larger closed ball such that B1 is entirely contained in the interior of B2. Then modify
the definition of W (x) so that it has the same values for x ∈ B1 but is redefined on the
boundary of B2 so that as we trace f(t) for negative values of t it cannot leave B2. (Since
t is going backwards, this means redefining W as, say, the unit vector normal to the
surface of B2 and pointing outward.) We can redefine W by the smooth Tietze theorem
and f will exist (as it cannot “go off to ∞”) and f(t) will be unchanged for t > 0 as W
is unchanged on B1.

(4) Note that the above theorem has no hypothesis about the absence of equilibrium
points, so, for n = 2, it applies even when Poincaré-Bendixson might not because of
limiting equilibrium points. In this case, L+(f) may consist of equilibrium points and
orbits between them (that is, orbits which tend to equilibria as t→ ± ∞). The orbit
based on R+

U hits all of these equilibria and traverses all of the orbits between them. This
example shows there is no hope of proving that once f(α) = f(α+ρ), then f(β) = f(β+ρ)
for all β. When the non-standard orbit hits an equilibrium point at, say, f(α), then
f(α) = f(α+ρ) for any finite ρ, and, by (3) of the above theorem, any such finite ρ works
as a period until sometime “infinitely later” when, by (4) of this theorem, the orbit must
leave the equilibrium point to hit the other points in L+(f). See Example 4.8.

Change of variables. We conclude this section by examining the behavior of (∗)
under a change of variables. We use the following notation:

(1) Members of Rn will be thought of as column vectors, that is, as n× 1 matrices.
(2) If f : Rn→Rm is a C1-function, then Df is the m×n matrix with ∂fi/∂xj in row

i, column j. Recall that the chain rule says that if h = fg then Dh = DfDg (matrix
product).

(3) If x : R→Rn is a solution of (∗) and if W is regarded as a column vector of
functions, then (∗) can be written in the form:

(∗1)Dx = W

These conventions make the following easier to state:

2.21. Theorem. Let (∗1) be as above and consider the change of the dependent variable
from x to y suggested by the equations:

y = φ(x) and x = θ(y)
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where φ, θ are C∞-inverses of each other. Then (∗1) is transformed into:

(∗2)Dy = DφW (t, θ(y)).

For any filter ring A, there is a one-to-one correspondence between A-solutions of (∗1) and
of (∗2) under which the (∗1)-solution σ(u, t) corresponds to the (∗2)-solution φ(σ(u, t)).
This correspondence takes semi-bounded solutions to semi-bounded solutions.

Proof. It is readily shown that that B(t, x) is a barrier function for (∗1) iff B(t, θy) is a
barrier for (∗2). The result then follows. The preservation of semi-bounded solutions is
obvious and follows from Proposition 2.8 anyway.

Having proven this theorem, we immediately use it to obtain a more general version:

2.22. Theorem. More generally, let (∗1) be as above and consider the change of the
dependent variable from x to y suggested by the equations:

y = φ(t, x) and x = θ(t, y)

where φ, θ are C∞-inverses of each other. Then (∗1) is transformed into:

(∗2)Dy = ∂φ/∂t+DφW (t, θ(y)).

For any filter ring A, there is a one-to-one correspondence between A-solutions of (∗1) and
of (∗2) under which the (∗1)-solution σ(u, t) corresponds to the (∗2)-solution φ(t, σ(u, t)).
This correspondence takes semi-bounded solutions to semi-bounded solutions.

Proof. This is really the same theorem as the above if we imagine using an additional
variable x0 which plays the role of t. So we redefine W (x0, x) as W (t, x) and W0 = 1. The
equations of the previous theorem then reduce to the ones given above. We also have to
impose an initial condition that x0(0) = 0 and it is easily verified that the transformations
preserve solutions which satisfy this condition.(Alternatively, we could argue as in the
previous proof.)

2.23. Theorem. Let (∗1) be dx/dt = W (t, x) and consider the change of the independent
variable from t to s suggested by the equations:

s = φ(t) and t = θ(s)

where φ, θ are C∞-inverses of each other. Then (∗1) is transformed into:

(∗2) dx/ds = W (θ(s), x)θ′(s).

For any filter ring A, there is a one-to-one correspondence between A-solutions of (∗1)
and of (∗2) under which the (∗1)-solution σ(u, t) corresponds to the (∗2)-solution σ(u, θs)).
This correspondence takes semi-bounded solutions to semi-bounded solutions.



Theory and Applications of Categories, Vol. 7, No. 13 251

Proof. First, consider the transformation s = −t and t = −s. Then B(t, x) is a barrier
function for (∗1) over [a, b] iff −B(s, x) is a barrier function over [−b,−a] for (∗2) and the
result follows in this special case. In general, notice that φ′(t) can never be 0, as φ has
a differentiable inverse. We may as well assume that φ′(t) > 0 for all t (otherwise, first
change t to −t, using the above case.) It is then readily shown that B(t, x) is a barrier
function for (∗1) over [a, b] iff B(θs, x) is a barrier for (∗2) over [φa, φb] (and conversely).
The result follows. The preservation of semi-boundedness is obvious.

3. Solution Manifolds in a Smooth Topos

Our goal is to define and examine the “manifold” of all solutions of the system (∗) using
a generalized notion of manifold which, in effect, allows for non-standard solutions. Typ-
ically a smooth topos is regarded as a category of generalized manifolds. The advantage
of working in a topos is that it has good categorical properties, such as the existence of
power objects, MN , which conceptually is the “manifold” of all smooth maps from M to
N . Also, in a topos, we can define subobjects using the internal language, as discussed
below.

By a smooth topos we mean a topos which fully contains the category M of C∞-
manifolds and smooth (i.e. C∞) maps. We follow the approach in [4] and extend M in
several stages. First, each manifold M ∈ M gives rise to C∞(M), the finitely presented
C∞-ring of all smooth maps from M to R. This embeds M fully into V the dual of
f.g. reduced C∞-rings (where “f.g.” means finitely generated and “reduced”, defined
algebraically in [5], is equivalent to being a filter ring. See also [4] where these rings are
described as being of the form C∞(Rm)/I where I is a C∞-radical ideal.)

By PreSh(V) we mean the category of functors from Vop to Sets, equivalently, the
category of functors from filter rings to Sets. Note that if A = C∞(Rm)/I(F) and
B = C∞(Rk)/I(G), then a C∞-homomorphism from h : A→B is given by a smooth map
η : Rk→Rm for which η−1(F ) ∈ G whenever F ∈ F . Then h is defined by h(α)(u) =
α(η(u)), see [4].

A presheaf is a sheaf with respect to the finite open cover topology if it maps every
covering sieve to a limit diagram (see [4], pages 350 and 364 for details). This topology is
subcanonical which means that every filter ring A determines a sheaf [A, ], which is the
representable hom functor which assigns hom[A,B] to the filter ring B.. Following [4],
we let Vfin denote the topos of sheaves. If we trace the embedding of M into Vfin, we see
that the real line R is mapped to the underlying set functor from filter rings to Sets.

The internal language. As with any topos, Vfin has an internal language, see [4]
pages 353-361. We use this language to define subsheaves much as subsets can be defined
by conditions. In terms of this language, R is a ring with a compatible order. This
follows since for each object A, the set R(A) = A has such a structure, and this structure
is preserved by the maps. The ring structure on A is obvious and, for α, β ∈ A, represented
by α(u), β(u), we define α < β iff {u : α(u) < β(u)} ∈ F .
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We next define x, y in R to be infinitesimally close if for each ordinary positive integer
n, we have −1/n < (x − y) < 1/n. It is important to note that here x, y are internal
variables associated with the sheaf R, while n is an external variable (or an ordinary
integer). We could, alternatively, use the natural number object, but we will not go into
that. In summary:

(1) The relation < has been defined on R. (It is a subsheaf of R × R.)
(2) The relation of being infinitesimally close on R (another subsheaf of R × R) has

been defined by the conditions −1/n < (x−y) < 1/n for each ordinary positive integer n.
By a convenient abuse of notation, we sometimes write this condition as |x−y| < 1/n, even
though there is no actual absolute value operation from the sheaf R to itself. Similarly, we
define infinitesimally close on (R)n by using the projections to R. The defining conditions
can be abbreviated to ‖x− y‖ < 1/n for each ordinary positive integer n.

(3) The object R in Vfin lacks nilpotents, so the elegant Kock-Lawvere definition of the
derivative is not available. Instead we define solutions to (∗) using the barrier conditions.
This is, in effect, a non-standard analysis approach and it is useful for analyzing stability
when we move infinitesimally away from an equilibrium point. See Examples 4.1, 4.2.

3.1. Definition. The solution manifold for (∗), denoted by Sol, is defined internally as

the subobject of all f ∈ (Rn)R for which B(a, f(a)) > 0 or B(b, f(b)) < 0 whenever B is
an ordinary barrier function over [a, b] for (∗).

It will follow from the results of section 2 and the lemma below that Sol is the functor
which assigns to A the set of all A-solutions of (∗). We need to describe the functor

RR from filter rings to Sets. Let A = C∞(Rm)/I(F) be a filter ring. Then, by the

Yoneda lemma, RR(A) = n.t.([A, ],RR), where “n.t.” stands for the set of all natural
transformations, and “=” means “naturally isomorphic”.

3.2. Lemma. Let A = C∞(Rm)/I(F). Then RR(A) = Map(A) as defined in section 2.

It follows that the functor (Rn)R is n-Map(A) and that Sol(A) is the set of all A-solutions
of (∗).

Proof. The main steps are that RR(A) is naturally isomorphic to Map(A) are:

n.t.([A, ],RR) = n.t.(R × [A, ],R) = n.t.([Map(A), ],R) = Map(A).
The remaining details are straightforward, but note we do have to use a covering

argument: Let σ(u, t) be an A-solution for some A and let B be a barrier over [a, b]. Then
{U, V } is a finite cover where U = {u : B(a, σ(u, a)) > 0} and V = {u : B(b, σ(u, b)) < 0}.
We can now readily show that σ ∈ Sol(A).

One drawback of the topos Vfin is that the real line (i.e. the underlying set functor, or
the object which corresponds to the manifold of reals) is not Archimedean. For technical
reasons (perhaps because our techniques are not good enough) we need to deal with the
“bounded reals”.

3.3. Definition. The bounded reals, R0, is defined internally as the subobject of all
x ∈ R for which there exists an ordinary integer n with −n < x < n.
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3.4. Definition. (1) The sheaf of R0-preserving maps is defined internally as the sub-

sheaf of RR of all f ∈ RR for which f(t) ∈ R0 whenever t ∈ R0.

(2) The submanifold of semi-bounded solutions for (∗), denoted by Sol0, is defined
internally as the subobject of all f ∈ Sol which are R0-preserving (meaning that all
components of f are R0-preserving).

(3) The standardization manifold of (∗), denoted by Stnd, is obtained internally from
Sol0 by setting two solutions, f and g, to be equivalent if f(t) is infinitesimally close to
g(t) for each ordinary real number t.

We will show that the sheaf of R0-preserving maps coincides with the functor Map0

of semi-bounded maps, that Sol0 is the functor which assigns to A the set of all semi-
bounded A-solutions of (∗), and that Stnd(A) = Sol0(A)/IPtCn. To do this, we need to

examine R0, RR0 and (R)R0
0 .

3.5. Definition. Let J be the set of all closed, bounded intervals of the ordinary reals.
Let J ∈ J be given. Let A be a C∞-ring. Then a ∈ A is J-bounded if λ(a) = 0 whenever
λ ∈ C∞(R) vanishes on J . We way that a ∈ A is bounded if there exists J ∈ J for
which a is J-bounded.

3.6. Lemma. The object R0, regarded as a functor from Vop to Sets, has the following
properties:

(1) R0(A) is the set of all bounded elements of A.

(2) R0 is the filtered colimit of the intervals J , for J ∈ J . (Recall that each such J is
identified with the representable functor [C∞(J), ].)

(3) Let A = C∞(Rm)/I(F) and let J ∈ J . Define AJ = C∞(Rm × J)/I(π∗F). The
functors R0 × [A, ] and Colim[AJ , ] are then naturally equivalent.

Proof. (1) If x ∈ A satisfies −n < x < n, then x is obviously [−n, n]-bounded. Conversely,
if x is [−m,m]-bounded, for any m > n, then x satisfies −n < x < n. It is easy to show
that the set of all bounded elements is functorial and a sheaf and the result readily follows.

(2) Each x ∈ A is the image of the identity under a unique homomorphism h :
C∞(R)→A. It follows that x is J-bounded iff h(λ) = λ(x) = 0 whenever λ is in the
kernel of the restriction map from C∞(R) to C∞(J) and the result follows.

(3) R0 × [A, ] = (Colim[J, ]) × [A, ] = Colim([J, ] × [A, ]). It is easily shown that
[J, ] × [A, ] = [AJ , ] and the result follows.

The following lemma describes RR0 .

3.7. Lemma. Let A = C∞(Rm)/I(F). An element of RR0(A) is then represented by a
filtered family {αJ : J ∈ J } where αJ ∈ C∞(Rm × J) and where the family is filtered in
the sense that if J ⊆ K then there exists F ∈ F such that αJ(u, t) = αK(u, t) whenever
u ∈ F and t ∈ J .

Moreover, if α ∈ RR(A) is represented by α(u, t) ∈ C∞(Rm ×R) then the restriction

of α to RR0 is represented by the family of restrictions, {αJ}, of α to Rm × J .
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Proof. RR0(A) = n.t.([A, ],RR0) = n.t.(R0 × [A, ],R) = n.t.(Colim[AJ , ],R) =
lim n.t.([AJ , ],R) = limAJ which leads to the above results.

The question arises as to when a filtered family {αJ} can be patched together to be
equivalent to the restrictions of some α ∈ C∞(Rm×R). The answer is “always”, as shown
below. Although this proposition is not needed in our development, it seems interesting
on its own.

3.8. Proposition. The restriction map from RR to RR0 is onto (but not always one-
to-one).

Proof. Let A = C∞(Rm)/I(F) be given. Let αJ ∈ C∞(Rm × J) be filtered (as in the
above lemma). We need to find α ∈ C∞(Rm×R) such that the restriction of α to Rm×J
is equivalent to αJ for each J ∈ J . In other words, there must exist, for each J , an F ∈ F
such that α(u, t) = αJ(u, t) for all u ∈ F and t ∈ J .

For each positive integer n, let αn = α[−n,n]. Let Fn ∈ F be a closed set such that
αn(u, t) = αn+1(u, t) for u ∈ Fn and |t| ≤ n. We may as well assume that the Fn’s are
nested, or that Fn ⊇ Fn+1 for all n, otherwise replace Fn by F1 ∩ . . . ∩ Fn. We observe
that if n < m and u ∈ Fm then αn(u, t) = αm(u, t) for |t| ≤ n.

For each u ∈ Rm let deg(u) = max{k : u ∈ Fk}. If u /∈ F1 let deg(u) = 0 and if
u ∈ Fk,∀k let deg(u) = ∞. (There need not be any u with deg(u) = ∞.) Let:

Q = {(u, t) ∈ Rm × R : |t| + 2 ≤ deg(u)}

We claim that Q is closed. Suppose (u0, t0) /∈ Q. We need to find a neighborhood of
(u0, t0) which misses Q. Clearly |t0| + 2 > deg(u0) since (u0, t0) /∈ Q. Let n = deg(u0)
then u0 /∈ Fn+1 and |t0| > n−2. Since Fn+1 is closed, the set {(u, t) : u /∈ Fn+1, |t| > n−2}
is the required neighborhood of (u0, t0).

Now define α(u, t) for (u, t) ∈ Q as αn(u, t) provided that u ∈ Fn, |t| ≤ n. Such an n
must exist, for example, n = min{k : |t| < (k − 0.5)}, as can be readily verified. On the
other hand, if u ∈ Fn, |t| ≤ n and u ∈ Fm, |t| ≤ m then αn(u, t) = αm(u, t) because if
n < m this follows from the definition and nested property of Fm.

It remains to show that α can be smoothly extended from Q to all of Rm×R, as it then
readily follows that α has the required restrictions. By using partitions of unity, it suffices
to find a neighborhood of each (u, t) ∈ Q to which α can be smoothly extended. But given
(u, t) ∈ Q let n = min{k : |t| < (k−0.5)}, let U be the set where (n−1.4) < |t| < (n−0.5),
then α on Q ∩ U extends smoothly to αn on U .

That the restriction from RR to RR0 is not always one-to-one follows from the ex-
ample in the following remark.

Remark. Let A = C∞(R)/I(F) where F is the “filter at infinity” meaning the filter
generated by sets of the form [u,∞). We can readily find α, β ∈ Map(A) having equivalent
sets of restrictions to members of J . For example, we can let α be 0 on precisely {(u, t) :
|t| ≤ u} while β is identically 0.
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On the other hand, if A = C∞(Rm) or even C∞(M) for M a classical C∞-manifold,

then restriction from RR(A) to RR0(A) is one-to-one and onto, as is easily seen.

We need to describe RR0
0 to show that the semi-bounded maps correspond to those

which are “R0 preserving”. First we need:

3.9. Lemma. Let A = C∞(Rm)/I(F) be a given filter ring. Then RR0
0 (A) ⊆ RR0(A) is

represented by the filtered families {αJ} ∈ RR0(A) for which each αJ is bounded, meaning
that for each J there exists B > 0 and F ∈ F such that |αJ(u)| < B for all u ∈ F .

Proof. Using the same method as in the proofs of 3.2 and 3.7, we see that RR0
0 (A) =

lim n.t.([AJ , ],R0) = lim(R0(AJ)) which readily leads to the stated result.

3.10. Proposition. α ∈ RR(A) is R0-preserving iff α is represented by α(u, t) ∈
C∞(Rn × R) which is semi-bounded with respect to F .

Proof. Clearly, α is R0-preserving iff the restriction of α to RR0(A) is actually in

RR0
0 (A). But this restriction is represented by the set of restrictions, {αJ} of α to

Rn × J for J ∈ J . It is readily shown that this set of restrictions satisfies the condition
of the above lemma iff α is semi-bounded with respect to F .

Behavior near a given equilibrium point. In what follows, we assume that (∗) is
autonomous, meaning it is of the form dx/dt = W (x) where W depends only on x, not
on t. We further assume that x is an equilibrium point of (∗) meaning that W (x) = 0,
so the function which is constantly equal to x is a solution of (∗). The stable solutions
are those which, in the internal language, stay infinitesimally close to x. We also define
the asymptotically stable solutions, even though the definition does not seem readily
expressible in the internal language.

3.11. Definition. The submanifold of stable solutions of (∗), denoted by Stab, (we
assume x and (∗) are understood) is defined internally as the subfunctor of Sol0 of all
solutions f with f(t) infinitesimally close to x for each ordinary non-negative t.

3.12. Definition. The submanifold of asymptotically stable solutions of (∗), denoted
by Asym, is defined as the following subfunctor of Stab: If A = C∞(Rm)/I(F) then
Asym(A) is the set of all σ(u, t) ∈ Stab(A) for which ∃F ∈ F having the property that
∀ε > 0, ∃t0 such that u ∈ F and t > t0 imply ‖σ(u, t) − x‖ < ε. It readily follows that
Asym is functorial, and a sheaf.

If A = C∞(Rm)/I(F), then Stab(A) is readily shown to be the set of all σ(u, t) ∈ Sol0(A)
such that for every ε > 0, ∃F ∈ F with ‖σ(u, t) − x‖ < ε whenever u ∈ F and t ≥ 0.

Classically, we assume that the smooth map φ(x0, t) is the unique solution of (∗) with
initial value x0. Then x is a stable equilibrium point if for every ε > 0 there is a δ > 0
such that ‖x0 −x‖ < δ implies ‖φ(x0, t)−x‖ < ε for all t ≥ 0. If, in addition, there exists
r > 0 such that ‖x0 − x‖ < r implies ‖φ(x0, t) − x‖→0 as t→∞, then x is asymptotically
stable. See [2]. The connection between these conditions is given by:



Theory and Applications of Categories, Vol. 7, No. 13 256

3.13. Lemma. Let φ(x0, t) be as above and let A = C∞(Rn)/I(F) where F is the filter of
neighborhoods of x. Note that φ(x0, t) is clearly semi-bounded, as F has bounded members.
Then:

(1) φ(x0, t) ∈ Stab(A) iff x is a stable equilibrium point.

(2) φ(x0, t) ∈ Asym(A) iff x is asymptotically stable.

Proof. (1) Suppose x is stable. Let ε > 0 be given. Then, by stability, there exists δ > 0
such that ‖x0 − x‖ < δ implies that, for all t ≥ 0, we have ‖φ(x0, t) − x‖ < ε. Let
F ∈ F be the δ-neighborhood of x then F has the required property which shows that
φ ∈ Stab(A). The proof of the converse is similar.

(2) If x is asymptotically stable there exists r > 0 such that ‖x0 − x‖ < r implies
‖φ(x0, t) − x‖→0 as t→∞. Let F be the r-neighborhood about x and then F ∈ F has
the required property. Again, the converse is similar.

Stabilization. Given A and σ ∈ Sol0(A), we find the “best extension” ν : A→Aσ of A
in which σ becomes stable, meaning that Sol0(ν)(σ) ∈ Stab(Aσ).

3.14. Definition. Given σ ∈ Sol0(A), then h : A→B makes σ stable if Sol0(h)(σ) ∈
Stab(B).

3.15. Theorem. Let σ ∈ Sol0(A). There exists ν : A→Aσ which makes σ stable and
such that whenever h : A→B makes σ stable then h factors as h = h0ν for a unique h0.

Proof. For each ε > 0 let

Eε = {u ∈ Rm : ‖σ(u, t) − x‖ ≤ ε,∀t ≥ 0}

Let Fσ be the filter generated by adding all sets Eε to F . Let Aσ = C∞(Rm)/I(Fσ)
(If Fσ is the improper filter, then the C∞-ring Aσ is trivial.) Let ν : A→Aσ be the
obvious homomorphism, (induced by the identity on Rm). It is then readily shown that
ν makes σ stable. Suppose h : A→B also makes σ stable, where B = C∞(Rk)/I(G).
Let h be determined by a smooth map η : Rk→Rm for which η−1(F ) ∈ G whenever
F ∈ F . Then, as h makes σ stable, there exists Gε ∈ G such that ∀t ≥ 0, v ∈ Gε we have
‖σ(ηv, t) − x‖ ≤ ε. This implies that Gε ⊆ η−1(Eε) which shows that η defines a map
h0 : Aσ→B. The remaining details are straightforward.

The topos of presheaves. The definition of Sol depended on the fact that we were
using the finite open cover topology as indicated in the proof of Lemma 3.2. If we inter-
preted the same condition in the topos of presheaves, we would get a presheaf which would
miss many solutions. But, even in this topos, we could define Sol by the condition that
“If B(a, f(a)) ≤ 0, then B(b, f(b)) < 0” (which need not be equivalent to “B(a, f(a)) > 0
or B(b, f(b)) < 0” because the internal logic is intuitionistic). The presheaf defined by the
“If-then” condition would actually be the sheaf of solutions, Sol. The definitions of R,

R0, RR, RR0 , RR0
0 , Sol0, Stnd, Stab can all be interpreted in the topos of presheaves

and the presheaves so defined would coincide with the sheaves defined above.
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4. Examples

This section fleshes out the theory with several examples. All of these examples are
assumed to be equations for a single function (in other words, n = 1) unless the contrary
is explicitly noted.

4.1. Example. Comparison of barrier conditions with the internal derivative.

There is an internal notion of a derivative (based on nilpotents) for maps in a smooth
topos which contains the topos we are working in. Obviously, this notion can be used to
define the object of solutions of (∗). In general, our definition, based on barrier conditions,
allows for a larger solution object than the definition based on the internal derivative. But
for C∞-rings of the form C∞(F ), where F ⊆ Rm is a closed subset, the two definitions
for the solution object agree. (This case includes rings of the form C∞(M) for M a
C∞-manifold.) In these cases, the solution object at C∞(F ) contains the maps σ(u, t) ∈
C∞(F×R) which are smooth parameterized solutions over F in the sense that σ is smooth
and for each fixed u ∈ F , we have f(t) = σ(u, t) is a (smooth) classical solution of (∗).
For other C∞-rings, the internal definition still leads to the object of maps that can be
represented by smooth parameterized solutions. The barrier conditions definition leads
to a larger solution object as shown by the next example.

4.2. Example. The differential equation dx/dt = 0.

Classically, the solutions of this equation are the constant functions. In filter rings,
the semi-bounded solutions are “nearly constant” in the sense indicated below. We will
show that:

(1) If g ∈ C∞(R) and σ(u, t) is a solution of dx/dt = 0, then so is g(σ(u, t)).
(2) If f ∈ C∞(R), then B(t, x) = f(x)− t is a barrier function over any interval [a, b],

for which a < b.
(3) Internally, an R0-preserving function f is a solution of dx/dt = 0 iff, for every pair

of ordinary reals a, b, f(a) is infinitesimally close to f(b). Externally the semi-bounded
σ(u, t) is a solution iff, for all a, b and ε > 0, ∃F ∈ F such that |σ(u, a) − σ(u, b)| < ε for
all u ∈ F .

(4) In general, if σ(u, t) is a solution (not necessarily semi-bounded) then, given a, b,
arctanσ(u, a) must be infinitesimally close to arctanσ(u, b) (for all u in some member of
the filter) but not conversely. In fact σ(u, t) can be infinitesimally close to a constant
(even uniformly so) without being a solution. So the semi-bounded hypothesis (that
σ ∈ n-Map0(A)) cannot be eliminated from Proposition 2.10.

Proof. (1) Clearly B(t, g(x)) is a barrier whenever B(t, x) is and the result follows.
(2) Note that ∂B/∂t = −1 < 0 which is more than enough.
(3) If σ satisfies the given condition, then for any maximal closed filter M which

extends F it is clear that σM(a) = σM(b) for all a, b. So σM is a solution of (∗) which
implies that σ is an A-solution, by Proposition 2.8.

Conversely, if there exist a, b, ε such that E = {u : |σ(u, a) − σ(u, b)| < ε} is not in F ,
then we can extend F to a maximally closed filter M which contains Ec, the closed set
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which is the complement of E. It follows that |σM(a)− σM(b)| ≥ ε which shows that σM
cannot be a solution of (∗), which contradicts Proposition 2.8.

(4) The first sentence follows from (1), using g = arctan, and (3), as arctanσ(u, t) is
obviously semi-bounded. As for the second part, let A = C∞(R)/I(F) where F is the
filter generated by sets of the form [u,∞) for u ∈ R. Let θ(u, t) ∈ C∞(R × R) be such
that θ(u, t) = u + (t/u) for u ≥ 1. Then θ is not an A-solution: Let B(t, x) = f(x) − t,
where f ∈ C∞(R) is such that f(n) < 0 for all integers n and f(n + (1/n)) > 1 for all
n ≥ 2. Then B(0, θ(n, 0)) < 0 and B(1, θ(n, 1)) > 0 for all integers n ≥ 2. So θ does not
even satisfy the weak barrier condition. In fact, defining θ(u, t) = u+ (sin t)/u we get a
non-solution which is uniformly close to constants and to actual solutions.

4.3. Example. The differential equation dy/dt = y.

This equation can be obtained from dx/dt = 0 by the transformation y = etx and
x = e−ty, using Theorem 2.22. So, σ(u, t) is a solution for dy/dt = y iff e−tσ(u, t) is a
solution for dx/dt = 0. The results of Example 4.2 can now be restated for this equation.

4.4. Example. High curves, low curves and barrier functions.

The notions of “high curve” and “low curve” are introduced in [3], using a different
notation, and treating the equation x′ = W (t, x) for a single function x(t) (so n = 1). We
recall that h(t) is a high curve (resp. �(t) is a low curve) over [a, b] iff h′(t) > W (t, h(t))
(resp. �′(t) < W (t, �(t))) for all t ∈ [a, b]. It follows that B(t, x) = x − h(t) (resp.
B(t, x) = �(t) − x) is a barrier function over [a, b] (but not conversely.) Clearly f(t)
satisfies the corresponding growth conditions (for these barriers, or as in [3]) iff either
f(a) > h(a) or f(b) < h(b) (resp. iff either f(a) < �(a) or f(b) > �(b)). So if f(t) is
transfinite for all t (which can happen in a filter ring, if f is not semi-bounded) then f
satisfies all conditions arising from high and low curves, which is quite different from, for
example, the restrictions and non-solutions mentioned in (4) of Example 4.2. (We note
that the definition of “solution”, as given in [3], requires more than the satisfaction of
each individual growth condition.)

4.5. Example. Smooth, global systems.

The system dx/dt = W (t, x), where W (t, x) = (W1(t, x), . . . , Wn(t, x)), is smooth
and global if each Wi is C∞ and if there exists a global solution with any given ini-
tial value (x1(0), . . . , xn(0)). In this case, as is well-known, there exists φ(c, t) =
(φ1(c, t), . . . , φn(c, t)) which is the unique solution with initial condition c, for c ∈ Rn.
Moreover, each φi is known to be C∞. Then:

(1) Let A = C∞(Rm)/I(F) be any filter ring. Let c(u) = (c1(u), . . . , cn(u)) represent
an n-tuple of bounded members of A. Then φ(c(u), t) represents a semi-bounded A-
solution.

(2) Conversely, for every semi-bounded A-solution σ, there is c(u), as above, such that
for every t and every ε > 0 there exists F ∈ F such that ‖σ(u, t) − φ(c(u), t)‖ < ε for all
u ∈ F .
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(3) Stnd(A) is equivalent to the set of all n-tuples of bounded members of A. So the
manifold Stnd is isomorphic to Rn

0 . This indicates that the standardized solutions are
parameterized by n-tuples of (bounded) reals, just as the classical solutions are.

Proof. (1) φ clearly satisfies the barrier conditions. Since φ is continuous, if we put a
bound on the initial values c and if t varies in some bounded interval J , then the values
of φ will be bounded. This shows that φ is semi-bounded.

(2) Let σ(u, 0) = (σ1(u, 0), . . . , σn(u, 0)). Since σ is semi-bounded, there exists F ∈ F
on which the maps σi(u, 0) are bounded, so we can define bounded maps c(u) where
ci(u) = σi(u, 0) for u ∈ F . The condition saying that σ is within ε of φ must be met,
otherwise, arguing as in the proof of (3) in Example 4.2, we can find a solution σM which
has the same initial conditions as φM but values differing by ε for some t.

(3) This follows from (2) when we factor out by IPtCn to get Stnd(A).

4.6. Example. The differential equation dx/dt = 2
√
|x|.

In this case, the only smooth, classical solution is constantly 0. So, by Example
4.1, if A = C∞(R) or C∞(M) for a manifold M , then the only A-solution is identically

0. But, we can approximate 2
√
|x| by a smooth function V (u, t, x) as u→∞. So if

A = C∞(R)/I(F) where F is generated by {[u,∞)}, we can get any ordinary, non-

smooth solution of dx/dt = 2
√
|x| in the form σM by choosing V with care. We can also

choose V so that we get distinct A-solutions with the same initial conditions.

4.7. Example. The differential equation dx/dt = 1 + x2.

For this equation, B(t, x) = (t/2) − arctan(x) is a barrier function over any interval
[a, b]. If a < −π and b > π then B(a, σ(u, a)) < 0 and B(b, σ(u, b)) > 0 for any σ. It
follows that this equation has no (global) solutions. (A different approach in [3] allowed
infinite solutions.) Note that 1 +x2 can be pointwise approximated by functions V (x) for
which dx/dt = V (u, x) does have smooth global solutions. This shows that Theorem 2.12
cannot be extended from semi-bounded solutions to all solutions.

4.8. Example. The system dr/dt = (1 − r)2, dθ/dt = cos2 θ + 1 − r.
Consider the solution f which starts at r = 1/2, θ = 0. Then r(t) = 1− 1

t+2
approaches

1 and θ steadily increases to ∞, as t→∞. Think of (r, θ) as polar coordinates and rewrite
the system in terms of rectangular coordinates (x, y), for |r| ≥ 1/3. This region contains
the orbit of f for t > 0. The resulting equations, defined smoothly on r ≥ 1/3, can
be smoothly extended to the whole plane without affecting f(t) for t ≥ 0. The limit
point set, L+(f), is clearly the unit circle where r = 1. It has two equilibrium points,
at (r, θ) = (1, π/2) and (1, 3π/2). There are also two orbits between these points, both
moving counter-clockwise, one along the right side of the unit circle and the other along
the left. Both take an infinite amount of time to get from one equilibrium point to the
other. The non-standard f : R+

U→R2 makes L+(f) cyclic as it traverses the entire circle,
over and over again, stopping for only an “ordinary eternity” at each equilibrium point
before moving on.
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4.9. Example. Stabilization at 0.

Consider the following differential equations for a single function x(t). In each case, 0
is an equilibrium point and we consider the behavior of solutions near 0. Specifically, we
consider A-solutions where A = C∞(R)/I(F) and F is the filter of neighborhoods of 0.
We let φ(u, t) be the unique solution with initial value u. (Such a C∞-map, φ, exists in
these cases.) We let C∞(R)/I(G) be the stabilization of φ and we seek to describe G.

(1) dx/dt = −x. In this case, φ is already stable, so G = F
(2) dx/dt = x3. Here φ is not stable and G is the trivial filter generated by {0}. But,

surprisingly, the functor Stab is non-trivial for this equation, see Example 4.11.
(3) dx/dt = sin2 x. In this case, φ is not stable but G is not trivial, as G is the filter

generated by (−ε, 0). Note that a solution will stay near 0 if it starts just below 0. But
if it starts just above 0, it moves towards the next equilibrium point, at x = π.

4.10. Example. The system dx/dt = −x, dy/dt = y.

Consider the only equilibrium point, at (0, 0). Let (φ1(x0, y0, t), φ2(x0, y0, t)) be the
solution with initial value (x0, y0). Let F be the filter of neighborhoods of (0, 0) in R2. Let
A = C∞(R2)/I(F). As in the above example, let A = C∞(R2)/I(G) be the stabilization
of φ. Then G is generated by the intersections of members of F with the “x-axis”. This
reflects the idea that φ is stable only in the x-direction.

4.11. Example. The Pitchfork Bifurcation.

(I read about this interesting example in [2].) Consider the equation dx/dt = x3 which
has an unstable equilibrium point at x = 0. Consider also dx/dt = ux + x3, which has
equilibrium points when x = 0 or when u = −x2 (which form a “pitchfork” shaped subset
of the (u, x) plane).

Let A = C∞(R2)/I(F) where F is the filter of neighborhoods of (0, 0). Let φ(u, x0, t)
be the solution of dx/dt = ux+x3 with initial value x0. Then, in view of Theorem 2.12, φ
represents an A-solution of dx/dt = x3. Note that (0, 0) is an unstable equilibrium point
of dx/dt = x3 but some of the equilibrium points of dx/dt = ux + x3 are stable (when
u = −x2 for u < 0), and φ does not wander far from 0 if u < −x2

0. If G is the filter which
defines the stabilization of φ, then G is generated by the following sets, defined for ε > 0:

{(u, x) : |x| < ε and − ε2 < u < −x2} ∪ {(u, x) : x = 0 and |u| < ε}
Note that Stab for dx/dt = x3, with respect to the equilibrium point 0, contains this
stabilization of φ, so it is not, as one might expect, trivial.

On the definition of semi-boundedness. Suppose A = C∞(Rm)/I(F) and let
λ ∈ C∞(Rm × R) represent a member of Map(A). We want to find out if the definition
of “semi-bounded” can be simplified. Say that λ is bounded on J if λ is bounded on
Rm × J for every J ∈ J . Then clearly λ is semi-bounded with respect to any filter. Also
ν ∈ C∞(Rm ×R) is semi-bounded with respect to F if there exists F ∈ F with ν = λ on
F ×R where λ is bounded on J . The converse however is false, as shown by the example
below.
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4.12. Example. The definition of semi-bounded cannot be simplified, as discussed above.

(I thank W. W. Comfort who pointed out the crucial role of P -points and non-P -
points.) Let U be an ultrafilter on N which is a non-P -point of βN − N. See [1],
particularly problems 4J,4K,4L,6S for details, and the existence of such points. It follows
that U is an element of some Gδ which is not a neighborhood of U . So we can find a
sequence {Fn} of members of U such that for no F ∈ U is the set-theoretic difference
F − Fn finite for all n.

We may as well assume that the {Fn} are nested ( with Fn ⊇ Fn+1 for all n) else
replace each Fn by F1 ∩ . . . ∩ Fn. Also, we may as well assume that no integer lies
in all Fn, else replace Fn by deleting the finite set {1, 2, . . . , n}. For each u ∈ N let
deg(u) = max{n : u ∈ Fn}. (Assume F0 = N).

Now define ν ∈ C∞(R × R) so that for u ∈ N we have ν(u, t) = t if |t| ≤ deg(u) and
ν(u, t) = t + u if |t| ≥ 1 + deg(u). (Such a map ν can clearly be found, by the smooth
Tietze theorem.) We claim that ν is semi-bounded with respect to U , regarded as a filter
on R. Given a bounded interval J choose n so that |t| ≤ n for t ∈ J . Then, for u ∈ Fn

and t ∈ J , we see that |ν(u, t)| ≤ n (for if u ∈ Fn, then deg(u) ≥ n, etc.

But if there exist F ∈ U and λ bounded on J such that ν = λ on F ×R, then for each
n, there exists Bn such that λ(u, t) ≤ Bn for all t with |t| ≤ n and all u. So, if u ∈ F −Fn

then it readily follows that n+ u ≤ Bn so u ≤ Bn − n which shows that F − Fn is finite,
contradicting the choice of the {Fn}.
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