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STRONGLY SEPARABLE MORPHISMS IN GENERAL CATEGORIES

Dedicated to Dominique Bourn on the occasion of his sixtieth birthday

G. JANELIDZE AND W. THOLEN

Abstract. We clarify the relationship between separable and covering morphisms in
general categories by introducing and studying an intermediate class of morphisms that
we call strongly separable.

1. Introduction

The so-called separable Galois theory of commutative rings is closely related to Grothen-
dieck’s Galois theory of coverings of schemes in algebraic geometry. In fact, both of
them are special cases of the purely-categorical Galois theory, the details of which are
explained in [BJ] and [J2], with many references to the relevant literature on Galois theory
(see especially [AG], [CHR], [Janusz], [G], [DI], [VZ1], [VZ2], and [M]). We recall here in
particular the following fundamental notion:

1.1. Definition.

(a) Let R be a commutative ring. A commutative R-algebra S is said to be separable if
it is projective as an S ⊗R S-module.

(b) A commutative separable R-algebra is said to be strongly separable if it is projective
as an R-module.

(All rings and algebras in this paper are supposed to be with 1; many authors also
require 1 6= 0, but it is better not to do so.)

It is known that a commutative separable R-algebra is strongly separable if, and
only if, the structure homomorphism R → S, considered as a morphism S → R of the
corresponding affine schemes, is a covering morphism. In other words, the projectivity
condition of Definition 1.1(b), which becomes trivial in the classical case of fields, is
exactly what one needs to add to the definition of separable algebra in order to make
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it equivalent to the definition of covering morphism (of affine schemes). Now, Definition
1.1(a) has a straightforward categorical reformulation, first introduced and studied in
[CJ] for lextensive categories, and then in [JT1] for arbitrary categories equipped with
an admissible Galois structure, or simply with an endofunctor satisfying suitable mild
conditions. Furthermore, the categorical notion of covering (see e.g. [J2] and references
there) plays a central role in categorical Galois theory. Therefore it is natural to search for
a purely-categorical condition which, when added to the definition of separable morphism,
will again make it equivalent to the definition of covering morphism — which in fact was
done in [CJ] in the special case of lextensive categories.

The purpose of the present paper is to present such a condition. More precisely, we
introduce a notion of strongly separable morphism and prove the following (see Theorems
4.3 and 4.5):

• A strongly separable morphism is a covering if and only if it satisfies a certain
pullback-stability condition (which partly generalizes Theorem 25 of [CJ]);

• In the context of [CJ] and in the presence of a suitable Galois structure, a covering
morphism is always strongly separable. This statement uses the corresponding sep-
arabililty result from [CJ] and cannot be extended to the general context, since we
gave an example of a non-separable covering in [JT1].

Unfortunately we do not know if our categorical notion of strongly separable fully
agrees with Definition 1.1(b). We could avoid this uncertainty by adding the above-
mentioned pullback-stability condition to our definition of a strongly separable morphism,
but that does not seem to be a good idea, particularly because the definition chosen here
yields the desirable “equation”

strongly separable = F -separated + F -compact (Proposition 3.2),

in the sense of [T] for a suitable F . Still, the above-mentioned additional condition is
itself “Galois-theoretic”, which is less visible in the special case already considered in [CJ],
but becomes clearly motivated by the results of [CJKP] and [JK] in the general case we
consider here.

The conclusion seems to be that, although the algebraic and categorical definitions of
separable and covering morphisms agree, the algebraic and categorical ways to compare
them may differ. Note, however, that the categorical approach uses effective descent
morphisms, and, hence, suggests (see e.g. [JT2]) that “projective as R-module” be
replaced by “makes R→ S a pure monomorphism of R-modules” in Definition 1.1(b).

2. Separable = separated

Let (I,H, η, ε) : C → X be a fixed adjunction between categories with finite limits, B
an object in C and (IB, HB, ηB, εB) : (C ↓ B) → (X ↓ I(B)) the induced adjunction, in
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which IB(A,α) = (I(A), I(α)) and HB(X,ϕ) = (B ×HI(B) H(X), pr1). We will always
assume that the adjunction (I,H, η, ε) is admissible in the sense of categorical Galois
theory (see [J1, BJ, J2], and references there), which calls for the co-units εB : IBHB →
1(X↓I(B)) to be isomorphisms, for every object B; for simplicity, we will also assume that
ε : IH → 1X itself is an isomorphism, in fact the identity transformation on a full
subcategory X in C, with H : X→ C the inclusion functor. In particular, we will write

HB(X,ϕ) = (B ×I(B) X, pr1). (2.1)

Accordingly, it is convenient to identify the composite HI with I, and consider (I, η) as
a pointed endofunctor of C, but we note that many of the definitions and results below
can be formulated for more general pointed endofunctors of C as in [JT1]. We also note
that our assumptions may be expressed equivalently by saying that (X is a full reflective
subcategory in C and) the reflection I : C → X is semi-left-exact in the sense of C.
Cassidy, M. Hébert, and G.M. Kelly [CHK].

Let us recall (see, for example, [J2]):

2.1. Definition. A morphism α : A→ B (or an object (A,α) in (C ↓ B)) in C is said
to be

(a) a trivial covering (of B), if it satisfies the following equivalent conditions:

(i) the morphism ηB(A,α) : (A,α)→ HBIB(A,α) is an isomorphism,

(ii) (A,α) ∼= HB(X,ϕ) for some ϕ : X → I(B),

(iii) the diagram

A
ηA //

α

��

I(A)

I(α)

��
B

ηB
// I(B)

(2.2)

is a pullback;

(b) a covering, if there exists an effective descent morphism p : E → B such that (A,α)
is split over (E, p), i.e. the image of (A,α) under the pullback functor p∗ : (C ↓
B)→ (C ↓ E) is a trivial covering of E;

(c) separable, if the diagonal ∆α = 〈1A, 1A〉 : A→ A×B A is a trivial covering.

The separable morphisms here are the same as the T -separable morphisms in the sense
of [JT1], where T = HI; this notion of separability is essentially far more general than
the separability in the sense of [CJ] (see Example 2.5). (The preservation of the terminal
object by T required in [JT1] is equivalent to the same property of I; we circumvented
this condition here by requiring not only the local co-units εB but also ε itself to be
isomorphisms.) From the results of [JT1] we obtain:



STRONGLY SEPARABLE MORPHISMS IN GENERAL CATEGORIES 139

2.2. Proposition. The class of separable morphisms in C contains all monomorphisms
and all trivial coverings; it is closed under composition and all limits in the arrow category
of C, and it is left cancelable (i.e. βα separable implies α separable), and hence pullback
stable.

The following observation is not mentioned in [JT1] explicitly, but can be deduced
from the results there:

2.3. Proposition. If α : A→ B is a split monomorphism, then it is a trivial covering
if and only if it can be presented as the equalizer of two parallel morphisms into an object
in X.

Proof. Presenting α as the equalizer of two parallel morphisms into an object X is the
same as presenting it as a pullback of the form

A //

α

��

X

∆X=〈1X ,1X〉
��

B // X ×X

(2.3)

Since every morphism in X is a trivial covering, and the class of trivial coverings is
obviously pullback stable, the possibility of such a presentation (with X in X) implies
that α is a trivial covering. Conversely, if α is a trivial covering, then it is a pullback
of I(α), which is a regular monomorphism in X (because α was supposed to be a split
monomorphism, and hence so is I(α)). And since every regular monomorphism in X has
a presentation as needed, it now suffices to just compose the two pullbacks in the diagram

A //

��

I(A) //

��

X

��
B // I(B) // X ×X .

2.4. Corollary. A morphism α : A→ B is separable if and only if it is separated, i.e.
there exists an equalizer diagram of the form

A
∆α// A×B A //// X (2.4)

with X in X.

Let us also recall some important examples of separable morphisms:

2.5. Example. A morphism α : A → B in a lextensive category C is called separable
(=decidable) in [CJ] if the diagonal ∆α : A → A ×B A is a coproduct injection. This
definition does not involve X and hence is not exactly a special case of the present one.
However there are (at least) two reasonable contexts where they agree and apply for many
geometric applications :
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(a) Let C = Fam(A) be the category of families (=“free coproduct completion”) of
objects in a category A such that C has pullbacks, and A has a terminal object.
Since the category of sets can be identified with Fam(1), and Fam(−) is a 2-functor,
the adjunction A→ 1 induces an admissible adjunction C→ Sets (see [BJ] or [J2]
for details). It is then easy to see that the separable morphisms in the sense of
our definition above are the same as the separable morphisms in C in the sense of
[CJ]. In particular C could be any locally connected (=molecular) topos; then the
separable morphisms are precisely the decidable ones in the topos-theoretic sense.

(b) The same can be said about finite families and finite sets. The notion of locally
connected topos is then also to be replaced with its appropriate finite version, which
for instance will include all toposes with finite hom-sets.

2.6. Example. Let R be a commutative ring and S a commutative R-algebra (both
with 1 preserved by the structure homomorphism R → S). The following conditions are
well-known to be equivalent (see e.g. [DI]):

(a) S is a separable R-algebra (see Definition 1.1);

(b) the multiplication map µS : S⊗R S → S is a split epimorphism of S⊗R S-modules;

(c) there exists an idempotent e in S ⊗R S with µS(e) = 1;

(d) µS : S ⊗R S → S is a product projection in the category of (commutative) rings;

(e) the structure homomorphism R → S considered as a morphism S → R in the
opposite category of commutative rings, is separable in the sense of [CJ].

Let C be a full subcategory of the opposite category (Comm-R-alg)op of commutative
R-algebras (with 1) satisfying the following conditions:

(i) it is closed under pullbacks in (Comm-R-alg)op;

(ii) the set of idempotents in any S in C is finite;

(iii) if S ∼= S1 × S2 in Comm-R-alg, then S is in C if and only if so are S1 and S2.

When R is connected, i.e. has no non-trivial idempotents, we can use Example 2.5(b)
to construct an adjunction C → Finite Sets, and a morphism α : A → B in C will be
separable if and only if A is a separable B-algebra. In particular we could take R to be
a field and C the opposite category of commutative R-algebras (with 1 again) that are
finite-dimensional as vector spaces over R. Recall that an R-algebra S would then be
separable if and only if it is a finite product of finite separable field extensions of R.
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2.7. Example. Let C be an elementary topos, j a Lawvere-Tierney topology on C,
X = shvj(C) the corresponding category of internal sheaves, H : X → C the inclusion
functor, I : C→ X the sheafification functor, and A an object in C. Then the following
conditions are equivalent:

(a) A→ 1 is a separable morphism;

(b) A is an internal separated presheaf in the topos-theoretic sense.

3. Strongly separable morphisms

Let (I,H, η, ε) : C → X be as in Section 2. Since it is a semi-left-exact reflection in
the sense of [CHK], it produces a corresponding reflective factorization system (E ,M) in
C. As it was later observed in [CJKP] and in [JK], this construction from [CHK] plays
an important role in Galois theory; in particular, M coincides with the class of trivial
covering morphisms. At the moment we just need to recall that for a morphism α : A→ B
in C, the canonical factorization α = mαeα is given by the commutative diagram

A

α

��9
99

99
99

99
99

99
99

99
9

eα

%%LLLLLLLLLLL
ηA

++VVVVVVVVVVVVVVVVVVVVVVVVVV

B ×I(B) I(A)pr2
//

mα=pr1

��

I(A)

I(α)

��
B ηB

// I(B)

(3.1)

We can now introduce the following definition:

3.1. Definition. A morphism α : A → B in C is said to be strongly separable if
it is separable and, for every pullback α′ of α, the morphism eα′ is an effective descent
morphism.

In order to describe the basic properties of the class of strongly separable morphisms,
it is convenient to introduce operators Sep, St, Loc, −#X as follows: if F is a class of
morphisms in C, then

• St(F) is the stabilization of F , i.e. the class of all morphisms in C each pullback
of which is in F ; in [T] this class is denoted by c(F) and its elements are called
F -compact morphisms.

• Sep(F) is the class of F -separable (=F -separated) morphisms, i.e. those morphisms
α : A→ B in C for which ∆α : A→ A×B A is in St(F); in [T] this class is denoted
by d(F) and its elements are also called F -separated morphisms.

• Loc(F) is the localization of F , i.e. the class of all morphisms in C some pullback
of which along an effective descent morphism is in F .
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• F#X is the class of morphisms in C which are in F up to X, i.e. the class of those
α’s which have eα in F .

We will apply these operators to the following two classes, each of which contains all
isomorphisms, is closed under composition, and is pullback stable:

• TrivCov(C), the class of trivial coverings in C;

• EffDes(C), the class of effective descent morphisms in C.

According to this notation we have

• St(TrivCov(C)) = TrivCov(C) and St(EffDes(C)) = EffDes(C);

• Sep(TrivCov(C)) is the class of separable morphisms in C;

• Sep(TrivCov(C))∩St(EffDes(C)#X) is the class of strongly separable morphisms in
C;

• Loc(TrivCov(C)) is the class of covering morphisms in C.

Note also that, since a monomorphism is an effective descent morphism if and only if it
is an isomorphism, we have Sep(TrivCov(C)) = Sep(EffDes(C)#X), and we deduce:

3.2. Proposition. A morphism in C is strongly separable if and only if it is EffDes(C)#X-
separated and EffDes(C)#X-compact in the sense of [T].

It is easy to show that the class EffDes(C)#X is closed under composition (and of
course contains all isomorphisms), and so we can use various results of section 3 of [T] on
F -separated and F -compact morphisms for F = EffDes(C)#X. In particular, we obtain:

3.3. Proposition. The class of strongly separable morphisms in C contains all iso-
morphisms and all trivial coverings, is closed under composition and pullback stable, and
has the following cancellation property: if βα is strongly separable and β separable then
α is separable.

It can also be proved that if βα is strongly separable, β separable, and I(α) an effective
descent morphism (in C), then β is strongly separable.

4. Locally stable factorization and main theorems

Let (E ,M) be the factorization system on C used above; that is

E = {eα | α : A→ B in C} = {α | I(α) is an isomorphism},

M = {mα | α : A→ B in C} = TrivCov(C).

Note that according to the notation above, E#X is the class of all morphisms in C, and
M#X =M.
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4.1. Definition. We say that a morphism α : A→ B in C has

(a) a stable factorization if it belongs to St(E)#X, i.e. if not just eα itself but every
pullback of it is in E;

(b) a locally stable factorization if it belongs to Loc(St(E)#X), i.e. there exists an
effective descent morphism p : E → B in C such that the pullback pr1 : E×BA→ E
of α along p has a stable factorization.

As shown in [CJKP], the (Purely inseparable, Separable) factorization for finite-dimensional
field extensions and the (Monotone,Light) factorization for continuous maps of compact
Hausdorff spaces are instances of factorization systems of the form (St(E), Loc(M)); the
existence theorem for those factorization systems proved in [CJKP] can be formulated as
follows:

4.2. Theorem. The following conditions are equivalent:

(a) (St(E), Loc(M)) is a factorization system;

(b) every morphism in C has a locally stable factorization.

In the next section we will prove a number of technical results in order to deduce:

4.3. Theorem. A strongly separable morphism is

(a) a trivial covering if and only if it has a stable factorization;

(b) a covering if and only if it has a locally stable factorization.

In particular, we obtain:

4.4. Corollary. If the equivalent conditions of Theorem 4.2 hold, then every strongly
separable morphism in C is a covering.

An example of a non-separable covering morphism is given in [JT1]; however, in Section
6 we will prove:

4.5. Theorem. In the situation considered in Example 2.5, every covering morphism
is strongly separable.

5. Proof of Theorem 4.3

5.1. Lemma. In a commutative diagram of the form

D
eδ

  A
AA

AA
AA

A
q //

δ

��

A
eα

~~}}
}}

}}
}

α

��

D′
q′ //

mδ~~}}
}}

}}
}}

A′

mα   A
AA

AA
AA

E p
// B

(5.1)
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with mδ and q′ jointly monic, the following implication holds for any pair d1, d2 of parallel
morphisms with codomain D:

(δd1 = δd2 and ηAqd1 = ηAqd2)⇒ (ηDd1 = ηDd2).

Proof. As we see from diagram (3.1), for every pair v1, v2 of parallel morphisms with
codomain A we have (αv1 = αv2 and ηAv1 = ηAv2) ⇔ (eαv1 = eαv2); similarly we have
(δd1 = δd2 and ηDd1 = ηDd2)⇔ (eδd1 = eδd2). After that we observe:

(i) since αq = pδ, the equality δd1 = δd2 implies the equality αqd1 = αqd2;

(ii) therefore assuming δd1 = δd2 and ηAqd1 = ηAqd2, we obtain eαqd1 = eαqd2;

(iii) since q′eδ = eαq, this also gives q′eδd1 = q′eδd2;

(iv) moreover, since δ = mδeδ and mδ and q′ are jointly monic, (iii) tells us that our
assumption implies eδd1 = eδd2;

(v) since eδd1 = eδd2 implies ηDd1 = ηDd2, this completes the proof.

5.2. Lemma. If α : A→ B is separable and has a stable factorization, then it is disso-
nant, i.e. eα is a monomorphism.

Proof. Given a1, a2 : T → A with eαa1 = eαa2, consider the diagrams

T
ai //

〈ai,1T 〉
��

A
ηA //

∆α

��

I(A)

I(∆α)
��

A×B T 1A×ai
// A×B A ηA×BA

// I(A×B A) ,

(5.2)

where A×B T is the pullback of α and αai(i = 1, 2). If we knew that

ηA×BA(1A × a1) = ηA×BA(1A × a2), (5.3)

then, since both squares in (5.2) are pullbacks, we could conclude that 〈a1, 1T 〉 and 〈a2, 1T 〉
represent the same subobject of A ×B T and so a1 = a2 as desired. Therefore we only
need to prove (5.3). But this follows from Lemma 5.1 applied to

• E = A;

• p = α;

• D = A×B A with δ and q the pullback projections;

• di = 1A × ai : A×B T → A×B A (i = 1, 2),

where δd1 = δd2 becomes trivial and ηAqd1 = ηAqd2 follows from our assumption eαa1 =
eαa2; the fact that mδ and q′ are jointly monic follows from the stability of the factor-
ization α = mαeα.
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Now we are ready to complete the proof of Theorem 4.3:

Since St(E) contains all isomorphisms, every trivial covering has a stable factorization
and every covering has a locally stable factorization. That is, the “only if” parts of 4.3(a)
and 4.3(b) are trivial.

If α is strongly separable, then eα is an effective descent morphism, and so it is an
isomorphism if (and only if) it is a monomorphism. Therefore 4.3(a) follows from Lemma
5.2. On the other hand since the class of strongly separable morphisms is pullback stable,
4.3(b) immediately follows from 4.3(a).

5.3. Remark. Let us say that α has a weakly stable factorization , if for every morphism
α′ obtained from α by pulling back along any morphism p (with the same codomain), the
canonical morphism from the domain of mα′ to the domain of the pullback of mα along
p is a monomorphism. As we see from the proof above, whose main ingredient was the
assumption that mδ and q′ are jointly monic in Lemma 5.1, we could extend the statement
of 4.3(a) by: “and if and only if it has a weakly stable factorization”. The same is of
course true for 4.3(b) with the obvious notion of locally weakly stable factorization.

6. Four lemmas on effective descent morphisms in lextensive categories

In this section we assume that C is (infinitary) lextensive, i.e. it admits finite limits and
arbitrary (small) coproducts, and for every family (Cλ)λ∈Λ of objects in C the coproduct
functor ∑

:
∏
λ∈Λ

(C ↓ Cλ)→ (C ↓
∑
λ∈Λ

Cλ) (6.1)

is a category equivalence.

6.1. Lemma. Let pλ : Eλ → Bλ (λ ∈ Λ) be a family of morphisms in C. The morphism∑
λ∈Λ pλ :

∑
λ∈Λ Eλ →

∑
λ∈ΛBλ is an effective descent morphism if and only if so are

all the pλ.

Proof. Just use the equivalence (6.1).

6.2. Lemma. Let pλ : Eλ → Bλ (λ ∈ Λ) be a family of morphisms in C. If at least one
pλ is an effective descent morphism then the induced morphism

∑
λ∈Λ Eλ → B is also

an effective descent morphism.

Proof. Choose an index µ ∈ Λ for which pµ is an effective descent morphism, and let
qλ : Eλ → Bλ (λ ∈ Λ) be the family of morphisms in which qµ = pµ and qλ : Eλ → Bλ

is the identity morphism of Eλ for all λ 6= µ. Then
∑

λ∈Λ Eλ → B is the composite of∑
λ∈Λ qλ :

∑
λ∈ΛEλ →

∑
λ∈Λ Bλ, which is an effective descent morphism by Lemma 6.1,

and the split epimorphism
∑

λ∈ΛBλ → B induced by the identity morphism of Bµ = B
and all pλ : Bλ = Eλ → B (λ 6= µ). Therefore

∑
λ∈ΛEλ → B itself is an effective descent

morphism.
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6.3. Lemma. Let pλ : Eλ → B (λ = 1, 2) be two morphisms making the induced mor-
phism p : E1+E2 → B an effective descent morphism. If B is connected (=indecomposable
into a non-trivial coproduct) and E1 6= 0 6= E2, then E1 ×B E2 6= 0.

Proof. It is easy to see that if E1×BE2 = 0, then each of the coproduct injections Eλ →
E1 +E2 determines a descent datum over p. Therefore, in that case, descending along p
would give a coproduct decomposition for B which is non-trivial since E1 6= 0 6= E2.

6.4. Lemma. Let
D1 +D2

q //

δ1+δ2
��

A

α

��
E1 + E2 p

// B

(6.2)

be a pullback diagram, in which p and δ1 are effective descent morphisms, B is connected,
and E1 6= 0 6= E2. Then D2 6= 0.

Proof. Consider the composite p(in1)(pr1) = p(in2)(pr2) of the pullback projection prλ :
E1 ×B E2 → Eλ, coproduct injection inλ : Eλ → E1 + E2, and p (λ = 1, 2), and let α′ be
the pullback of α along that composite. Then:

(i) since α′ can be considered as the pullback of δ1, it is an effective descent morphism;

(ii) since E1 ×B E2 6= 0 by Lemma 6.3, we conclude that α′ has a non-zero domain;

(iii) since α′ can also be considered as the pullback of δ2, this gives D2 6= 0.

7. Proof of Theorem 4.5

In this section C = Fam(A), X = Sets, and I and H are as in Example 2.5(a). In
particular C is lextensive.

It is convenient to display the objects of C as A = (Ai)i∈I(A) (as e.g. in [BJ]); note
that a morphism α : A→ B in C is uniquely determined by the map I(α) and the family
(αi : Ai → BI(α)(i))i∈I(A) (which can be any map from I(A) to I(B) and any family of
morphisms Ai → BI(α)(i) defined for all i ∈ I(A)). In this notation the factorization
α = mαeα displays as

(Ai)i∈I(A)
eα−→ (BI(α)(i))i∈I(A)

mα−−→ (Bi)i∈I(B), (7.1)

I(eα) = 1I(A), (eα)i = αi, I(mα) = I(α), (mα)i = 1BI(α)(i)
,

and we have

E = {α | I(α) is a bijection},M = {α | each αi is an isomorphism}. (7.2)

Lemma 6.1 gives:
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7.1. Corollary. For any morphism α in C the following conditions are equivalent:

(a) eα is an effective descent morphism;

(b) each αi (i ∈ I(A)) considered as a morphism in C is an effective descent morphism.

7.2. Proposition. Let

D
q //

δ
��

A

α

��
E p

// B

(7.3)

be a pullback diagram with p an effective descent morphism. Then:

(a) if eδ is an effective descent morphism then so is eα;

(b) if δ is separable then so is α;

(c) if δ is strongly separable then so is α.

Proof. (a): The equivalence (6.1) and Corollary 7.1 tell us that without loss of generality
we can assume that A and B are connected (i.e. I(A) and I(B) are one-element sets),
and then we have to prove that α itself is an effective descent morphism. As shown
in [JST] (originally in [ST], but under an additional assumption), the class of effective
descent morphisms is closed under composition, is pullback stable, and has the strong right
cancellation property. So, since p and (therefore also) q are effective descent morphisms, it
suffices to prove that so is δ. On the other hand, since eδ is an effective descent morphism,
so is each δi (i ∈ I(D)), and then, as easily follows from Lemmas 6.1 and 6.2, it suffices
to show that I(δ) is surjective.

Let X be the image of I(δ) and Y its complement in I(E). We rewrite the diagram
(7.3) as the diagram (6.2) with:

• D1 = D,

• D2 = 0,

• E1 = (Ex)x∈X ,

• E2 = (Ey)y∈Y ,

• δ1 the same as δ but considered as a morphism from D1 = D to E1,

• δ2 = the unique morphism from 0 to E2.

Since D2 = 0 together with E1 6= 0 6= E2 would contradict Lemma 6.4, we conclude that
either E1 or E2 is 0, i.e. is the empty family. However, if E1 were 0, then so would be
also D, which is not the case since q is an effective descent morphism and A is connected.
Thus E2 = 0, and therefore I(δ) is surjective, as desired.

(b) follows from the results of [CJ], and (c) follows from (a) and (b).
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Since every trivial covering morphism is strongly separable, Theorem 4.5 immediately
follows from the assertion (c) of Proposition 7.2.
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